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Abstract Over the past 15 years, there has great success in using linguistically 3

annotated sentence collections, such as the Penn Treebank (PTB), to construct 4

statistically based parsers. This success leads naturally to the question of the 5

extent to which such systems acquire full “knowledge of language” in a con- 6

ventional linguistic sense. This chapter addresses this question. It assesses the 7

knowledge attained by several current statistically-trained parsers in the area of 8

tense marking, questions, English passives, and the acquisition of “unnatural” 9

language constructions, extending previous results that boosting training data via 10

targeted examples can, in certain cases, improve performance, but also indicating 11

that such systems may be too powerful, in the sense that they can learn “unnatural” 12

language patterns. Going beyond this, this chapter advances a general approach 13

to incorporate linguistic knowledge by means of “linguistic regularization” to 14

canonicalize predicate-argument structure, and so improve statistical training and 15

parser performance. 16

1 Introduction: Treebank Parsing and Knowledge 17

of Language 18

Parsers statistically trained on corpora like the Wall Street Journal/Penn Tree 19

Bank have steadily improved their performance. However, despite these gains, 20

it is well-known that such systems often perform poorly on novel sentences 21
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outside their training datasets, due to the sparsity effects that reflect the “long-tail” 22

Zipf-distributional rarity of linguistic constructions and head-dependency relations 23

(see Collins [15], among many others). Klein and Manning [27] summarize the 24

situation in this way: 25

As a speech person would say, one million words of training data just isn’t enough. Even for 26

topics central to the treebank’s WSJ text, such as stocks, many very plausible dependencies 27

occur only once, for example, stocks stabilized, while many others occur not at all, for 28

example, stocks skyrocketed. 29

Our experiments below suggest that sufficiently complex linguistic constructions 30

exhibiting non-local dependencies may often pose problems for a parsing model that 31

takes a static view of syntactic structure – a model unable to systematically relate 32

the passive form of a sentence to its active counterpart, or a declarative sentence 33

to a corresponding derived interrogative. While often effective, simply adding more 34

data should not be invariably seen as a substitute for incorporating explicit linguistic 35

constraints into parsing models. Indeed, the successful use of an alternative model 36

of syntactic structure, Combinatory Categorial Grammar (CCG), as implemented in 37

several recent systems such as the C&C parser [11] and by Hockenmaier [22, 23] 38

may be seen as a concrete demonstration that sometimes the representation of 39

syntactic knowledge, rather than data sparsity, plays a more important role in parser 40

performance. 41

Moreover, as evidenced by the Penn Treebank, more challenging linguistic 42

mechanisms may have the least amount of data available for learning. The problem 43

is only exacerbated if we examine resource-impoverished languages. Language 44

acquisition is a classic instance of a scenario where adding more data is not one of 45

the available options for resolving the data sparsity problem. A viable computational 46

treatment requires model-level changes to address this issue.1 47

In fact, our experiments below indicate that statistical parsing stands to benefit 48

from a much more restrictive learning regime that inherits insights from language 49

acquisition. On this view, parsing models should be judged based on their ability 50

to recover and discriminate between different types of syntactic mechanisms rather 51

than on incremental improvements from adding training data to alleviate the data 52

sparsity problem. Similarly, the ability of a model to learn an unnatural syntactic 53

mechanism detracts from its ability to discriminate between syntactic constraints 54

observable in human language. Conversely, insights from our experiments can be 55

1We note that there have been recent proposals that suggest that “linguistic mastery does not need
to be available early in the course of language development” and that “the acquisition of usage-
based and fixed-form patterns can account for : : : [the] syntactic burst [occuring around age two
to three]” [39]. It is uncontroversial that some fixed form patterns are memorized by children, and
equally that complete linguistic mastery of syntax is delayed until the age of eight or later, as first
established by the work of Carol Chomsky [10]. However, while it “need not” be “available early”,
in point of fact, empirically, it has long been established that ’telegraphic speech’ is not indicative
of the full scope of syntactic comprehension at the ages of 2–3; rather, many aspects of syntax are
acquired by this age, but telegraphic speech does not reveal these abilities and reveals processing
difficulties such as memory limitations [20, 47].
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brought to bear on approaches to language acquisition. Syntactic mechanisms might 56

be more effectively acquired and discriminated if they are characterized in terms of 57

canonical argument analysis. 58

More generally, in this chapter we will focus on an assessment of gaps in the 59

“knowledge of language” acquired by statistically-trained parsers, attempting to sort 60

out which of these might arise from limited training data and lead to parameter 61

estimation problems with associated parsing models, and which might arise from 62

underlying grammatical frameworks and benefit from the insights of linguistic 63

theory. 64

We note that often the two sources of error are not complementary. Adding more 65

data relevant to a particular syntactic construction may resolve parsing mistakes, but 66

at the same time it may be symptomatic of a systematic problem with the model. 67

When asked to chose between two solutions, their relative ability to scale up and 68

generalize to new instances is the critical consideration. For example, a model that 69

needs a passive form for each active counterpart observed in the data to be able to 70

parse the passive variant should be less preferred to a model that explicitly models 71

the passive and is able to analyze and generate such a form automatically. This is 72

the basic conclusion we draw from our analysis of passive sentences, and it is not 73

simply a question about data sparsity. 74

We should emphasize at the outset that we have probed questions like these by 75

constructing entirely new experiments, not simply covering familiar ground about 76

the ever-present issue of data sparsity in statistical parsing. To the best of our knowl- 77

edge, all our experiments and their results are new. The analysis of passive errors and 78

the method we apply to canonicalize argument structure to improve passive parsing 79

performance is also novel, as far as we have been able to determine. Similarly, 80

our analysis of wh-questions does not simply rehash the approach of Rimmell 81

et al. [44]. Finally, our application of an “unnatural” language learning litmus tests, 82

while drawn from the psycholinguistic literature as in [36], has not been extended 83

to current statistical parsers. In all of these situations, our ultimate goal is to seek 84

ways of improving parsers by determining whether such systems have typical failure 85

modes that can be discovered, as well as whether these failures need to be remedied. 86

To begin, such an assessment of “knowledge of language” poses a real challenge. 87

Parsers are typically designed from the start to solve a very particular engineering 88

task that is quite different from the way that a linguist might assess knowledge of 89

language. Roughly speaking, statistically-based parsers learn how to select a “most 90

likely” analysis with respect to all the parses they have been trained on and all the 91

parses they can generate. They only choose among possible parses, standardly using 92

either generative or discriminative estimation methods. In this sense, they do not 93

directly adjudicate among “grammatical” and “ungrammatical” sentences.2 Such a 94

2As noted in [41] and [48], despite the fact that statistically-based parsers have used both sorts
of estimation methods, the underlying statistical models for both generative approaches as well
as discriminative approaches using what are called “latent variables” – probabilistic and weighted
context-free grammars, respectively – turn out to be equivalent in their expressive power.
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probabilistic “remembrance of parses past” is not the same as the replicability of 95

linguistic knowledge conventionally probed by grammaticality judgements. 96

Indeed, it is not immediately obvious how to align grammaticality judgements 97

with probabilities. There is no agreed-upon unification. While some authors, e.g., 98

Abney [1] maintain that the grammaticality-probability distinction should be kept 99

firmly apart, still others argue differently, e.g., [29], p. 33: 100

The parser that an ML [machine learning] system produces can be engineered as a classifier 101

to distinguish grammatical and ungrammatical strings. 102

While a more detailed consideration of this point lies beyond the scope of this 103

chapter, it suffices to observe that, as noted in [12], one cannot simply provide a 104

probability threshold, !, such that for all probability values greater than !, a parse 105

is grammatical, otherwise ungrammatical. In this case there could be at most 1=! 106

grammatical sentences, and the corresponding language would be finite. Observe 107

that the standard assumption for probabilistic context-free grammars assumes an 108

exponential distribution of probability mass with respect to generated sentence 109

length, so that sentences longer than a certain length have vanishingly small 110

probability mass. Thus as noted in the main text, such a language is effectively finite. 111

If anything, to the extent that such parsers are intended to model an actual corpus, 112

they presumably reflect actual language use, (in the case of the PTB, newspaper 113

writing), and so a complex mix of syntactic, lexical-semantic, world/encyclopedic 114

knowledge, processing load, and other similar factors. This is not coextensive 115

with the conventionally abstract, linguistic notion of linguistic competence, that 116

deliberately idealizes away from this mix, though there are familiar points of 117

contact. 118

Consequently, in this chapter we will typically base our assessments simply on 119

what parsing systems can and cannot do well. To consider an introductory example 120

of the assessment methods we will use, even in simple cases many corpus-trained 121

parsing systems cannot recover correct verb argument structure. Consider a passive 122

construction such as that in Ex. 1 below:AQ1 123

Mary was kissed by the guy with a telescope on the lips. 124

Many (perhaps most) parsers trained on the PTB will tend to attach the Prepositional 125

Phrase (PP) on the lips incorrectly to the PP a telescope because most of their 126

training data follow such a form. In contrast, the corresponding active form, Ex. 1 127

below, is easily parsed correctly by such systems, because the Subject NP-PP 128

combination is no longer located near the ambiguous PP attachment point: 129

The guy with a telescope kissed Mary on the lips. 130

Such examples are not just hypothetical. For instance, Fig. 1 shows that sentence 131

#404 of section 23 of the PTB, Measuring cups may soon be replaced by 132

tablespoons in the laundry room, is parsed incorrectly exactly in this way by 133

two state-of-the-art parsers, the Stanford unlexicalized context-free parser [27] and 134

Bikel’s re-implementation of the Collins parser [4]. In all these cases, the PP in the 135

laundry room is incorrectly attached as a modifier of the object NP tablespoons. 136
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Fig. 1 The Bikel/Collins and Stanford unlexicalized parsers both mis-analyze sentence number
404 in section 23 of the PTB. The top half of the figure shows the result of parsing using either
Bikel’s reimplementation of the Collins parser or the Stanford unlexicalized parser. The bottom
half of the figure shows the corresponding “gold standard” PTB structure

