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8

The multiple bases for linguistic
structures

ROBERT BERWICK

8.1 The fundamental tension

A cornerstone of “The cognitive basis for linguistic structures” (CBLS) was to
highlight Chomsky’s famous distinction between (1) knowledge of language
and (2) how that knowledge is put to use, emphasizing that these need not,
and indeed probably were not, one and the same thing—if only because
knowledge of language makes no reference whatsoever to the computational
steps involved in recovering or producing structured representations from
serial input or output, while how language is put to use must explicitly
address these essentials. CBLS stressed that the constraints on representations
inherited from linguists’ grammars might well be involved in language pro-
cessing even though the grammars themselves might not be.
In this way, CBLS highlighted a fundamental tension between two very

different motivations behind the study of language—the first aiming to model
external behavior, at heart, a theory that, in the limit, sets out to predict the
next thing a speaker will say or a listener will perceive; the second aiming to
model knowledge of language, at heart, a theory of a person’s internal state
that enables them to acquire any language. How might we reconcile these two
quite different motivations?

8.2 External modeling

It is worth noting that much current work in so-called “corpus linguistics,”
including its computational counterparts, directly reflects this tension, being
aligned with the first motivation rather than the second. This alignment is
directly reflected in the methods used in corpus studies to choose among
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alternative models in contrast to the tradition of modern generative grammar.
In corpus studies, the “measure of merit” is how well a particular model,
usually a statistical one, predicts the sentences of some corpus. While prediction
may be defined in several ways, it often takes the form of so-called cross-entropy,
a measure of how close the statistical model adheres to the “true” one; infor-
mally, how much a model of language reduces the uncertainty about the next
word, morpheme, or sentence to appear in a relevant sequence of items. Such a
measure already presupposes that the goal of language analysis is to determine
as closely as possible the true probability distribution p of sentences over a
corpus, estimated by observing some finite set of examples drawn from the true
distribution p and yielding some probability model m that is an estimate of
p. Cross-entropy is then defined as the information-theoretic difference
between the true distribution p and the estimated model distribution m, with
smaller cross-entropy being better. Such an approach is inherently external.

Methods incorporating the statistical regularities of a corpus extend at least
far back as the work of Markov, Zipf, and Shannon. More recently, some
researchers have adopted other models, such as simple recurrent neural
networks (SRNs); see, e.g., Elman (1990); Christiansen and Chater (1999)
for representative approaches. These recent models also adopt a corpus-
matching “figure of merit”; as Christiansen and Chater (1999: 168) note, the
approach “that has become standard . . . is to train the network to predict the
next item in a sequence given previous context.” In this way, such analyses
quite directly aim to predict the next word in a sentence given some preceding
word sequence, and clearly might embrace whatever contextual or behavioral
information might be influencing the likelihood of the “next word”—be it
linguistic, word association frequency, cultural, or indeed any factor whatso-
ever. Thus, given a word sequence such as It was a bright cold day in April and
the clock was striking . . . , such an approach might ascribe quite distinct values
as to the likelihood of the next word being twelve, as opposed to thirteen, with
twelve receiving a higher probability in nearly all contexts aside from those
where, say, one is modeling a reader conversant and attuned to the first
sentence of Orwell’s 1984.

8.3 Internal modeling

By way of contrast, from the outset, the “measure of merit” in traditional
generative grammar focused on notions like “simplicity” as related to the
notion of capturing law-like generalizations ranging over some representation
of knowledge of language, where “simplicity” was couched in terms of the size
of the grammar used to describe (or generate) knowledge of language, where
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the grammar uses some particular notational system. On this account, given a
particular grammatical system, one grammar would be better than another to
the extent that it expresses the same linguistic data more succinctly than
another grammar—that is, better in terms of “compressing” the linguistic
data. As is familiar, this grammar size could vary considerably depending on
the notational system used. As detailed in Berwick (1982, 1985), well-known
results from automata theory establish that depending on the grammatical
devices chosen (equivalently, their automata-theoretic counterparts), one can
often achieve exponential or far greater compression of the same set of
linguistic facts simply by choosing a more expressive grammatical system.
Even if the language is describable by a simpler system, say, a language
generated by a finite-state grammar, it can turn out that a richer formalism,
like a context-free grammar or a generative grammar with “movement,” can
have a much smaller description.

