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Language acquisition maps linguistic experience, primary linguistic
data (PLD), onto linguistic knowledge, a grammar. Classically, com-
putational models of language acquisition assume a single target
grammar and one PLD source, the central question being whether
the target grammar can be acquired from the PLD. However, real-
world learners confront populations with variation, i.e., multiple
target grammars and PLDs. Removing this idealization has inspired
a new class of population-based language acquisition models. This
paper contrasts 2 such models. In the first, iterated learning (IL),
each learner receives PLD from one target grammar but different
learners can have different targets. In the second, social learning
(SL), each learner receives PLD from possibly multiple targets, e.g.,
from 2 parents. We demonstrate that these 2 models have radically
different evolutionary consequences. The IL model is dynamically
deficient in 2 key respects. First, the IL model admits only linear
dynamics and so cannot describe phase transitions, attested rapid
changes in languages over time. Second, the IL model cannot prop-
erly describe the stability of languages over time. In contrast, the
SL model leads to nonlinear dynamics, bifurcations, and possibly
multiple equilibria and so suffices to model both the case of sta-
ble language populations, mixtures of more than 1 language, as
well as rapid language change. The 2 models also make distinct,
empirically testable predictions about language change. Using his-
torical data, we show that the SL model more faithfully replicates
the dynamics of the evolution of Middle English.

dynamical system model | learnability | phase transitions | social learning |
iterated learning

A t least from the seminal work of Gold (1), there has been a
tradition of inquiry into computational models of language

acquisition. Much of this work has considered a learner acquiring
a target grammar from its linguistic experience interacting with
speakers of this grammar, generally positing that this experience is
consistent with a single target grammar (2, 3). Such models assume
an idealized, homogeneous speaker–hearer population. Over the
past 15 years computational models have relaxed this homogeneity
assumption to confront the reality of language variation.∗ Clark
and Roberts (7) and Niyogi and Berwick (8) are representative
early attempts. This revision is marked by 2 developments. First,
learning occurs in a population setting with potential variation
in the attained grammars or languages of its members. Second,
language acquisition is the mechanism by which language is trans-
mitted from the speakers of one generation to the next. We call
this newer formulation the population view of language acquisi-
tion and change, and the resulting models social learning or (SL)
models.

This shift from single-source grammar acquisition to a popu-
lation view parallels the epistemological shift in Darwin’s intro-
duction of population level reasoning in Origin of Species. Darwin
argued that variation was essential to biological evolution on 2
levels—variation in the parental generation and variation in the
offspring generation (9). We claim this as well for language vari-
ation and change. However, there are differences. Instead of
trait inheritance from parents alone, we model language as pos-
sibly acquired from the population at large. This formalization is

not identical to conventional mathematical population biology,
because it generalizes inheritance to the notion of an acquisi-
tion algorithm, roughly, any computable function from data to
grammars. (We can still use classical population biology as a
special case.) We note that while Cavalli-Sforza and Feldman
(10) have also formulated similar extended models of inheri-
tance, allowing offspring traits to be acquired from non-parents
(including the possibility of “horizontal” transmission, that is, from
learners in the same generation), their model varies in certain cru-
cial ways from what we propose here, and we obtain distinct results,
most notably because we use the mechanism of an acquisition algo-
rithm rather than just an extended Mendelian inheritance scheme,
as we elaborate in more detail in From Language Acquisition to
Language Evolution.