As in the remainder of this chapter, with some exceptions we will typically test 137

examples on a range of probabilistic parsers in an attempt to avoid the idiosyncrasies 138

of any particular implementation and achieve some measure of robustness in our 139

test results. In this case, in addition to the two parsers illustrated in the main text, 140

the Berkeley parser [40] and the C&C combinatory categorial grammar parser [18] 141

both output the same, incorrect attachment. The Malt dependency parser version 142

1.4.1 [37] also outputs an incorrect dependency between in and tablespoons. In 143

contrast, both the “factored” Stanford lexicalized-dependency parser [28] and the 144

Charniak-Johnson parser [6] do output the correct attachment. 145

Examples such as these suggest that verb argument structure might be more 146

easily recoverable when sentence structure is represented in some canonical format 147

that more transparently encodes grammatical relations such as Subject and Object. 148

In other words, if the arguments of predicates are in a fixed syntactic position 149
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in training examples, then we might expect that this regularity would be simpler 150

for a statistically-based system to detect and acquire. More generally, it has often 151

been observed that what makes natural languages difficult to acquire or parse is 152

that phrases are displaced from their canonical positions, not only in passives, but 153

in topicalization, wh-movement, and many similar constructions. Each of these 154

constructions breaks the transparent link between predicates and arguments. In 155

Sect. 5 below, we shall see that one can remedy at least some of these difficulties 156

by adopting a representation that is arguably closer to the one that certain linguistic 157

theories assume, where the argument of the main verb has been ‘replaced’ in its 158

canonical Object position, as in Ex. 1. There are other representations one might 159

adopt to handle this particular problem, for example, a combinatorial categorial 160

grammar (CCG) that explicitly relates displaced phrases to their “gaps.” As we noted 161

earlier, this does not necessarily ensure success. 162

Following the lead of this illustrative example, in the remainder of this chapter 163

we will focus on the following selection of challenging areas for parsers trained on 164

corpuses like the PTB: 165

1. Wh-questions. As has often been noted, the PTB corpus contains a very small 166

number of questions – unsurprisingly, since it consists of Wall Street Journal 167

newspaper articles [34]. Out of the 39,822 sentences in the standard training 168

sections 02–21, there are only 128 “root” level questions, such as training data 169

sentence #85, What’s next? and four other similar questions. More than 70 % 170

of these are Subject wh-questions There are 61 additional wh-questions that 171

appear in embedded quotational contexts, e.g., “What’s he doing ” , hissed my 172

companion, and 96 root level auxiliary inverted questions, e.g., Was this why 173

some of the audience departed before or during the second half . In short, by all 174

measures, the training data for wh-constructions and questions is exceptionally 175

sparse. Moreover, the statistically-trained parsers we examine in this chapter do 176

not receive data in the form of “more ill-formed” examples that differ, say, by 177

just a single word in a different order, such as, Who asked who bought what vs. 178

Who asked what who bought. These systems must therefore learn such nuances 179

from just one or two positive examples. 180

2. Tense marking. Tense is a good example of a linguistic phenomenon that, like 181

displacement in wh-questions, may be “spread out” over several, not necessarily 182

adjacent words. For example, in an English yes-no question, tense must be 183

realized overtly at the front, while the corresponding main verb need not have an 184

overt morphological indicator of tense: thus we have the PTB example, Do you 185

think the British know something we don’t , where do carries tense and think does 186

not. We will investigate whether statistically-trained systems can “capture” part 187

of the English tense system by examining examples of verbs that are ambiguously 188

marked for tense, such as read or cost. 189

3. Passives. As noted in our introductory example, the placement of a verb’s 190

argument in Subject position, along with the possibility of an Agentive “by” 191

phrase can lead to parsing difficulties. 192
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4. “Unnatural” language constructions. Finally, while the previous topics all 193

examine a particular parsing task – essentially, structural language patterns – 194

that one would like a trained parser to detect easily, there are also non- 195

attested language patterns that trained parsers should be able to detect only 196

with great difficulty. A cognitive-faithful parser should have the same problems 197

acquiring “unnatural” language patterns as people do. But what do mean by 198

unnatural? By this we do not mean patterns that are challenging for people 199

due to processing constraints, e.g., the classic examples of center-embedded or 200

garden path constructions. Rather, what we will mean by “unnatural” language 201

constructions are examples of the sort studied in some detail by Musso et al. [36] 202

via artificial grammar learning and fMRI experiments. They covered two sorts of 203

unnatural rules: (1) “counting” rules, that is, linguistic rules that, say, could form 204

the negation of a declarative sentence by inserting a special word at a particular 205

point in a sentence, say, always immediately after the third word; (2) “mirror 206

image” rules, that is, linguistic rules that, say, could form the interrogative of 207

a declarative sentence by inverting the word order of the declarative sentence, 208

saying it in reverse. In their study, [36] constructed a set of unnatural rules, 209

unattested in any natural language. Here is their description of the second 210

“unnatural” rule, which is the one in Sect. 6 that we will attempt to reproduce as 211

closely as possible in our experiments with statistical parsers, from [36], p. 775: 212

The second rule required that the interrogative construction be built by inverting the 213

linear sequence of words of a sentence. For example, “I [1] bambini [2] amano [3] il 214

[4] gelato [5] or “The children love ice-cream” becomes Gelato [5] il [4] amano [3] 215

bambini [2] il [1]. 216

Musso et al. found that people had great difficulty mastering artificial rule 217

systems of this sort. If they were learned at all, they were learned, as if they 218

were non-linguistic ‘puzzles,’ activating very different brain regions than those 219

lit up during normal language rule processing. Smith et al. [49] reported a similar 220

finding, again using an artificial grammar learning paradigm. Here it was discov- 221

ered that an autistic linguistic “savant” could not learn “unnatural” grammatical 222

rules. In contrast, while adults could learn these rules, but again, only with 223

great difficulty. In a related area, others (e.g., [33]) have noted that the same 224

issue arises with respect to artificial neural network learning in the paradigm 225

case of English past tense over-regularization. Neural network systems that are 226

constructed to report the probability of the next word or form in a sequence are 227

apparently “unnatural” to the extent that they can learn sentence reversals just 228

as easily as normally ordered word sequences. Note that this is a case where the 229

neural network simulations do equate “grammaticality” with “likelihood.” What 230

all these results come to is the same: we do not want a “natural” learning system 231

to be too flexible, having capacities beyond those found in people.3 232

3See, e.g., [9] and [2] for additional discussion of the lack of non-counting and palindromic rules
in natural language, including syntax and phonology. It is known in certain sociological settings
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2 Experimental Methods 233

We carried out our experiments on as broad a range of publicly available 234

statistically-trained parsers as possible, subject to the broad constraint they all could 235

be trained on the same, standard subsections of the Wall Street Journal version of 236

the Penn Tree Bank III. In this we strove to follow the same procedure and roughly 237

the same coverage as in the comparative study carried out in [13], p. 51: 238

Constituent parsers and dependency parsers all have the appropriate level of sophistication, 239

but a wide variety of different grammars and conceptual frameworks that makes comparing 240

them difficult. However, there is one class of parsers that is both numerous and up-to-date, 241

and covers a variety of different algorithms which all use the same output format (bar a 242

few small details). These are sometimes referred to as treebank parsers as they are usually 243

trained and optimized on the PTB and produce output conformant with its standards. 244

2.1 Parsing Systems Used 245

AQ2
The systems that were used for the experiments are given in Table 1. Not all of these 246

systems could be used for all experiments, due to certain resource requirements. 247

Such details will be noted in what follows. Among the publicly available systems, 248

we selected the most extensively cited and most widely used parsers. We cannot 249

hope to exhaust the full range of parsers now publicly available, particularly 250

dependency parsers. For example, we could not include the Melamed/Turian 251

discriminative parser [52]. We leave such extensions for future research. Additional 252

details about the grammatical models and the training/testing procedures used will 253

be covered as they arise. 254

2.2 Training Data, Testing, and Evaluation 255

In order to ensure that results would be as comparable as possible, we retrained most 256

of the parsers on sections 02–21 of the PTB III, even when they came with “pre- 257

built” estimated models on this training data (as with the C-J, Berkeley, and Stanford 258

parsers).4 Due to limited access to the original materials and other computational 259

constraints, we were not able retrain the CJ-R parser. As a result, in what follows we 260

that palindromic forms are used, e.g., the Australian butchers’ market language. But all indications
here are that this such behavior remains “puzzle based.”
4We attempted to use training settings that matched those for the parsers’ “pre-built” models as
far possible. For example, we used the settings provided in the Stanford parser directory under
makeSerialized.csh for the so-called wsjPCFG model. In the case of the BC-M2 parser,
we used the settings given by collins.properties since we wanted to ensure replicability
with standard results.

berwick
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Table 1 The treebank parsers chosen for this investigation

t1.1Parser Abbreviation Release used Citation

t1.2Bikel-Collins Model 2 BC-M2 1.2 Oct 08a [4]
t1.3Berkeley “coarse to fine” Berkeley 1.1, Sept 09b [40]
t1.4Stanford unlexicalized Stanford-unlex 1.6.3c [27]
t1.5Stanford factored dependency Stanford-fact 1.6.3c [28]
t1.6Charniak “coarse-to-fine” CJ-I Nov 09d [5]
t1.7Charniak-Johnson reranking CJ-R Nov 09d [6]

ahttp://www.cis.upenn.edu/!dbikel/download/dbparser/1.2/install.sh
bhttp://code.google.com/p/berkeleyparser/downloads/detail?name=berkeleyParser.jar
chttp://nlp.stanford.edu/software/stanford-parser-2010-07-09.tgz
dhttp://web.science.mq.edu.au/!mjohnson/code/reranking-parser-Nov2009.tgz

used only the CJ-R pre-built model. In addition to using this standard training data, 261

we carried out various experimental manipulations followed by data augmentation 262

and retraining that will be described in later sections. For evaluation we used the 263

standardly available evalb package [46]. 264

3 Case Study: Parsing Wh-Questions and QuestionBank 265

We first return to the area of wh-questions outlined briefly in Sect. 1. For the 266

purposes of this chapter, we will put to one side the question of how to link 267

wh-words and phrase such as what or which problem to their ‘gaps’, for example, the 268

link between what and the object position after buy in a sentence such as What did 269