8.4 Some examples

An example is given immediately below, but it is worth examining some other
cases here. For instance, Berwick (1982) shows that the finite language con-
sisting of just sixteen sentences—eight “active voice” noun–verb strings over
a fixed, finite lexicon, e.g., John has eaten ice-cream, John will eat ice-cream,
etc., plus the corresponding eight “passive voice” strings, e.g., the ice-cream
will be eaten, etc.—has, quite naturally, a description in terms of a finite-state
grammar or a finite-state automaton, because the number of strings is finite.
In this case, we can measure the size of the description directly in terms of the
number of states and transition arcs in the automaton, or the number of
symbols in the finite-state grammar. But this finite language also has a
description in terms of the set of “active voice” forms plus the addition of a
single transformational rule that maps active voice forms to passive voice
forms. The bottom line is that this second method of expressing the same
facts takes only half the space of the purely finite-state description. To
consider another example that will play a role below, extending a result of
Ginsburg and Lynch (1976), Berwick (1982) demonstrates that the only time
that a finite-state description will be just as succinct, or perhaps more so, than
the corresponding context-free description of the same finite-state language is
when the linguistic relationships in the language can be stated only in terms of
what word in the language can follow what other word, that is, in terms of
bigrams. If there is any relationship that must be stated in terms of whole
phrases, for example, the common linguistic fact in English that a subject
phrase must “agree” in number and person with a verb phrase, then a
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description in terms of machinery more powerful than a finite-state
machine—a context-free grammar or any more powerful device—will be
exponentially more succinct than the corresponding finite-state one. Such a
result provides a formal “succinctness” counterpart to the well-known results
of Chomsky (1956) that finite-state grammars are inadequate in the weak
generative capacity sense as descriptions of natural languages: finite-state
grammars are also inadequate in terms of their ability to describe natural
languages compactly.

Finally, a common confusion that arises here in the context of comparing
descriptions using grammars (or automata) of increasing power should be
noted and dismissed. It has from time to time been suggested, even quite
recently (see, e.g., Perruchet and Rey 2005), that since the human brain is
finite, it clearly is describable as a finite-state automaton and so it is worth
wondering whether one or another device like a context-free grammar
(realizable as a push-down stack automaton of arbitrary depth) or some
other grammatical framework even deserves consideration. More specific-
ally, such proposals, as in Perruchet and Rey, often advert to the well-known
point that the sentences that are “easily parseable” comprise a finite-state
language, as in the well-known case of center-embedded sentences, conclud-
ing that the best description of internalized knowledge of language must
therefore be similarly finite-state. But this conclusion is fallacious. Any
physically realizable computational system is finite in this sense, but that
does not mean that its best description is finite-state; in general, one arrives
at an (at least exponentially) more succinct description if one talks about a
laptop computer as if it were a Turing machine or a random-access machine,
or some other kind of general-purpose computer with unlimited memory.
In particular, in the case of constructing a parser for a finite-depth number
of center-embedded structures, it has long been known, since at least
Chomsky (1963), that it is better to decompose one’s description into two
parts: (1) a finite-state control; and (2) a (truncated, i.e., depth-limited)
push-down stack store. Though the combination is formally still finite-state,
this “minimally augmented” finite-state device is much simpler (more
succinct) than a description that combines (1) and (2) into a single finite-
state automaton. Furthermore, not only does it crisply represent the ideal-
ization that it is possible in principle for language to contain an unlimited
number of such dependencies, it is also easier to extend to the case of
“adding” more memory to the push-down store, in line with the augmenta-
tion that one might envision of adding one or two more units of short-term
memory.
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8.5 Succinctness in grammatical theory