It follows immediately that models not admitting multiple learn-
ing sources, assuming instead a single source of learning input and
then iterating that single learner over multiple generations, do not
embrace the full Darwinian variational picture or our extension
of it. Because such single-learner, or so-called iterated learning
(IL), models have gained some currency [as developed in a series
of papers by Kirby (11) and Griffiths, Dowman, and Kirby (12)],
this distinction is of some importance to point out.†

The goal of this article is to examine the importance of the pop-
ulation view, using as a touchstone the theoretical and empirical
contrasts between the SL and IL models. In the IL models, individ-
ual learners are immersed in a population and each such individual
learns from only 1 person. In the SL models, each learner is
exposed to data from multiple individuals in a community. There
are important theoretical and empirical differences between both
models. When individuals learn from a single source, the evo-
lutionary dynamics that results is necessarily linear, leading to a
single stable equilibrium from all initial conditions. In contrast,
in SL models the dynamics is potentially nonlinear. Bifurcations
arise only in SL models. These are linguistically interpretable
and as described in Empirical Linguistic Applications and Discus-
sion provide an explanatory construct for the patterns of rapid
change often observed in historical linguistics and not apparent
from either previous linguistic models or the IL models. In com-
parison, although ref. 10 also yields quadratic dynamical systems
that are in principle capable of modeling bifurcations, it appears
that in many natural linguistic contexts and parameter regimes of
interest, bifurcations do not arise. If so, then the models in ref.
10 also do not properly accommodate rapid historical language

Author contributions: P.N. and R.C.B. designed research, performed research, and wrote
the paper.
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∗Of course, variation has always been a central concern in the sociolinguistics tradition;

see refs. 4–6 for typical examples.
†The term “iterated learning model” has come to be associated only with a certain type of

dynamical model, as in ref. 11, in which one considers a chain of learners, each of whom
learns from the output of the previous one. It is worth noting that in fact all models of
language change and evolution “iterate” the learners from one generation to the next.
However, for the purposes of this article we will continue to use the term IL to refer to
the kinds of models described in ref. 11.
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change (for more discussion on this point, see ref. 13). Finally, SL
models, but not IL models, appear to make the right empirical
predictions about observable cases of language change.

In our mathematical developments, we make certain idealiza-
tions (infinite populations, random mixing, and the like). These
idealizations provide simplifying assumptions that allow us to rea-
son coherently about the subtle interplay between learning by
individuals and the evolution of populations. These assumptions
are made in the same spirit as in conventional population genet-
ics, where the 1-gene, 2-allele infinite population random mating
models provide a starting point for the analysis of Mendelian
inheritance, Hardy–Weinberg laws, and other basic results. Here
too we present the basic results, noting that the assumptions must,
of course, be relaxed as our understanding deepens.

Language Acquisition: A Population Framework
To formalize the IL and SL models, let G be a family of grammat-
ical systems where each g ∈ G is a possible target grammar. Each
such g ∈ G yields a potentially infinite set of expressions Lg ∈ Σ∗,
generated by g. Not all expressions are produced with the same
frequency by users of g. We denote by Pg a probability distribution
over the set Lg such that s ∈ Lg is produced with probability Pg(s)
by speakers of g.

Consider the state of a potentially heterogeneous population
at time t. This may be characterized via a probability distribu-
tion P(t) on G where P(t)(g) is the proportion of the population
using grammar g. Thus a homogeneous population where every-
one uses grammar h places probability mass 1 on h and 0 else-
where. A heterogeneous population with equal numbers of g and
h users could similarly be characterized by a distribution P(t) where
P(t)(h) = P(t)(g) = 1

2 . Finally, consider a child/learner immersed
in such a population. The learner is an acquisition algorithm that
maps linguistic experience onto linguistic knowledge, expressed
formally as

A : ∪∞
i=1(Σ∗)i → G. [1]

Thus if the acquisition algorithm receives a sequence of expres-
sions s1, s2, s3, . . . , sn, where each si ∈ Σ∗, then linguistic experi-
ence may be expressed as the ordered n-tuple D = (s1, . . . , sn) ∈
(Σ∗)n, belonging to the domain of the map A, with A(D) being
the grammar acquired after exposure to this experience.‡