John buy. While this is an important topic, full analysis of this problem is beyond the 270

scope of the current chapter; see [44] and [18] for combinatory categorial grammar 271

approaches that address this issue. Instead we will focus solely on the question of 272

how well correct sentence is recovered. 273

Why would parsing problems arise even if we put this issue aside? The reason 274

is that in the standard training sections of the PTB, wh-phrases are most often 275

used as relative clauses, not as questions (in a ratio of approximately 10,000:1). 276

It would not be surprising, then, if a true wh-question was parsed as if it were a 277

relative clause. Using standard PTB notation, we would then expect wh-questions 278

parsed incorrectly as an S embedded within an SBAR, rather than, correctly, as an 279

SQ (a sentential question) embedded within an SBARQ. (See Fig. 2 below for a 280

representative example of this distinction.) 281

To be concrete, a conventional linguistic assessment about knowledge regarding 282

wh-questions often begins with a “graded” list of examples such as those in 283

Ex. 3 below, where the first sentence is an “echo question.” This is followed by a 284

semantically similar wh-interrogative sentence. The next three examples are then 285

listed in roughly an order of descending acceptability to native English speakers 286

(hence the asterisks placed before them). 287

berwick
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Fig. 2 An example of a wh-question parsing error for the sentence, Which radio stations air the
Jim Bohannon Radio Talk Show? This is the output from the BC-M2 parser

a. Bill will solve which problem? 288

b. Which problem will Bill solve? 289

c. Which problem Bill will solve? 290

d. Bill solve which will problem? 291

e. Which problem Bill solve will? 292

293

How might we use such examples to test the linguistic knowledge acquired by 294

a statistically-trained parser? Note that even if a sentence is “ill-formed” like the 295

last three above, then a probabilistic parser will still try to do the best it can, and 296

return the most likely analysis, even a partial or incorrect one, with respect to 297

the parsed examples it has already been trained on. That is in some respects an 298

appropriate response to what such systems have been designed to do, one means to 299

add robustness. As we described in the introduction, this might be a perfectly valid 300

way to proceed from an engineering standpoint; factoring in gradience judgements 301

of this sort remains an area to explore that lies beyond the scope of the present 302

chapter. Further, while we might expect that the probability scores returned by 303

the parser for the last three sentences could be worse than those for the first two, 304

likelihood scores would probably vary anyway given slightly different local contexts 305

and the successive history of various local rule choices set against what has been 306

seen in the training corpus. In addition, if a parser is “lexicalized” then the actual 307

word information (e.g., whether the verb is solve or try) is typically propagated to 308

the head of a phrase (in this case, the Verb Phrase (VP)), and in this way specific 309

lexical items may play a role in influencing what analysis path is taken. 310

Putting this question of assessing grammaticality to one side, we therefore 311

focus instead only on the problem of producing the correct parse, rather than any 312

likelihood score that denotes relative acceptability or grammaticality. That this is 313

a real problem may be seen in Fig. 2 below, which displays an incorrect parse of a 314

wh-question sentence produced by the BC-M2 parser, on an example sentence taken 315

from an actual corpus of wh-questions, QuestionBank, that we describe immediately 316

below. 317

berwick
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Fig. 3 Parse structure assigned to the “Who does Shakespeare: : :” sentence by the downloaded
QuestionBank used in the current analysis

3.1 Augmenting the Training Data 318

There have been several approaches to remedying this problem by adding additional 319

wh-question training sentences. In particular, Judge et al. [26], Rimmell et al. [44], 320

and Nivre et al. [38] have built systematic “unbounded dependency” question 321

treebanks. 322

We did not have access to these last resources, so we drew instead on a recently- 323

built publicly accessible 4,000 sentence database, QuestionBank, constructed by 324

Judge et al. [26]. This is a curated database of 2,000 questions drawn from the 325

TREC question-answering (QA) domain and 2,000 questions from the Cognitive 326

Computation Group at UUIC.5 A representative example from this version of the 327

QuestionBank is, Who does Shakespeare’s Antonio borrow 3,0 ducats from?, as 328

displayed in Fig. 3. Note that unlike the PTB II/III, this downloaded version did 329

not contain information about the location of the underlying argument positions 330

of displaced phrases, e.g., that Who serves as the object argument from) in the 331

preceding example. From our perspective this was satisfactory because, unlike the 332

research reported on in [26,44], or [38], we were interested solely in the question of 333

whether statistical parsers could learn correct structural analyses. 334

Note that while QuestionBank represents approximately a 10 % addition to 335

the number of sentences to the baseline training set, most of these wh-question 336

sentences are typically far shorter than those in the PTB II, with a median sentence 337

length of ten words – unsurprising since these are questions culled from a question- 338

answering domain as opposed to the written Wall Street Journal newspaper article 339

domain. 340

5The full database was obtained by download from http://www.computing.dcu.ie/!jjudge/
qtreebank/. A handful of errors in corpus annotation were corrected in this downloaded dataset.

http://www.computing.dcu.ie/~jjudge/qtreebank/
http://www.computing.dcu.ie/~jjudge/qtreebank/
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Table 2 Labeled precision, labeled recall, and F-Scores for baseline and wh-trained parsers, using
question training/test data from QuestionBank (QB). The last column displays F-scores for these
parsers’ performance on only the standard baseline section 23 of the WSJ

t2.1Parser type Labeled Labeled F-score, %
t2.2precision, % recall, % F-score, % WSJ Sect. 23

t2.3BC-M2 baseline 80.87 71.25 75.76 85.63
t2.4BC-M2+QB 91.08 81.7 86.18 85.79
t2.5% improvement 12.63 14.67 13.75
t2.6Stanford-unlex baseline 66.26 69.32 67.57 85.54
t2.7Stanford-unlex+QB 81.72 80.92 81.32 85.55
t2.8% improvement 22.33 22.01 20.03
t2.9Stanford-fact baseline 62.5 65.57 64.00 88.71

t2.10Stanford-fact baseline + QB 88.71 87.41 88.06 88.59
t2.11% improvement 20.53 15.60 17.99
t2.12CJ-I baseline 84.65 71.81 77.7 86.55
t2.13CJ-I+ QB 90.31 80.65 85.21 88.13
t2.14% improvement 6.69 12.31 9.67
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Fig. 4 Labeled precision, labeled recall, and F-scores for the parsers trained and tested on the
QuestionBank corpus, both before and after training on QuestionBank

We divided the 4,000 QuestionBank sentences into an 80 % training portion and 341

a 20 % testing portion. We tested four parsers: BC-M2; Stanford-lex; Stanford-fact; 342

and CJ-I. We tested each of these four parsers on two training-test sets: (1) the 343

baseline conventional PTB training set; (2) the 80 % Question Bank sample, eight 344

experiments in all. 345

Table 2 gives the complete numerical results of these eight runs, while Fig. 4 346

displays the results visually, as histograms of the precision, recall, and F-score 347

before/after performance. Both reveal a substantial improvement across all parsers. 348

For example, Stanford-unlex parser had labeled precision/labeled recall scores of 349

66:26 %=69:32% before training, and 81:72 %=80:92% after training, a consider- 350

able gain of 15 and 10 % points, respectively (a 20.53 % and 15.60 % increase). 351

The CJ-I parser’s scores were boosted from 84:65 %=71:81 % to 90:31 %=80:65% 352

This was the smallest percentage improvement, due probably to the fact that even 353

before wh-training the CJ-I parser already performed quite well. Still, increases with 354
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Fig. 5 An example of wh-parsing improvement after wh-training for the test sentence Which radio
stations air the Jim Bohannon Radio Talk Show? The topmost portion (i) shows the BC-M2 parse
before training, with an erroneous S node at the top, and the WHNP and NP as distinct trees.
Similarly, the Stanford-unlex parse incorrectly separates the WHNP and the NP, while getting the
SQ node correct, middle display (ii). The bottom portion (iii) exhibits the correct parse output
by both the BC-M2 parser and the Stanford-unlex and Stanford-fact parsers after wh-training on
QuestionBank
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wh-training were quite substantial at 6.69 % and 12.31 %, with an overall F-score 355

increase of 9.67 %. Importantly, as the last three columns of the table show, this 356

improvement did not come at any apparent cost in precision/recall for the standard 357

WSJ section 23. For example, the Stanford-unlex parser after additional wh-training 358

got an F-score 85.55 %, on WSJ section 23, as compared to a baseline F-score of 359

85.54 %. In most cases, the additional wh-examples improve performance. 360

A representative example of a parse that is greatly improved by wh-training 361

is depicted in Fig. 5, for the test data sentence, Which radio stations air the Jim 362

Bohannon Radio Talk Show? Before wh-training, none of the parsers could correctly 363

analyze this sentence. For instance, as expected, the Bikel-Collins parser mis- 364

analyzes the words which radio stations as an S dominated by an SBAR, and also 365

mis-parses which radio stations as distinct WHNP and NP phrases (part (i) of the 366

figure). The Stanford-unlex parser does better, without any wh-training; it parses the 367

sentence correctly as an SBAR dominating an SQ. However, it also fails to combine 368

which radio station into a single wh-phrase (see (ii) in the figure). After training, 369

both parsers produce 100 % gold-standard parses, shown at the bottom of Fig. 5, 370

panel (iii). 371

We conclude that the 3,200 questions in QuestionBank, provide a substantial 372

performance boost to wh-question parsing, enough to overcome any deficiencies 373

in the original PTB. However, we note that this puts to one side the question 374

of linking wh-elements with their “underlying” argument structure, as noted by 375

Rimmell et al. [44], among others. In this sense, the fundamental representational 376

question is still not addressed. 377

4 Parsing and Tense: The Case of Read 378

In a Linguistic Society of America pamphlet, Ray Jackendoff [24] considered a 379

“text reading” puzzle as an example of what is impossible for a computer to 380

accomplish without knowledge of language: in particular, the task of determining 381

the pronunciation of the orthographic form read, which can be pronounced as 382

red or reed depending on context. The sentences considered by Jackendoff are 383

reproduced in (4); we will consider additional examples as well. In these examples, 384

[24] introduced will as a deliberate complication since it can be either a Noun or 385