It seems less well known that the earliest statement about the role of succinct-
ness in grammatical theories may be found in one of the first works of
modern generative grammar, Chomsky (1951), where this criterion is
expressed as follows: “Given the fixed notation, the criteria of simplicity are
as follows: . . . the shorter grammar is simpler, and among equally short
grammars, the simplest is that in which the average length of derivation of
sentences is least” (1951: 6). As also shown in Berwick (1982, 1985), the
criterion to “compress” grammar size (relative to the descriptive machinery
available) so as to prefer shorter grammars reduces to the usual scientific
criterion of using the grammar to express generalizations with respect to some
set of data, D, where a generalization may be defined as any set of statements
that is shorter than the original length of D. A familiar example, as noted in
Lasnik (2001), is that of the eight basic auxiliary verb sentences of English,
e.g., from John ate (with 0 auxiliaries); to John has, John will eat, John is eating
(with 1 auxiliary, either a form of have, a modal like will, or a form of be);
to John has been eating, John will be eating, etc. (2 auxiliaries); to, finally, The
ice-cream has been being eaten (3 auxiliaries). These eight separate examples
may be described via a single grammatical rule roughly in the form,

(1) Auxiliary ! (Modal)(Have)(Be)

where the parentheses are a notational device denoting optionality. Since
there are then three binary options in the rule (select the item in parentheses
or not), this yields eight possible sentences. This rule thus compresses the
eight original auxiliary verb sequences described as eight separate rules into a
single rule, an enormous gain in succinctness.
But there is much more to this original formulation. In a particularly

prescient way, this original statement regarding the criterion for selecting
grammars also lends itself to a more modern interpretation that connects to
the most recent work on the formal inference, a fact that seems to have gone
unnoticed in the literature. Given a set of linguistic data, D, say a set of
sentences along with their structural descriptions, and a grammar, G in some
presupposed notational framework generating those sentences, we let |G|
denote the cardinality (size) of the shortest encoding of the grammar in
terms of the number of symbols it takes to write the grammar down (its
length). Further, following the 1951 formulation given above, we let |D|G
denote the total length of derivations of the sentences with respect to this
grammar. This component tells us how much the original data has been
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“compressed” by the grammar (note it is tacitly assumed that the grammar
can generate all the sentences that make up the data. If a particular sentence is
an “exception” to the grammar, in the sense that the grammar cannot generate
it, then we must add in the total length of that sentence to the “data size”
component, without any compression. For example, referring back to the
auxiliary verb examples, if it had been the case that one particular auxiliary
pattern was not describable by the grammar, say, John could have been being
eaten, then we would have to add the total length of that sentence as is into the
overall sum). Given this formulation, then the criterion for finding the “best”
grammar reduces to the problem of minimizing the sum, |G|+|D|G. where G
ranges over the space of possible grammars in the notational system. More
generally, this criterion for finding the “best” grammatical description of a set
of linguistic data is called the minimum description length (MDL) principle
(Rissanen 1989), and over the past twenty years has been applied to problems
of grammatical inference. DeMarcken (1995) shows howMDLmay be used to
learn how to discover morphological units, while Brent (1999) applied to it
the related problem of word segmentation. Still others have used MDLwithin
specific linguistic frameworks. For example, Villavicencio (2003) applied
MDL within Head-driven Phrase Structure Grammar (HPSG), to develop a
learning model for child language data. Hsu, Tomblin, and Christiansen
(2009) used MDL to decide whether to simply memorize each example of a
verb construction type, such as a dative alternation (send the library a book/
send a book to the library), as opposed to replacing a list of examples with a
rule—the same situation as with auxiliary verb sequences described above,
with the key criterion as to whether to use a rule rather than a memorized
form being whether the total description length is thereby shortened. How-
ever, they apparently do not recognize that the principle they apply is in fact
in complete accord with the simplicity metrics of traditional generative
grammar.