This framework admits considerable generality. The linguistic
experience D could come from either a single source or multi-
ple sources. Similarly, since A can be any algorithm and G any
family of computational systems, the framework models a wide
range of learning options and most current linguistic theories.
For example, it accommodates the class of probabilistic context-
free grammars (with G a family of probability distributions), along
with probabilistic learning techniques, including Bayesian learning
procedures and current ‘corpus based’ methods. With respect to
linguistic theories, setting G = {g1, . . . , gN } yields a finite number

‡Following the mainstream literature in language acquisition models, especially in the
generative linguistics tradition, we have assumed that children learn from positive exam-
ples alone and that the effects of feedback and active linguistic experimentation are
minimal. Furthermore, note that ultimately we will need to characterize the probabil-
ity with which different PLD D will be experienced by the learner. Here we will assume
that P(D) may be factored into the product P(D) = ∏n

i=1 P(si ), i.e., each speaker of g
produces sentences independently and identically distributed (i.i.d) according to Pg . Of
course, Pg itself might assign more probability mass to “simpler” sentences according to,
perhaps, a “Zipfian” law, although we make no particular assumptions about the nature
of Pg . This i.i.d. assumption allows us to capture the intuition that not all sentences are
equally likely, and this nonuniformity in sentence probabilities will in turn affect the
likelihood of different kinds of linguistic experiences. One may rightly question the i.i.d.
assumption but we argue that it is a simple and natural base assumption that captures
the first-order frequency effects that behaviorists have discussed and is further consis-
tent with the base assumptions of statistical learning theory as well as many prominent
probabilistic models of language acquisition that provide a frame of reference for this
paper. The consequences of more complex assumptions about input distributions may
then be compared against this base assumption.

N of possible target grammars; this is compatible with the current
phonological approach known as Optimality theory (14), positing
a universal, fixed finite number of “ranking constraints” under-
lying all human sound systems. It is also compatible with the
so-called “principles and parameters” theory of syntax known as
Government-Binding theory (15). More generally, this framework
is compatible with nearly every current parameterized linguis-
tic theory, from head-driven phrase structure grammar (16) to
lexical–functional grammar (17).

From Language Acquisition to Language Evolution
When we iterate the map A we can explicitly calculate how lan-
guage will evolve over generational time as learners acquire their
language(s) from the primary linguistic data (PLD) given by each
previous generation. We now discuss 2 distinct scenarios in which
this question may be posed.

Iterated Learning. First, one can assume that the PLD comes only
from a single source. IL begins with a single agent and a gram-
mar g1 ∈ G. The agent then produces n example sentences, the
linguistic experience D = (s1, . . . , sn) for the learner; the learner
applies the map A to attain a mature grammar A(D) = g2 ∈ G
and proceeds to produce D for a single agent in the next genera-
tion, iteratively, yielding the sequence g1 → g2 → g3 → . . .. It is
easily seen that this yields a single trajectory corresponding to an
underlying Markov chain whose state space is G, with the chain’s
state denoted by gt ∈ G at each point in time t. We can characterize
the transition matrix§ of this chain: For any g ∈ G and h ∈ G, the
probability of mapping from g to h is given by

T[g, h] = prob[g → h] = prob[A(D) = h|D generated by Pg],
[2]

where T[g, h] is the probability the learner would acquire h given
data D provided to it by an agent using the grammar g and
generating the primary linguistic data D according to Pg .

IL has been considered in a series of papers (18), most recently
in a setting where the algorithm A uses a Bayesian estimation
scheme (12). However, irrespective of the particular learning
algorithm A, i.e., whether it is Bayesian estimation, parametric
learning, etc., the evolutionary trajectory of IL is always charac-
terized by a Markov chain under fairly general assumptions. The
exact values of the transition probabilities will of course depend
on the nature of the learning algorithm.