Modal verb. Apparently, this was to illustrate that simply looking at adjacent words, 386

without any sophistication, would be problematic. In any case, if this issue arises 387

at all, we dealt with it by substituting should or stock for will, as appropriate. The 388

results remained the same, so for our purposes this additional complication was 389

ignored in what follows. 390

a. The girls will read the paper. (reed) 391

b. The girls have read the paper. (red) 392

c. Will the girls read the paper? (reed) 393
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Table 3 The Penn Treebank verbform tagset

t3.1Tag Description Example

t3.2VB Verb, base form write
t3.3VBD Verb, past form wrote
t3.4VBG Verb, gerund or present participle writing
t3.5VBN Verb, past participle written
t3.6VBP Verb, non-3rd person singular present write
t3.7VBZ Verb, 3rd person singular present writes

d. Have any men of good will read the paper? (red) 394

e. Have the executors of the will read the paper? (red) 395

f. Have the girls who will be on vacation next week read the paper yet? (red) 396

g. Please have the girls read the paper. (reed) 397

h. Have the girls read the paper? (red) 398

It should be clear from the examples in (4) that a computer program needs to 399

possess knowledge of the English auxiliary/main verb system along with basic 400

properties of sentence phrase structure in order to correctly carry out this task. 401

The PTB assumes a part of speech tagset that identifies and distinguishes among 402

different forms of a verb, as shown in Table 3. This information ought to suffice, 403

since these values are enough to fix a deterministic decision procedure to pronounce 404

read correctly. Note that such a parsing system must be able to associate, e.g., the 405

tense marking on a word like will with the correct tense of the verb read that appears 406

later in the sentence. General agreement phenomena such as this have been a staple 407

of linguistic analysis for more than 60 years [8]. A related issue appears with other 408

verb forms such as cut or cost, that are ambiguous with respect to their tense 409

information in the third person (e.g., they cut/they have cut). In this case, though 410

their pronunciation is also identical, there is still a problem in picking the right 411

tense label for the verb, as we shall see. 412

One might reasonably expect a parser trained on nearly 40,000 sentences to 413

have acquired basic English sentence structure and properties of the auxiliary 414

and verbal system, and thus be able to decode the examples in (4), correctly 415

identifying the appropriate tag for read in each case, thus solving the “text reading 416

machine problem” posed by Jackendoff. This is the question we shall examine 417

here. 418

For example, the structure recovered by the Berkeley parser in the case of 4(b), 419

correctly identifying read as VBN, is given in Fig. 6 on the left. (In the case of read, 420

only the VBD and VBN forms should be pronounced as red.) 421

However, the Berkeley parser is not always correct. The bottom part of Fig. 6 422

illustrates the corresponding Berkeley parse for 4(h). Here the sentence has been 423

properly identified as an interrogative (category label SQ) but the parser nonetheless 424

has fails to assign the correct VBN tag to read. (The assigned tag VB will result in a 425

pronunciation of reed.) 426
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Fig. 6 Berkeley (top) and BC-M2 (bottom) parses for sentence Examples 4(b,h)

Continuing with this experiment, we examined in some detail how the Jackendoff 427

read sentences are analyzed by our suite of statistically-based parsers, all trained on 428

the same sections of the PTB. The results are summarized in Table 4. There are 429

striking differences in performance. Even some of the output parse structures are 430

different. (See Fig. 7 below for a display of a parsing difference with the imperative 431
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Table 4 Parsing results for the read pronunciation task. All parsers trained on identical data.
Incorrect outputs are flagged with an asterisk*

t4.1Example (4a) (4b) (4c) (4d) (4e) (4f) (4g) (4h)

t4.2Correct form VB VBN VB VBN VBN VBN VB VBN Correct

t4.3Berkeley VB VBN VB *VB *VB *VB VB *VB 4/8
t4.4BC-M2 VB VBN VB *VB *VB VBN *VBN * VB 4/8
t4.5CJ-I VB VBN VB *VB *VB VBN *VBN *VB 4/8
t4.6CJ-R VB VBN VB *VB *VB VBN *VBN *VB 4/8
t4.7Stanford-unlex VB VBN VB VBN VBN *VB VBP VBN 7/8
t4.8Stanford-fact VB VBN VB VBNa VBN VBN VBP *VB 7/8

aThis assumes that the parser has not misinterpreted will as a modal verb. The same holds for the
next example

sentence Ex. 4(g).) Overall, the Berkeley parser gets 4/8 of the test sentences correct, 432

missing 4(d–f,h).6 433

The BC-M2 parser does not have perfect performance either, with 4/8 correct, 434

though it fails on a slightly different set of examples; it misses 4(d,e,g,h). For 435

comparison, note that an assignment based purely on tag frequency would yield 436

a crude baseline of 3 out of 8 correct on this task, as VB and VBN occur 45 % and 437

19 % of the time in the training set for read. It is important to observe that unlike 438

the other parsers tested here, the BC-M2 parser ignores final sentence punctuation, 439

so it literally cannot distinguish Have the : : :? from Have the : : :. 440

The other two lexicalized parsers, both the ‘first-stage’ n-best parser using 441

Charniak’s “coarse to fine” method and the CJ re-ranking parser, perform exactly 442

the same as BC-M2, getting 4/8 sentences right, and missing the same sentences as 443

BC-M2, on sentences 4(d,e,g,h).7 444

Finally, turning to the two Stanford parsers, we see greatly improved perfor- 445

mance. If we count VBP as OK for the imperative read sentence, then the (simpler) 446

6As noted in Sect. 2 we tested both the Berkeley’s parser’s pre-built eng sm5 grammar, as well as
our own retrained version that carried out six split-merge iterations. The results did not change. The
results also remained the same when we used Berkeley parser’s -accurate switch. In general,
results did not change for any of the parsers when we substituted stock or should for will. Note that
here the Berkeley parser is using its own part of speech tagger. If we force it to use “gold standard”
part of speech tags, then it could not possibly fail in the manner we have described. However, we
wanted to examine the parser’s own performance, not some exogenous part of speech tagger.
7For CJ-I we selected the “best” (highest likelihood parse score) from the output of the CJ-I parser.
In fact, in several cases, the 2nd best parse tree turned out to be the correct one; this was true, for
instance, for sentence 4(h). On the other hand, just as often the best parse was correct and the 2nd
best parse was incorrect, as in example 4(a). Note that the CJ-I parser serves as input to the CJ-
R re-ranking parser, taking, e.g., the top-50 most likely parses and then sorting them according
to a discriminative weighted feature-based scheme using features such as the degree of right-
branching, or conjunct parallelism. Since the top 50 parses usually included the correct answer, the
re-ranking parser at least had a chance of possibly selecting the correct answer in each case. Even
so, re-ranking was ineffective, and did not change the outcome for any of the sentence examples
here. See [6] for details about this re-ranking parser.
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Fig. 7 Some parsers output distinct structures for the imperative read sentence. The left-hand
side displays (identical) the parse output by the Berkeley, and BC-M2 parsers. (The CJ-I and CJ-R
parses are also identical to this one, aside from the minor difference of labeling have as an AUX.)
The right-hand side displays the output from the Stanford parsers for this same sentence

Stanford unlexicalized, probabilistic context-free parser is nearly perfect, with 7/8 447

sentences correct. The more sophisticated dependency-factored Stanford parser also 448

gets 7/8 correct, (Both of these parsers also output different, arguably incorrect 449

parses for Please have the girls read the paper, displaying the imperative form as 450

shown on the right-hand side in Fig. 7.) 451

What accounts for the difference in the results? All of the parsers use extremely 452

sophisticated statistical estimates, with many programming details, so it is very 453

challenging to determine what accounts for their varying performance on particular 454

sentences. As Bikel observes, [4], p. 188: 455

With so many parameters, a lexicalized statistical parsing model seems like an intractable 456

behemoth. However, as statisticians have long known, an excellent angle of attack for a 457

mass of unruly data is exploratory data analysis. 458

We shall pursue such an exploratory path here. Let us consider first the essentially 459

identical performance of the BC-2, CJ-I, and CJ-R parsers. As noted in [5], all these 460

parsers are strongly “lexicalized,” in the sense that they use literal word information 461

about the heads of phrases in the linguistic sense (smoothing this if necessary 462

by various methods). That is, instead of a rule expanding a Verb Phrase (VP) as 463

VP ! VNP , these parsers modify the context-free rule to incorporate actual 464

information about the lexical head word, e.g., the particular verb read. The by-now 465

familiar advantage here is to possibly capture any special properties that distinguish 466

read, from, say, buy – perhaps that buy is more frequently followed by an object 467

Noun Phrase. Such systems thus serve as a point of contrast with the remaining 468

parsers tested, which do not in general expand context-free rules with augmented 469

head information. We put to one side for now the method that the factored Stanford 470

parser uses, which is in effect to parse with both an ordinary PCFG and a lexicalized 471

dependency model, and then combine the results by means of a joint inference 472

model. 473
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More specifically, we may be able to pinpoint the difficulty with the lexicalized 474

parsers by drawing on an observation made by Charniak [5]. Charniak notes that 475

the BC-M2 parser and the CJ-I and CJ-R parsers all make use of actual lexical 476

information, to first “guess” whether a pre-terminal label should be, e.g., VB or 477

VBN, p. 137: 478

: : : the current parser first guesses the head’s pre-terminal, then the head, and then the 479

expansion. It turns out that usefulness of this process had already been discovered by 480

Collins [14]: : : However, Collins : : : does not stress the decision to guess the head’s pre- 481

terminal first, and it might be lost on the casual reader. Indeed, it was lost on the present 482

author until he went back after the fact and found it there. 483

While [5] notes that this method accounts for a nearly 2 % performance gain 484

overall, there is some evidence that it also leads to precisely the observed problem 485

with read, essentially one of “over-lexicalization.” In particular, as explained in [3], 486

the BC-M2 parser “guesses” the part of speech of a pre-terminal associated with 487

read via a top-down generative approach, sometimes modifying the pre-terminal 488

part of speech information. We can see the effect of this in the case of read. In the 489

example Have the executors of the will read the paper, read is initially assigned the 490