Further, given the duality between description length and probabilities
(Shannon 1951), one can show that the MDL principle does the same work
as Bayesian inference methods that attempt to find the most likely grammar
G given the data D (Grünwald 2007). Under a Bayesian formulation, we have
so-called prior probability assessments of grammars, pr(G), as well as that of
the observed linguistic data, pr(D). Given these two probabilities, on a
Bayesian view one then attempts to find a grammar G in the space of
grammars spanned by the linguistic theory that maximizes the posterior
probability of G given the linguistic data D, pr(G|D). We do this using
Bayes’ rule, to reformulate the posterior probability as pr(G)pr(D|G)/pr(D).
But to find the maximum of this quantity over all possible Gs, it suffices to
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maximize just pr(G)pr(D|G), ignoring the fixed value of the denominator,
pr(D), which in turn (by the duality of description length and probabilities,
and taking logarithms), turns out to be the same as minimizing |G|+|D|G (for
details, see de Marcken 1996). It is this Bayesian formulation that has been
advanced in several recent attempts to “rationalize” grammar construction,
in, for example, child language corpora (Perfors, Tenenbaum, and Regier 2011;
see also Dunbar, Dillon, and Idsardi this volume), though apparently without
recognizing the connection of the Bayesian viewpoint to the original formu-
lation of simplicity measures in generative grammar. So recast, we have
indicated one concrete way to bridge an apparent “disconnect” between
modern statistical approaches to induction and the traditional generative
linguistic viewpoint, as well as one way to invest linguistic theory with
modern statistical tools, a topic to which we return below. It remains to
apply this methodology to other current linguistic frameworks, e.g., modern
generative grammar in the so-called “Minimalist Program.”

8.6 Linguistic theory and modern statistical tools

Putting the topic of Bayesian inference to one side, however, it is still the
case that the goal of “corpus matching” need not necessarily align with
traditional linguistic notions, for example, those of conventional phrase
structure, and it is exactly in such situations that one can illuminate potential
interactions between different knowledge sources that conspire to yield
the distribution of sentences that are actually observed. To see this in a
particularly simple case of the interaction between syntactic and semantic
information, following an example of de Marcken (1996), note that a
sequence of words such as walked on ice has a conventional linguistic analysis
as a verb phrase, consisting of the verb walked followed by the prepositional
phrase on ice, in turn a preposition followed by a noun phrase. This may be
justified by constituency tests such as topicalization, e.g., On ice, I walked.
However, one cannot similarly front walked on as a single phrase, leaving
behind ice. Finally, it is clear that walked on ice has the properties of a verb
phrase, since it may be conjoined with other verb phrases and take verbal
modifiers. The important point, though, is that the linguistic analysis is at
odds with an observed statistical regularity, in part due to the semantics of
English, that verbs such as walk are more closely linked to prepositions such
as on than to nouns like ice, a fact that can be quantified by observing that the
bigram frequency of walked–on is quite high as compared to on–ice (de
Marcken 1995). Thus, a statistical method that attempts to describe language
in terms of bigram properties will “greedily” chunk walk together with on,
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while a linguistically oriented representation will tend to keep them apart in
separate phrases—once again, illustrating the tension between observed lin-
guistic behavior and underlying linguistic representations.

De Marcken indicates two ways to potentially solve this problem, both of
some relevance to the issues raised by CBLS and to the matter of resolving the
tension between the two views of language described at the outset, since they
involve how grammars relate to observed surface regularities. We describe
only the first here, which involves replacing a conventional context-
free grammar with a system based on X-bar theory or, more radically, bare
phrase structure as in Minimalist approaches (the second involves eliminating
the context-free grammar entirely in favor of a different representation). De
Marcken notes that one might augment a context-free grammar representa-
tion for walked on ice to correspond more closely to current linguistic
frameworks. In this case, drawing on the notions of X-bar theory (or beyond,
in the case of Minimalist approaches), de Marcken was the first to introduce
the notion of head explicitly into a context-free parsing and learning frame-
work. The verb phrase (VP) is replaced by the (complex) symbol <VP, verb>,
where verb (= walked) is the head of the phrase (in fact, the symbol VP could
just as easily be replaced by <XP, verb> or, as in Minimalist frameworks, <XP,
walked>). Similarly, the prepositional phrase is relabeled as <XP, preposition>,
and the noun phrase, <XP, noun>. If we use these rules, we have in effect
“promoted” the head information up to the phrase level where it can be
“seen” by the verb: the preposition on is now visible to the verb, and so any
collocation regularity is at least expressible in such a system. In this way, de
Marcken shows that by aligning the underlying grammatical knowledge into
a format closer to that assumed in some current linguistic theories, one
arrives at a representation that turns out to be easier to learn. In fact,
incorporating lexical head information into parsing has proved to be an
important line of inquiry into modern statistically based parsing models for
corpora (Collins 1996).