Furthermore, there is a natural population interpretation of IL.
Consider a population whose initial state is provided by P(0) (a
distribution on G) such that P(0)(g) is the proportion of g grammar
users in generation 0. Then according to the Markov dynamics
given above, this distribution will evolve as

P(t+1)(h) =
∑

g∈G
P(t)(g)T[g, h]. [3]

According to this equation, in the IL model the distribution of
speakers of different grammars in the population must inevitably
evolve according to a linear rule. Although each learner is
immersed in a potentially heterogeneous population, each learns
only from a single individual, never reflecting the population varia-
tion. Different learners, of course, learn from potentially different
individuals.¶

There are three further critical conclusions to be drawn from
the Markovian property of IL:

1. IL’s linear dynamics converges to a single stable equilibrium
from all initial conditions, given by the leading left eigenvector

§If |G| = ∞, then this corresponds to an operator on an infinite space.
¶

Note that this population version of iterated learning from a single teacher is also a
special case of the language evolution equation of Nowak, Komarova, and Niyogi with
no fitness function (19).

2 of 6 www.pnas.org / cgi / doi / 10.1073 / pnas.0903993106 Niyogi and Berwick
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of the T matrix in the usual way. If the Markov chain is
non-ergodic, conventional Markov chain theory provides fur-
ther characterization (20).

2. Such linear dynamics precludes the possibility of any bifur-
cations. To the extent that bifurcations are assumed to be a
necessary part of modeling language change, the IL model is
thus dynamically insufficient.

3. Conversely, the IL framework cannot properly model what
one might think to be a common empirical linguistic situation,
namely, language stability. A simple example illustrates this
point. Suppose there are just 2 possible languages (equivalently
grammars), L1 and L2, e.g., English and French, and assume
any possible initial proper distribution of speakers over the
two, e.g., from 99.9% speaking English and only 0.1% speaking
French, to the reverse. Suppose each language is acquired with
some small probability of error, ϵ. The transition matrix entry
T(2, 1) gives the probability of an individual being exposed to
language 2 but learning language 1 instead, (= ϵ) while T(1, 2)
is the converse. Referring to equations 10 and 13 below, the
fixed point of this dynamical system is ϵ/(ϵ + ϵ) = 1/2. That
is, the resulting steady-state will have 50% English speakers
and 50% French speakers. Although each language is effectively
learnable (with probability 1−ϵ), a homogeneous community can-
not be maintained and degenerates to a mixture of grammatical
types over time.

Social Learning. We turn now to a second approach to learning in
a population, where the PLD for a learner can come from multi-
ple speakers/parents, or what we call SL, as first outlined in (21).
In this framework, the evolutionary dynamics of linguistic popu-
lations may be derived as follows. Let P(t) be the linguistic state
of the population at time t. Consider a typical child learner in this
population, provided with data drawn from a distribution µt given
by the following equation:

µt =
∑

g

P(t)(g)Pg . [4]

Here we assume that the population is “perfectly mixed” with no
network effects, i.e., the typical child is exposed to different types
of speakers with probabilities proportional to the fractions of these
types in the population at large. The probability that a typical such
learner acquires the grammar h is then given by

prob[A(D) = h|D drawn according to µt]. [5]

If this is the probability with which a typical learner acquires h,
then this is the proportion of h speakers in the next generation.
Thus,

P(t+1)(h) = prob[A(D) = h|D drawn according to µt], [6]

which yields the map

fA : S → S , [7]

where S is the state-space of possible linguistic populations. Each
s ∈ S corresponds to a probability distribution over G with s(g)
denoting the proportion of the population using g. This model is
critically distinct from IL:

1. In contrast to IL’s linear dynamics, here the iterated map
st+1 = f (st) is generically nonlinear and therefore can exhibit a
far richer set of possible outcomes.

2. In particular, as parameters change continuously, there may be
discontinuous changes (bifurcations) in the dynamics that lead
to qualitatively different regimes of equilibria. Multiple stable
states are possible. Shared grammatical systems in a homoge-
nous population may go from stability to instability and vice
versa.