(correct) part of speech tag VBN by a pre-processor tagging step. But this is changed 491

by the probability model’s guess of the incorrect tag VB. Indeed, the same holds for 492

the other mistakes BC-M2 makes: initially correct tags are changed to their incorrect 493

counterparts by the parser. 494

Our hypothesis, then, is that the local “guessing” carried out by the generative 495

probability model in these cases may be biased by local frequency effects in such 496

a way as to sometimes alter the tag in the wrong direction. For example, read 497

appears in the PTB training data 29 times as a VP dominating a VB (usually with anAQ3 498

intervening to, and 10 as a VBP, so in 39 contexts is pronounced reed. On the other 499

head, read appears 24 times dominated by VBD or VBN, pronounced red. It is this 500

bias that appears to be altering the results. In contrast, consider the tense-ambiguous 501

verb hit, which appears 88 times as VBD/VBN and only 23 times as a VB/VBP. This 502

distribution is the converse of read. Running the same sentences as in 4 through the 503

parsers with hit, instead of read, e.g., Have the girls who will be on vacation next 504

week hit the paper, we find that the number of mistakes is reduced, with the correct 505

tag VBN replacing the incorrect VB tag in three cases. Similarly, cost, which has the 506

same rough local frequency distribution as read, with 65 VB/VBP and 22 VBD/VBN 507

counts, behaves as expected like read; so does cut. If this view is on the right track, 508

then it is these local frequencies, which are sensitive to the small sampling effects 509

of the PTB, that are at play here. Further, this same issue seems to infect the other 510

two “lexicalized” parsers, though not to precisely the same extent: when we replace 511

read with hit, then the CJ-I and CJ-R parsers now get sentences 4(d,e) correct (as 512

does BC-M2), but these two parsers still fail on the last two sentences. Some kind of 513

lexicalization effect is operating, but it is not exactly the same as that with BC-M2, 514

perhaps because the CJ parsers augment the standard PTB part of speech categories 515

with the addition of AUX for have. 516
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Additional confirmation of the effect of lexicalization comes from examining 517

the behavior of the unlexicalized parser, Stanford-unlex. It does not make any 518

assumptions about lexical heads, and so we would not expect it to be subject to 519

the variation we see with the lexicalized parsers. In fact, as shown in Table 4, it is 520

much more successful, making only one mistake, labeling read as a VB in Have the 521

girls who will be on vacation next week read the paper yet. Note that the addition 522

of a lexicalized component that is grounded on dependencies, the factored Stanford 523

model that uses both word dependencies and the Stanford unlexicalized parser to 524

jointly infer structure, also makes a single error, but it is not the same one. Instead, 525

it makes an error on the last read sentence, taking it as a VB rather than a past-tense 526

VBD. While the reasons for these singleton errors remain obscure, it is clear that this 527

approach works better than straight lexicalization. 528

It remains to account for the behavior of the Berkeley parser. While it is not 529

lexicalized, it works by refining categories and rules by successive state-splitting. It 530

may be that its “window size” for learning context is too narrow. The trainer uses 531

a context window based on horizontal (h) and vertical (v) “markovization,” that is, 532

how many past horizontal ancestors are remembered, and how many vertical (parent, 533

grandparent) ancestors are remembered, as a context for future parsing decisions. 534

By default, these values are set to 0 and 1, respectively – that is, a context that 535

remembers only the immediate parent node above a current position. Note that in an 536

imperative form like 4(g), the “distance” between the verb have and read lies outside 537

this window. In [27], larger values for h and v are systematically explored, with some 538

evidence provided that h and v values larger than 0 or 1 may be needed for generally 539

effective performance. It remains to explicitly test this hypothesis precisely within 540

the context of the read example. 541

How can we improve the performance of the parsers on the read examples? If 542

the effect is due to sparsity and lexicalization, then as with the wh-question case, 543

more data might prove helpful. Here the models distributed with the Stanford parser 544

themselves indicate that additional data of the right kind indeed can be a benefit. 545

Along with models trained solely on the PTB, Stanford-unlex and Stanford-fact 546

come with models trained on a selection of biological abstracts from the GENIA cor- 547

pus [51], plus 96 “additional” hand-built parse trees; these are called englishPCFG 548

and englishFactored. Importantly, the 96 “additional” hand-labeled examples 549

include examples that are directly comparable with the read examples, including 550

11 relatively short subject questions, SQs typically with subject-auxiliary verb 551

inversion, such as Is what she said untrue; and 25 wh-questions, or SBARQs, such 552

as Where was the fox.8 553

Probing a bit further, if we run the read examples using the Stanford models 554

based on this augmented corpus then they do perfectly, so it would seem worthwhile 555

8The remaining examples are some simple S’s and a few newswire stories. The authors would like
to thank C. Manning for generously sharing these additional examples with us.
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Table 5 Parsing results for the read pronunciation task when rerun on non-Stanford models re-
trained on the augmented PTB + Stanford “additional examples.” Errors are marked with asterisks,
as before

t5.1Example (4a) (4b) (4c) (4d) (4e) (4f) (4g) (4h) Correct

t5.2Berkeley VB VBN VB *VB VBN VB VB *VB 6/8
t5.3BC-M2 VB VBN VB *VB VBN VB VB *VB 6/8
t5.4CJ-I VB VBN VB *VB *VB VBN VB *VB 5/8
t5.5Stanford-unlex VB VBN VB VBN VBN VBN VBP VBN 8/8
t5.6Stanford-lex VB VBN VB VBN VBN VBN VBP VBN 8/8

to examine what is causing the improvement, as was true in the wh-question case 556

study. To examine this, we tested whether the 96 extra examples alone would 557

suffice to correct some or most of the read errors. We therefore retrained all the 558

parsing models, aside from CJ-R, using just the PTB training data plus the 96 559

“additional” examples, omitting the GENIA examples. We then re-ran the read 560

example sentences, with the results shown in Table 5. There is an improvementAQ4 561

in every case. Both Stanford parsers still have perfect scores, suggesting that 562

the entire improvement is due to the 96 extra examples, rather than further 563

additions from GENIA. Further, both the Berkeley, BC-M2. and CJ-I parsers 564

improve, and now get 6/8 correct (they all fail on the third and the last read 565

examples). We conclude that the judicious addition of even a few critical examples 566

can greatly improve parsing performance, just as in the case of QuestionBank, 567

again pointing to the sparsity of the original PTB training dataset as well as the 568

ease with which some its failings may be remedied, at least in this particular 569

situation. 570

However, it is still true that none of the systems explored here explicitly records 571

the linguistic fact that the auxiliary at the front of the sentence is tied to the main 572

verb. They do so only indirectly. Even in English, the properties of tense are “spread 573

out” over the entire Auxiliary system. In an example such as The stock could have 574

been being sold, it is the sequence of auxiliary verbs that together carry the tense 575

information. It is only a morphological accident of English that these elements must 576

generally be string-adjacent. Whenever two are separated by an intervening phrase, 577

as in the read examples, the agreement between them still holds. It remains to be 578

seen how to properly represent such facts in the statistically-grounded systems we 579

have explored here. 580

Here we note that parameter estimation issues are a symptom rather than the 581

underlying cause of the deficiencies of the parsing model. Such a model is unable to 582

capture the interaction between wh-movement and the auxiliary/main verb system, 583

or posit a connection from the declarative form of the sentence to its interrogative 584

form without actually having observed the handpicked examples that closely match 585

the test data. 586

berwick
Yes, this is correct.  Table 5 is what it should be.
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5 Case Study: Parsing Passives by Linguistic Regularization 587

We noted in Sect. 1 that statistically-trained parsers make attachment errors in 588

passive sentences, in part because attachment decisions are difficult without suf- 589

ficient data. We also pointed out that in certain cases, this could be repaired by 590

reconstructing a sentence’s underlying “logical form” (a form of “D-Structure” in 591

the classical sense), thereby rendering arguments in canonical positions. In general, 592

we will call these kinds of reconstructions into a canonical predicate-argument form 593

linguistic regularizations. 594

We note that several researchers have previously attempted to improve statistical 595

parsing performance via representational changes to the grammar, in the form 596

of either tree-level transformations, or by incorporating other latent information 597

present in the Penn Treebank [7, 19, 25, 32]. Most of these approaches follow the 598

paradigm proposed in [25], whereby the parser is retrained on a transformed version 599

of the training set and then after evaluation the resulting parses are de-transformed 600

and evaluated against the known gold standard annotations. 601

The approach we will take here differs from this past research in at least two 602

critical respects. First, previous work such as that in [30] has focused on using 603

additional features in the PTB as a means to improve parsing accuracy, while 604

still others, as in [15] Chap. 7, model wh-displacements by means of feature 605

passing. Few approaches have explicitly modeled a separate level of underlying 606

predicate-argument structure. Second, more specifically, the level of syntactic 607

complexity involved in these transformations has been rather limited, and none of 608

the researchers up to the present point have attempted to reassemble the underlying 609

representation of passive constructions. 610

Following the methodology of [25], we propose to exploit the additional informa- 611

tion provided by linguistic regularizations in the following way. First, as suggested 612

above, we can use the annotated PTB training trees to “invert” various displacement 613

operations, returning arguments to their canonical “underlying” positions. In the 614

case of our example sentence, we would derive something like, Tablespoons may 615

soon replace measuring cups in the laundry room. We then use the transformed 616

sentences as revised training data for a statistical parser. If the regularization idea is 617

sound, then we would expect improved performance. 618

5.1 Passive Transformations: A Pilot Study 619

We will now show that employing “logical form” structural cues for linguistic 620

regularization can improve parsing performance within the existing Penn Treebank 621

formalism. We selected the passive because it has not, to our knowledge, been 622

tackled in previous work. The experimental setup is as follows. As mentioned, we 623

approach the problem within the framework proposed by Johnson [25]. We identify 624

a set of transformations we would like to model in the corpus, transform the input 625
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Table 6 Parsing results for models trained on the original (BASE) and transformed (TRANS)
Penn Treebank (PTB) data. untrans corresponds to the untransformed or original corpus, while
trans to the transformed version. full is the entire corpus; psv, the subset of passive sentences;
yactive, the subset of active sentences. SBASE and STRANS experiments are oracle experiments –
where the test set (“special”) sentences are selectively transformed or kept intact to maximize the
evalb recall. The POS column corresponds to the part of speech tagging accuracy. The size column
identifies the number of sentences in the test corpus