In any case, such “bigram regularities” as indicated by walk on would at first
seem to be literally impossible on many generative linguistic accounts, as noted
by Moro (2008). Writing about the results of recent fMRI experiments demon-
strating the reality of “chunking” of word sequences into whole phrases, Moro
observes that the indefinite extendibility of a phrase—as is familiar, a noun
phrase like the cat can be arbitrarily stretched out in terms of words, the cat that
killed the rat; the cat that killed the rat that ate the malt . . .—implies that
the “distance” between two linguistic elements like the cat and, e.g., its corres-
ponding verb, say, ran, can similarly be arbitrarily extended. If so, there can
be no absolute requirement that there be two, three, four, or any particular
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number of words between two linguistically relevant items, what Moro calls
a “rigid dependency.” In short, if there is phrase structure at all, then the
only predicate expressible is whether one phrase is adjacent to another one or
not; there are no predicates that “count” two, three, four, . . . phrases, and so
no human language that expresses a rule in terms of counting, beyond the
notion of one, which reduces to “adjacent to in terms of phrases.” In particular,
there can be no human language that, say, forms the negation of a rule by
inserting a special morphological item exactly three words from the start of a
sentence; however, there can be languages with rules that carry out manipula-
tions with respect to the first phrase of a sentence, as in the attested examples of
so-called “verb-second” languages—like German or Dutch—where verbal
morphology can be placed immediately after, hence adjacent to, the first phrase
of sentences.
That would leave the apparent evidence of bigram and other, higher-order

“statistical regularities” somewhat mysterious. However, this puzzle can be
readily resolved as soon as one realizes that the door is left open for the
variation in any particular language to interact in such a way as to result in
what might be called derived regularities, that is, corollaries that result from
the interaction of a particular language’s more basic constraints. Consider
again the walked on ice example. English is known as a “head first” language,
so in verb phrases the verb comes first, e.g., walk in walked on ice; and in
prepositional phrases, the preposition comes first, e.g., on, in on ice. Taken
together, this leads to the derived fact that one will tend to find verbs that take
prepositional phrase adjuncts or arguments that follow the bigram format
verb–preposition, as has already been noted. In fact, we can take such an
example even further, and suppose that there are general lexical association
factors, familiar from much other psychological work, that would admit the
influence of frequency in word sequences such as cotton clothes or walked on,
thereby directing an underlying processor to use such information if possible.
Of course, as noted since at least CBLS, such associations are not infallible:
thus the typical grouping of cotton clothes as adjective–noun can lead one
“down the garden path” in The cotton clothes are made of grows in Mississippi.
Nevertheless, this kind of “multiplying out” of consequences that follow from
the more general principles of an internalized grammar to arrive at a trans-
formed set of operating rules for practical perception or production can be
applied more generally. In computer science, it often goes under the general
rubric of compilation: the notion that the programmer will write the instruc-
tions for some algorithm in a higher-level language, and those statements will
be mapped, often through a succession of intermediate steps, into the step-
by-step instructions that the underlying computer must actually follow to
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arrive at the desired result. Importantly for our discussion, the end result
might not bear much resemblance to the original instructions, in the sense
that we could easily recover the original instructions by “reverse engineering.”
Indeed, depending on the actual physical hardware, the “target machine” we
intend to run the program on—say, a parallel computer vs a serial one with a
very different kind of basic instruction set—the end results could look quite
different. If we now think of knowledge of language as the “higher-level
language” and the resulting machine instructions as the “knowledge put to
use,” we arrive at an operational version of Chomsky’s original division, and
one that is central to the concerns of CBLS. In this case, of course, we have
much less understanding of the “target machine”—the neural wetware—on
which the original grammar “runs.” But the distinction stands: in order to
parse or produce sentences efficiently, it seems quite reasonable that the
grammar—the knowledge attained after acquiring a language—could look
quite different from the “actual” parser and the operations it uses to analyze
language. Just as in the case of computer compilers, the parser’s actions could
include optimizations tailored to the particular language, extra-language
contextual information, and low-level (but as yet little known) properties of
the neural system.