3. For every learning algorithm A, there exists a corresponding
evolutionary dynamics fA (the converse is not true; for every
dynamical map, there does not necessarily exist a learning
algorithm). Thus different learning algorithms may have differ-
ent evolutionary consequences and may be distinguished from
each other on this basis. Thus our framework is general and
the empirical content arises from choosing different particular
learning algorithms, and comparing their predicted evolution-
ary trajectories against the historically observed trajectories of
change.

Comparing Iterated and Social Learning
We now proceed to illustrate the distinctions between these two
very different kinds of evolutionary dynamics through a concrete
example. We will assume G = {g1, g2}, i.e., just 2 languages (or
grammars). While seemingly oversimplified, this permits analyti-
cal results and corresponding insight, while retaining applicability
to real language change, an idealization analogous to that of
1-gene 2-allele models in population genetics.

Given this simplification, it suffices to characterize the state-
space of the linguistic population by a number α ∈ [0, 1] denoting
the proportion of g1 users. The SL model then leads to a map
αt+1 = fA(αt) that is typically nonlinear, may have linguistically
interpretable bifurcations, and depends on the learning algorithm
A. The linear dynamics corresponding to the IL model can now
be derived from this more general map fA as follows. The entries
of the transition matrix T leading from one generation to the next
are given by

T(1, 1) = fA(1) and T(2, 2) = 1 − fA(0) [8]

Because T is a stochastic matrix (with rows summing to 1), the
other entries are immediately specified, with the corresponding
linear dynamics given by the following equation:

αt+1 = (T(1, 1) − T(2, 1))αt + T(2, 1). [9]

These dynamics converge to a fixed point given by

α∗ = T(2, 1)
T(2, 1) + (1 − T(1, 1))

. [10]

Using this derivation, we can now describe precisely the differ-
ences between the IL and SL models given a particular choice of
a learning algorithm.

A Cue-Based Learner. To complete a comparison between the IL
and SL models and actually carry out a computation of the result-
ing dynamical systems, we must specify a particular learning algo-
rithm, A. As noted, there are many plausible choices for A. For
concreteness, let us posit a particular algorithm A, known as
cue-based learning, which has been advanced by linguists and psy-
cholinguists, in particular refs. 22 and 23. A cue-based learner
examines the PLD for surface evidence of a particular linguistic
parameter setting, for example, whether a language is head-initial
or verb-initial (like English, with objects following verbs), or verb-
final (like German or Japanese). Such structured examples, par-
ticular analyzed sentences of a language that steer the learner
towards one language or another, are called cues. For example,
the (structurally analyzed) sequence eat ice-cream, where eat is a
verb and begins a verb phrase, and ice-cream is an object of eat,
roughly in the form [VP Verb Object], can be said to be a cue for
languages that follow verb–object order.

To formalize this intuition in a general way, let a set C ⊆ (L1\L2)
be a set of examples that are cues to the learner that L1 is the tar-
get language. If such cues occur often enough in the learner’s data
set, the learner will choose L1, otherwise the learner chooses L2.
In particular, let the learner receive K examples. Out of the K
examples, say k are from the cue set. Then, if k

K > τ the learner

Niyogi and Berwick Early Edition 3 of 6



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

chooses L1, otherwise the learner chooses L2 (following ideas in
ref. 22).

Evolutionary Dynamics. The evolutionary dynamics of a popu-
lation based on this A can then be computed as follows. Let
P1(C) = p; p is the probability with which an L1 user produces
a cue. If a proportion αt of adults use L1, then the probability with
which a cue is presented to a learner is pαt, so the probability with
which k > Kτ is as follows:∥

∑

Kτ≤i≤K

(
K
i

)
(pαt)i(1 − pαt)(K−i). [11]

Therefore,

αt+1 =
∑

Kτ≤i≤K

(
K
i

)
(pαt)i(1 − pαt)(K−i), [12]

where αt is the proportion of L1 users in the tth generation. The
evolutionary trajectory is defined by an iterated map that is a poly-
nomial of degree K and the behavior depends on the value of
the parameter p. An analysis reveals the following (proof omitted
here):

1. For p ∈ [0, 1], there are never more than three fixed points in
[0, 1]. For small values of p, α = 0 is the only fixed point of the
population and it is stable.