t6.1Experiment id Training set Test set Recall Precision POS Size

t6.2BASE-1 wsj-02-21 untrans wsj-23-full-untrans 88.17 88.36 96.87 2,416
t6.3BASE-2 wsj-02-21 untrans wsj-23-full-trans 87.89 88.08 96.73 2,416
t6.4BASE-3 wsj-02-21 untrans wsj-23-psv-untrans 87.75 87.96 97.40 364
t6.5BASE-4 wsj-02-21 untrans wsj-23-psv-trans 86.28 86.43 96.65 364
t6.6BASE-5 wsj-02-21 untrans wsj-23-active 88.27 88.45 96.75 2,052
t6.7TRANS-1 wsj-02-21 trans wsj-23-full-untrans 88.26 88.48 96.86 2,416
t6.8TRANS-2 wsj-02-21 trans wsj-23-full-trans 88.29 88.47 96.82 2,416
t6.9TRANS-3 wsj-02-21 trans wsj-23-psv-untrans 87.39 87.65 97.27 364

t6.10TRANS-4 wsj-02-21 trans wsj-23-psv-trans 87.51 87.62 97.02 364
t6.11TRANS-5 wsj-02-21 trans wsj-23-active 88.46 88.66 96.77 2,052
t6.12SBASE wsj-02-21 untrans wsj-23-psv-special 88.12 88.22 97.02 364
t6.13STRANS wsj-02-21 trans wsj-23-psv-special 89.30 89.38 97.25 364

data by performing a set of deterministic ‘tree’ surgeries on the input parse trees, 626

and then, after re-training, evaluate the resulting parser on a transformed test set. 627

The first step in this process is to perform tree regular expression (tregex) 628

queries on the corpus to identify the passive constructions in the training data 629

sections of the PTB. Second, we must map passive syntactic structures back into 630

their active form counterparts. This mapping is achieved through a sequence of 631

tree-transforms, applied recursively in a bottom-up, right to left fashion using the 632

Tregex and Tsurgeon toolkit [31]. Note that in some cases, there will be no 633

“by” phrase, that is, no explicit semantic Subject. In these cases, we insert a dummy 634

subject with the part of speech label TT, corresponding roughly to it. 635

In all, there are 6,015 passive sentences in the training corpus out of a total of 636

39,832 sentences, or 15 % of the training data. In the test set, section 23 of the 637

PTB corpus, 364 out of 2,416 sentences or 15.1 % of the test data can be identified 638

as passives, comparable to the figures observed in the training set. The passive 639

construction would therefore seem to provide a good test-bed for a pilot analysis. A 640

ten percent sample of the identified training set items and all of the test set items 641

were manually checked by a human expert who validated them as true passive 642

constructions. 643

The third step of the procedure is to re-train and test a statistical parser 644

on the transformed test and training data. We conducted our experiments using 645

BC-M2 [3], following standard procedures. Additionally, we conducted our experi- 646

ments on different combinations of transformed and untransformed training and test 647

data, as well as allowing for configurations whereby the test corpora were evaluated 648

on the active and the passive subsets separately. The pilot test results are displayed 649

in Table 6. 650
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Fig. 8 The Bikel/Collins parser correctly analyzes the “tablespoon” sentence after regularization

First, we note that the baseline parser (BASE-*) performed markedly better on 651

the active sentence set than on the passive construction subset of the WSJ corpus 652

section 23 (88.27 % vs. 87.75 % recall). This lower score is to be expected, since the 653

passive construction exhibits longer-range movement and constitutes only 15 % of 654

the training data. 655

On the full test set (2,416 trees), the retrained model (TRANS-2) beat the baseline 656

(BASE-1) by 0.12 % absolute recall (88.29 % vs. 88.17 %) and 0.11 % absolute 657

precision. On the active sentence subset that constitutes about 85 % of the test 658

corpus, the model outperforms the baseline by 0.19 percent in recall – a statistically 659

significant difference at the 0.05 level (p-value = 0.029) as computed by a stratified 660

shuffling test with 10,000 iterations. While this may seem like a small performance 661

gain, in the context of a trained parsing system that is known to be operating at close 662

to a theoretical ceiling, this is in fact a real performance increase. 663

More concretely, to give an idea of an error that is corrected by regularization, 664

in Fig. 8 we display the parser’s output of the transformed example sentence, 665

Tablespoons may soon replace: : : The parser outputs a tree that is 100 % correct. 666

To give a broader picture of where the performance improvement comes from, as 667

another example, Fig. 9 displays an example from section 23 of the PTB, sentence 668

#722, According to analysts , profits were also helped by successful cost-cutting 669

measures at Newsweek ., that is parsed incorrectly in its unregularized form, with a 670

misplaced PP high attachment for at Newsweek. This yields a labeled precision score 671

of 91.67 % and a labeled recall score of 84.6 %. As the bottom half of Fig. 9 shows, 672

after regularization this sentence is now parsed with perfect recall and precision, 673

with a correct PP attachment under the NP. 674

Many other mis-parsed passives from the test dataset are parsed correctly 675

after regularization. In all, out of 364 test sentence passives, 74 improved after 676

regularization. Many of these improvements appear to be due to correction of mis- 677

analyzed PP attachments, as anticipated. 678

However, the simple regularization carried out in the pilot study can sometimes 679

also lead to worse performance: 95 out of 364 test sentence passives were 680
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Fig. 9 The BC-M2 parser mis-analyzes of sentence #722 in section 23 of the PTB. The top third of
the figure shows the gold standard parse. The middle third of the figure displays the corresponding
(incorrect) BC-M2 parse. The bottom third shows the result of parsing the same sentence correctly
after the regularization procedure described in the main text

parsed worse than before. It is these cases that reduce the performance gain of 681

regularization in our pilot study. Figures 10 and 11 illustrate one example of this 682

effect. Sentence #2,274 in test section 23, the passive sentence, Tandem ’s new 683

high-end computer is called Cyclone, is parsed with perfect precision and recall 684

before regularization, though with an arguably incorrect gold-standard bracketing: 685

both an empty Subject NP followed by a predicate NP Cyclone are dominated by 686

an S. As Fig. 11 shows, after regularization, the re-trained parser mis-analyzes this 687

structure with both the restored Subject NP Tandem ’s and the predicate NP Cyclone 688

combined as a single NP (precision = 71.43 %, recall = 83.33 %). It seems likely that 689

examples such as these might be successfully analyzed if the gold-standard was 690

assigned a linguistically more accurate “small clause” type structure. 691
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Fig. 10 The Bikel/Collins parser analysis of sentence #2,274 of section 23 of the PTB. The gold
standard annotation is at the top, the parser output on the bottom

Other regularization failures occur where there is no following PP phrase in the 692

original sentence to be mis-parsed, and where the regularization leads to a complex 693

structure with the potential for misanalysis. For instance, the section 23 passive 694

sentence #269, The land to be purchased by the joint venture has n’t yet received 695

zoning and other approvals required for development , and part of Kaufman & 696

Broad ’s job will be to obtain such approvals . requires the NP the joint venture 697

to be restored as the Subject of receive. However, the re-trained parser incorrectly 698

analyzes the regularized sentence. In part this may be the result of not completely 699

reconstructing the underlying form; in this instance, where there is a relative clause 700

the land purchased by the joint venture, the object of receive, the land, is not 701

explicitly restored to its underlying position after the verb. Such complexity has 702

tendency to lead to mis-analysis, and a more complete reconstruction of such 703

relative clauses might repair such instances. 704

Note that even though on the passive subset (364 trees) the baseline outperforms 705

the transformed model by 0.24 % recall, the result is not statistically significant 706

(p-value = 0.295). Taken together, the results indicate that retraining significantly 707
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Fig. 11 The parse of regularized sentence #2,274 mis-analyzes the NP – NP structure under a
single NP, precision = 71.43 %, recall = 83.33 %

improves the performance of the parser on active sentence constructions, while not 708

incurring a statistically significant loss on passives. In fact, the retrained model 709

is much more robust with respect to untransformed passives, only exhibiting a 710

0.12 % loss in precision, whereas the baseline suffers almost a 1.5 % degradation 711

(TRANS-3 vs. TRANS-4). 712

We tested further potential for improvement by selectively unwinding certain 713

passives into their underlying logical form, while leaving others in their original 714

surface form. This is an oracle experiment, whereby we evaluate the parser only 715

on the surface forms that achieve better performance under the retrained parsing 716

model. That is, we assume the presence of an “ominiscient” selection procedure 717

that allows us to decide whether the instance to be parsed for testing first needs 718

to be transformed or whether it is more desirable to leave it in its original form. 719

In carrying out the experiment we evaluated both forms for each test sentence and 720

picked the one that achieved maximum evalb recall. Note that in practice, we would 721

not have access to such a procedure. However, it is instructive to carry out this 722

experiment, as it allows us to gauge the best possible (upper bound) performance for 723

using an “unwound” logical form. This result indicates that we can obtain an upper 724

bound of 89.30 % recall, as much as a full percentage point improvement over the 725

baseline by applying the transformations on a selective basis. Further analysis of the 726

results shows that this effect is achieved due to cases where displaced modifiers in 727

the passive construction impact negatively on the parser’s attachment decisions. 728

Based on the evidence from the oracle experiment, we hypothesize that a simple 729

binary classifier that could choose the training model from the features of the input 730

test sentence should be able to recover much of the hypothetical gain due to the 731

oracle. 732
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Although seemingly small, the improvements obtained in the regularization 733

experiments are statistically significant, and with more engineering effort in model- 734

ing nested passives and long-distance displacements we expect a greater gain. 735

We note that the important takeaway message from this pilot experiment is not 736

that this is exclusively a parameter estimation problem. On the contrary, we point 737

to the impracticality of adding a passive or active instance for every surface form 738

observed in the training corpus without the extra linguistic knowledge explicitly 739

encoded through structural transformations that map passive forms to their active 740

counterparts. By incorporating linguistic knowledge we were able to improve a 741

broken model indirectly by alleviating the parameter estimation problem. 742

By no means should this fix be viewed as a permanent solution. Our ability to 743

make an impact suggests that the underlying representation is deficient and that 744

much more radical changes need to be made to the model. One approach, by no 745

means the only one, is by explicitly representing movement as a primitive operation. 746