8.7 Accounting for probabilistic factors in language

Given that there seem to be obvious probabilistic influences in language
use that arise from a variety of sources, be they lexical bigram collocation
frequencies, prosodic information, or the like, how can we combine this
evidence in a probabilistically well-founded way? To be concrete, consider
our cotton clothes example again, where a parser might have to decide whether
cotton is an adjective or a noun, so determining whether clothes begins relative
clause or not. We could imagine that we have (ad hoc) “scores” for each
hypothesis, features that rate the evidence as to which one of these choices is
correct, given some context. For example, it might be that the preceding
sentence was about the wool that clothes are made of; and so the “value” of
this feature ought to boost the choice of cotton as an adjective; on the other
hand, the high frequency of cotton preceding nouns as an adjective pulls in the
other direction. We could also pose this information as a set of constraints: for
example, that 80 percent of the time, given the sequence cotton clothes, then
cotton is an adjective; further, that in 10 percent of all sentences that contain
grows following clothes, then cotton is a noun, and so forth. How should we
combine such feature scores, or constraints, so as to adjudicate between the
two possible outcome labels for cotton? Should we simply compute some
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weighted average? Should we just use the most reliable feature score? Note
that the features or constraints themselves might overlap or not even be
independent, and that the feature scores, being ad hoc, could wind up as
arbitrary numbers, and so not correspond to a valid probability distribution
at all, which must add up to one over all outcomes.
However, since the late 1950s, it has been known how to do just precisely that

kind of scoring combination in a statistically sound way, via a general approach
first advanced by Jaynes (1957), though the methodology seems to have been
adopted in computational linguistics only later, in the 1990s, with the research
of Berger and Della Pietra (1996) and Ratnaparkhi (1996), among others. The
basic idea, known as multinomial logistic regression, or sometimes maximum
entropy classification/modeling, is that we can just add up the scores over all
features and convert them to probabilities if we first apply a logistic transform.
We can then use this transformed score, somewhat modified as indicated below,
as a combined probability distribution over all features. Suppose that score (x,y)
denotes the score for a particular classification outcome y (e.g., cotton is an
adjective; or that the parser should select a relative clause next), given that a
feature value is x (e.g., clothes follows cotton). In general, the score will be the
weighted sum of the values returned by each feature, !wi fi(x, y), where the
weights will be transformed and determined later by training on a given set of
data. The logistic transform maps the weighted sum to 1/Z(ºi) exp !i ºi fi (x, y),
replacing the weights w with º, and the key result that can be established is that
this yields a valid probability distribution over classification labels c and
sentences s, pr(c,s). Further, while there are many distributions that one
might pick for pr(c,s), it turns out that if we choose the weights ºi so as to
maximize the probability of a particular classification label c given the sentences
s, then this distribution will be the one that has the maximum entropy, that is,
the one that is as nearly uniform as possible, while still obeying the constraints
imposed by the observed regularities, e.g., that 80 percent of the time, cotton is
an adjective when followed by clothes.
In brief, we can legitimately combine different information sources, even

those from other cognitive domains or arising from nonlinguistic constraints
on the external world, to estimate patterns of actual language use. For
example, maximum entropy models give state-of-the-art performance in
real-world applications like part-of-speech tagging in large corpora.
A question remains as to the extent of such influences, beyond simple word
association patterns like cotton clothes. Nonetheless, there is nothing prin-
cipled that bars the infiltration of such information sources into one’s model
of language use, while retaining the advantages of the linguist’s conventional
notion of knowledge of language represented as a grammar.
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