Alternatively, one could adopt a scheme like that of Combinatorial Categorial 747

Grammar. 748

6 Parsing “Unnatural” Languages? 749

We turn in our final section to the Musso et al. experiment [36], in an attempt to 750

probe to what extent statistically-based parsers can acquire “unnatural” language 751

constructions. Recall from Sect. 1 that the second experiment in [36] was designed 752

to see whether normal adults could easily learn a “mirror reversed” question 753

formation rule, as well as whether this learning (as tested by subsequent parsing 754

probes) activated the same brain regions, as visualized by fMRI. A typical example 755

of such an natural/mirror-reversed pair, as cited earlier, is this: il bambini amano 756

il gelato/gelato il amano bambini il. Their basic finding was that normal adults 757

had extreme difficulty with such examples, solving them, if at all, as if they were 758

non-linguistic puzzles, and drawing on different brain regions than those usually 759

seen associated with language (specifically, outside Broca’s area). Similar poor 760

learning of “unnatural” language patterns has also been found in autistic language 761

savants [49]. 762

Our last experimental manipulation investigated whether we could replicate the 763

second study described in [36] within the context of statistically-trained parsing. 764

That is, we modified the PTB training data so that all question forms would 765

be presented in their reverse or “mirror image” order, rather than in normal 766

English word order. The parsers would then be trained on this manipulated data, 767

and subsequently tested whether they had acquired the “mirror reverse question” 768

construction by assessing them on a similarly question-reversed PTB section 23 769

data set.9 In our emulation experiment, in addition to the standard PTB training 770

9We put to one side the question of carrying out fMRI experiments on computers.
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Fig. 12 Conventional and mirror-image treebank questions from the PTB, for training sen-
tence#76, Was this why some of the audience departed before or during the second half?

sections, we also carried out a supplementary training/test regime again using the 771

QuestionBank constructed by Judge et al. [26]. We did this because there are only 772

24 questions total in the entire standard test section 23 of the PTB, so that mirror- 773

reverse questions are not properly exercised by the normal test dataset. 774

A typical example of such a “mirror image” training tree drawn from Question- 775

Bank is displayed in Fig. 12 below, the mirror image corresponding to the question, 776

Was this why some of the audience departed before or during the second half? Note 777

that the input words are in reverse order (and the parse tree is the mirror reflection 778

of the given parse tree in the treebank). 779

We should emphasize that there is a considerable challenge in carrying out 780

this exercise properly in order to reflect (as it were) adult linguistic behavior 781

and inference. It is, in general, not possible to exactly replicate the experimental 782

conditions in [36]. The key problem is that we cannot be certain as to the internal 783

system by which people processed the reversed sentences in [36]. As a first 784

approximation, however, it may be fair to say that they could bring to bear the usual 785

cognitive apparatus of “chunking” words into phrases (though the exact manner 786

and details as to how much structural information is readily available remains a 787

matter of some controversy; see [45], among much other recent work on this topic). 788

However, it is reasonable to surmise that they did not have access to pre-formed 789

parse structures, as is the case with the artificially constructed corpuses and the 790
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statistically-trained systems. In particular, in our emulation we gave the parsers 791

the mirror-images of question sentences (including those embedded in quotational 792

contexts), and one might reasonably object that this is far more information than 793

that provided to the human subjects. This is a fair point. However, here we shall 794

simply observe that [36] deliberately used Japanese (and German) native speakers 795

for their experiments, just for this reason, since these languages are head-final, 796

with left-branching structure similar to that displayed on the bottom half of Fig. 12, 797

though of course not so uniformly reversed and not reversed solely with respect 798

to questions. This was intended to compensate for any basic unfamiliarity with 799

branching structures of the kind displayed in the figure, the implication being 800

that these speakers would have had experience grouping lexical items in such a 801

fashion. Further, this is evidence that intonational breaks to highlight structure and 802

related cues are essential in some way for language inference in any case; see 803

[35]. However, there is no denying that the exact experimental condition we used, 804

providing both the reversed string and its corresponding mirror-image parse tree, 805

has, to the best of our knowledge, never been replicated in any human subject 806

experiment. This is true of many important questions regarding human language 807

acquisition. For example, until it was first probed in [17], whether or not children 808

actually formed Subject-Auxiliary verb questions using structural rules had not been 809

experimentally addressed. Similarly, the question posed here is an empirical one that 810

can only be resolved by future research. 811

6.1 The Experimental Emulation 812

To emulate the experiment in [36], we prepared two sets of training and test data, all 813

with reversed questions, via manipulation of the PTB, along with the additional 814

QuestionBank corpus. To start then, we had two training and two test datasets: 815

(1) the standard training sections 02–21 of the PTB; (2) test section 23 of the PTB; 816

(3) the normal training sections of the PTB concatenated with an 80 % sample of 817

QuestionBank, 3,200 questions; (4) a held-out 20 % test sample of QuestionBank, 818

800 questions. (See Sect. 4 for a detailed description of QuestionBank.) 819

To obtain the appropriate mirror-image “reversed” question datasets we replaced 820

all questions (both root level questions and questions in sentence contexts, usually 821

quotational) in the original corpuses with their mirror-image counterparts. Figure 12 822

displays an example of a PTB training sentence #76 in its normal and mirror- 823

reversed formats. The original sentence is, Was this why some of the audience 824

departed before or during the second half?, while the reversed structure corresponds 825

to, Half second the during or before departed audience the of some why this was? An 826

example of a wh-question in a quotational context is sentence #610 of the training 827

set, “So what if you miss 50 tanks somewhere?” asks Rep. Norman Dicks, D., Wash., 828

a member of the House group that visited the tanks in Vienna. We carefully analyzed 829

the original data to ensure that these were properly reversed. In this case, only the 830

material within double quotes would be reversed. 831
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For convenience, we will refer to all these training and test data sets along with 832

their mirror-image question reversed counterparts as follows. There are four training 833

sets in all, the two non-question reversed training sets and the two question reversed 834

training sets. Similarly, there are four corresponding test sets. So altogether there 835

are a total of 16 possible training-test dataset combinations. We will denote each 836

of these training/test combinations with a unique label consisting of the training 837

dataset name, a slash, and then the test dataset name. For example, WSJ/WSJT 838

denotes the conventional WSJ training/WSJ section 23 test combination, while 839

WSJR-QBR/QBRT denotes the WSJ training section with mirror-image questions 840

augmented by the mirror-image questions as the training set, and the held-out 841

mirror-image QuestionBank sentences as the test set. Note that the QuestionBank 842

and the WSJ corpora are disjoint. The four training and four test sets are as 843

follows. 844

1. WSJ: The conventional training sections 02–21 of the PTB; 845

2. WSJR: The question mirror-reversed training sections 02–21 of the PTB 846

3. WSJ-QB: The question-augmented corpus, sections 02–21 + the 80 % sample 847

from QuestionBank; 848

4. WSJR-QBR: The question-reversed WSJ training section + mirror-reversed 849

QuestionBank 80 % sample; 850

5. WSJT: The conventional test section 23 of the PTB; 851

6. WSJT-R: The question-reversed conventional test section 23 of the PTB; 852

7. QBT: The 20 % held-out test sample from QuestionBank; 853

8. QBRT: The question-reversed sentence test sample of QuestionBank. 854

6.2 Training, Testing and Results 855

We selected the BC-M2 and Stanford-unlex parsers as representative “lexicalized” 856

and “unlexicalized” parsers for the experiment. Along with 16 training-test combi- 857

nations, this yields 32 possible experimental runs. Note that four of these runs, the 858

WSJ/QBT and WSJ-QB/QBT analyses for each parser, have already been carried 859

out as part of the wh-QuestionBank testing in Sect. 3, but we include them below 860

for completeness. 861

The results are summarized as F-scores in Tables 7 and 8. (We have split 862

the results across two tables in order to highlight the most important contrasts in the 863

first table.) The first table’s results are also displayed in a more readable form as the 864

histogram in Fig. 13, which presents F-scores on the Y-axis, and the most important 865

training-testing contrasts on the X-axis; the BC-M2 results are in dark grey, and 866

Stanford-unlex in light gray. Note that because there are so few questions in test 867

section 23 of the PTB, just 20 out of 2,416 sentences, excluding a few non-question 868

fragments that are marked as questions, that performance on the WSJ-T corpus does 869

not serve as a reliable indicator of whether question sentences have been learned 870

or not, though it may be of some value to see whether learning mirror-questions 871
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Table 7 F-score results for the first eight training/testing results for
the “mirror reversed” experimental manipulation. Lines (4)–(7) show
that both lexicalized and unlexicalized parsers learn “mirror reversed”
questions quite well

t7.1Train-test combination
t7.2BC-M2 Stanford-unlex

t7.3(1) WSJ/WSJT 85.63 85.54
t7.4(2) WSJ/WSJT-R 85.78 85.71
t7.5(3) WSJ/QBT 75.76 67.75
t7.6(4) WSJ/QBRT 13.15 19.12
t7.7(5) WSJR/QBRT 58.04 61.20
t7.8(6) WSJR-QBR/QBRT 65.94 71.47
t7.9(7) WSJR-QBR/QBT 55.67 60.58

t7.10(8) WSJ-QB/QBT 86.18 81.32

Table 8 The remaining 16 results for the WSJ “unnatural” learning
experiments. Note that training by reversing just the questions in the
WSJ, using WSJR, also boosts reversed-question parsing performance,
but not as much as using the full training QBR training set. In general,
testing on WSJR does not indicate any great difference, because there
are so few questions in WSJT to test

t8.1Train-test combination
t8.2BC-M2 Stanford-unlex

t8.3(1) WSJ-QB/WSJT 85.79 81.32
t8.4(2) WSJ-QB/WSJT-R 88.01 85.46a

t8.5(3) WSJ-QB/QBRT 18.2 20.88
t8.6(4) WSJR/WSJT 85.63 85.54
t8.7(5) WSJR/WSJT-R 85.87 83.75
t8.8(6) WSJR/QBT 44.65 48.75
t8.9(7) WSJR-QBR/WSJT 85.59 85.19

t8.10(8) WSJR-QBR/WSJT-R 86.45 84.45
aWe note that here both parsers do somewhat better on the mirror-
image WSJT data than on the standard WSJT data when trained on
QB, where one might expect the opposite result, but this difference
may due to the sparse nature of the standard test section

interferes in some way with the parsing of normal based sentences. Therefore, we 872

will in general put to one side comparisons based on just this test data set, e.g., 873

contrasts like WSJ/WSJT vs. WSJ-QB/WSJT. We also leave for future research the 874

measurement of statistical significance of the scores by means such as stratified 875

shuffling, as in [3], or the assessment of oracle-type scores. 876

The key finding to take away from these results is that there is strong evidence 877

that both parsers were able to learn the mirror-reversal question constructions quite 878

well, though the lexicalized BC-M2 parser was less successful. To see this result 879

most clearly one need only focus on the histogram bar marked with an arrow 880
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Fig. 13 F-score comparisons for BC-M2 and Stanford-unlex parsers show that the parsers do
not perform well on mirror-image questions (the fourth, middle histogram pair from the left), but
performance increased dramatically given QB mirror image question training, by 50 % points or
more, as shown by the next two histogram pairs to the right. The right-most histogram repeats
the finding from Sect. 3 showing that normal question parsing is also improved by the addition of
normal QuestionBank training data

in Fig. 12, and note its performance gain compared to the preceding two bars, 881

which summarize the before/after training effect. For example, when trained on 882

only normal data, the Stanford unlexicalized parser scored only 19.12 % on the 883

QuestionBank mirror-reversed test set, combination WSJ/QBRT, line 5 in Table 7 884

and the fourth histogram from the left in the figure. This number, then, may be 885

taken as the “baseline” for a parser that has not learned anything about mirror-image 886

questions. We may contrast this performance with training on just the WSJ reversed 887

questions (which constitute only a small fraction, just few hundred examples out of 888

nearly 40,000 sentences), line WSJR/QBR in the table. The initial 19.12 % figure 889

goes up 50 % points, to 61.20 %, and additional QB mirror training examples boost 890

this even further, another 10 % points, to 71.47 %, line 7, WSJR-QBR/QBR. Note 891

that this is even better than the parser’s performance on wh-questions after training 892

on ordinary wh-questions. These are huge differences. 893

The performance gains for BC-M2 are nearly as good, though the actual numbers 894

are less because the built-in English head-finding rules, which bias the formation of 895

right-branching structures, cut against the grain of the mirror-reversed questions. 896

Nevertheless, BC-M2 still performs remarkably well, as attested by examples like 897
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Fig. 14 BC-M2 correct parse of a “mirror” sentence from QuestionBank

the one shown in Fig. 14, the reversal of the QuestionBank sentence What Herman 898

Hesse book gave its name to a rock group. Errors arise because the head rules 899

attempt to locate heads at the left edge of phrases, except in Noun Phrases, but 900

this of course is exactly opposite to what is required for mirror-reversed questions. 901

A more careful experiment would re-do the BC-M2 head rules to locate heads at 902

the right periphery, but one could then argue that we are in some sense aiding 903

the parser in its discovery of the proper form for mirror-reversed questions. In a 904

sense, it is startling that the BC-M2 parser works so well in spite of this handicap. 905

Without any exposure to mirror-reversed questions, BC-M2 starts from a baseline 906

of 13.15 %. This score rises to 58.04 %, line 6 in Table 7, a jump comparable to 907

that of Stanford-unlex of more that 50 % in performance, after training on WSJ- 908

TR examples. As with Stanford-unlex, training on reversed QuestionBank increases 909

performance even further, to 65.94 % (line 7 in the table). 910

Row (7) and the next-to-last histogram bars in Fig. 13 the also indicate that the 911

system has learned that questions are mirror-reversed: parsing performance drops by 912

over 10 % when the systems are trained on WSJR-QBR, and then tested on normal 913

questions, QBT. In short, there is every indication that mirror-image questions are 914

learned with some facility. 915

It seems apparent that the BC-M2 parser could be further improved if 916

the English-biased head-finding rules were re-written (though at the cost of 917

“building-in” this linguistic knowledge). Figure 15 displays an example of a 918

reversed sentence from QuestionBank, What melts in your mouth not in your hands, 919

where the reversal, Hands your in not mouth your in melts what is given a (slightly) 920

incorrect parse where a PP is mis-labeled as an NP. We will leave this more detailed 921

analysis for future work. 922
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Fig. 15 BC-M2 parse of a “mirror” reversed question from QuestionBank with an erroneous
labeling of a PP as an NP

7 Discussion and Conclusions 923

Let us now revisit the basic question outlined earlier and take stock of the results: 924

Have state-of-the-art statistical parsers attained “knowledge of language”? 925

Current state-of-the-art systems, such as the several parser reviewed in this paper, 926

score close to the 90 %-level (on withheld PTB data) when evaluated on phrase 927

structure bracketing fidelity [16]. Of course, bracketing is not the only possible 928

evaluation metric, as is now widely understood. In many cases, dependency relations 929

may be of more importance; see [13] among many others for a discussion of this 930

matter. 931

To the extent that such bracketing reflects linguistic knowledge, then such parsers 932

do, of course successfully acquire that knowledge. Moreover, as noted by Petrov 933

et al. [42] among others, modern statistical parsers can acquire tacit information 934

about the details of verb subcategories, along with derivational structure. However, 935

merely being able to bracket sentences “accurately” evidently does not constitute 936

full “knowledge of language.” Rather, knowledge of language is multi-dimensional 937

and cannot be conveniently summarized in terms of a single number, an F-measure. 938

Similarly, grammaticality cannot be described in terms of a simple probability score. 939

We could not predict the outcome of the read experiment in advance simply by 940

looking at aggregate F-measures, nor any other proposed measures we are aware 941

of. Such conclusions may seem obvious from the outset, but the goal in applying 942
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the kinds of stress tests described in this chapter is to discover exactly where these 943

systems fail. 944

The read sentences are also good exemplars of such a diagnostic aid. In this 945

case, they point to a general issue with “long distance” agreement in tense (and 946

other features) that is not to the best of our knowledge explicitly encoded in any 947

of the statistical models, but only indirectly, perhaps through the use of extended 948

horizontal and vertical domains of Markovization (as in the Stanford parsers), or 949

through the use of latent variables. Even so, as we saw in the examples of the 950

Berkeley and CJ systems with read, the use of tacit, indirectly formed categories 951

may not precisely capture the right information. Rather, the results here suggest 952

that it may be useful to explicitly import such machinery, as is done, for example, 953

in the statistically-grounded versions of Lexical-Functional Grammar (see, for 954

example, [43]; unfortunately, this system is not public and was not available to us 955

for testing). 956

A second unsurprising result is that many of the limitations of current systems 957

are due to the obvious sparsity of the PTB corpus. This effect is quite clearly 958

displayed in the relatively poor performance on wh-questions, as well as how much 959

that performance may be boosted by simply adding new wh-questions, sometimes 960

only a handful, as the Stanford parser example illustrates. 961

In this chapter we have been able to select only one or two examples out of a long 962

list of grammatical generalizations that linguists have accumulated over the past 963

60 years. It remains to analyze the remainder. The challenge for future research is 964

whether these or similar diagnostics can be exploited to advance the state-of-the-art 965

in statistical parsing. Given such a list, and given current statistical parsing methods 966

based on discriminative methods, it may even be possible to construct a list of both 967

positive and negative exemplars, as with minimally different wh-question examples, 968

and then apply the method of “contrastive estimation” developed by Smith and 969

Eisner [50] which compares positive training examples against negative examples in 970

the local neighborhood of the training data. Some means of “discouraging” the leap 971

to implausible or impossible word order patterns could be a welcome side-effect 972

of this minimal use of negative examples, eliminating the ability to infer unnatural 973

mirror-image structure. 974

The pilot experiment in Sect. 5.1 demonstrates that statistically significant 975

improvements in parsing can be achieved by regularizing passive argument struc- 976

ture. However, in some cases passive regularization also led to worse performance. 977

A more careful, case-by-case analysis of these examples would seem warranted. It 978

appears from a superficial examination of the examples where parsing performance 979

degrades that in each instance the regularization method has partly failed, sometimes 980

introducing additional complex structure. If so, then further improvement may be 981

possible if one can more accurately reconstruct the underlying form, either for small 982

clauses or for relative clauses. 983

It seems clear that one could apply the notion of regularization more broadly to 984

other types of displacements, such as topicalization and dislocation structures. We 985

predict that these will provide additional parsing improvements, possibly approach- 986

ing the levels achievable only through parse re-ranking. More generally, we note 987
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that the use of paired surface and underlying structures may provide great power not 988

only in improving parsing, but also for providing a means to learn new rules to span 989

the space of grammatical forms that have never been seen in training data, a major 990

roadblock in state-of-the-art statistical systems. This is because our regularization 991

approach bears important parallels to one of the few complete, mathematically 992

established learnability results for a complete grammatical theory, that by Wexler 993

and Culicover [53]. The Wexler and Culicover approach is based on a similar 994

idea: the learner is assumed to be able to reconstruct the underlying “D-structure” 995

corresponding to surface sentences, and from this pairing, hypothesize a possible 996

mapping between the two. It remains for future research to determine whether this 997

can be done for other displaced phrases in the PTB more generally. 998

Finally, we also note that in more recent grammatical theories, argument structure 999

is regularized to an even greater degree by means of a VP-vP “shell structure” 1000

of branching nodes, that place Subject and then the Direct Object and Indirect 1001

Object NPs in specific, fixed positions with respect to the verb, perhaps in all 1002

languages [21]. If this is true, we could readily expand our regularization approach 1003

to this notion, which might provide a statistically-based, machine learning system 1004

with additional standardized patterns that are more easily learnable from training 1005

data alone. A full-blown incorporation of this kind of grammatical structure again 1006

remains for future work, but gives some hint at the untapped power of linguistic 1007

theory ready to be applied to treebank parsing. 1008
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