2. As p increases, eventually a bifurcation occurs as two new
fixed points arise. There are then three fixed points in all:
α = 0, which remains stable; α = α1, which is unstable; and
α = α2 > α1, which is stable.

3. For p = 1, there are two stable fixed points (α = 0 and α = 1)
and there is exactly one unstable fixed point in (0, 1).

See Fig. 1 for examples of phase digrams for different values
of K . Let us reflect on the bifurcation and the directionality of
change this dynamical model implies.

First, note that if the target grammar is g2 it will always be
acquired. As a result, a population composed entirely of g2
speakers will remain stable for all time for all values of p.

Second, consider a community composed entirely of g1 users.
As one can see from Fig. 1, there is a regime p > pcritical where
the population moves from a completely homogeneous one to a
stable equilibrium composed mostly of g1 users, with a small pro-
portion of g2 users thrown in. However, when p < pcritical , then this
equilibrium rather abruptly disappears and the population moves
to one composed entirely of g2 users. Thus, a tiny difference in the
frequency with which speakers produce cues can dramatically alter
the stability profile of a linguistic community. This extreme sensitiv-
ity to parameter values is the hallmark of bifurcations and does
not follow straightforwardly without a formal analysis. As we have
seen, it also does not arise in the IL model.

It is also possible to show that a similar bifurcation arises if
one holds p constant but changes K , the total size of the PLD. A
decrease in the value of K leads to effects similar to that of the
frequency (p) with which speakers produce cues.

In addition to sensitivity, we also see directionality. A popula-
tion of g1 speakers can change to a population of g2 speakers; a
change in the reverse direction is not possible.

Given fA for the SL model where A is the cue based learner,
the IL dynamics for the same learner is easily characterized.

∥
Note here that we make crucial use of the i.i.d. assumption regarding the PLD. Although
this might at first seem unrealistic, it is worth remarking that in the analysis, sentences are
grouped into equivalence classes based on structural (syntactic) properties, i.e., whether
they are cues or not. What is really being assumed is that structures are i.i.d. This is almost
always the case in any real linguistic application of our analysis. It seems plausible at face
value that, although surface forms of sentences instantiated by the lexical choices may
be correlated, the structural forms are less so and in fact are independent.

Fig. 1. Phase diagram curves indicating how the fixed points for the propor-
tion of V2 speakers vary given different cue-frequencies p in the SL model and
how these relate to the historically assumed number of cues available (17% or
more) and the possible loss of Verb-second. The horizontal x axis denotes the
frequency p of cues for a V2 language. The vertical y axis denotes the fraction
of the population speaking a V2 language. Curves I–III depict the correspond-
ing stable and unstable fixed points for the percentage of V2 speakers as a
function of cue-frequency p for three different choices of K, the total number
of sentences in the PLD. The leftmost curve (labeled I) corresponds to K = 70,
while curves further to the right depict decreasing values for K, with the
rightmost, third (III) curve corresponding to K = 10; the curve lying between
I and III (II; label omitted) corresponds to K = 30. In each case the solid por-
tions of the curve denote stable fixed points, while the dashed portions are
unstable. For example, given K = 70, as soon as p falls below ≈0.5 then the
percentage of V2 speakers begins to decline. Note how for small values of
p there is only one stable point at y = 0. As p increases a new pair of fixed
points arises—one of which is unstable (dotted) and the other stable (solid).
The curve labeled A denotes the historically attested value where the number
of cues is at 17%, i.e., yp = 0.17. Note that all three stability curves (I–III) lie
almost entirely above and to the right of curve A. Because curve A lies in the
basin of attraction of y = 0, we see that if one is on this curve at any point in
time, the system will evolve to y = 0, i.e., V2 will be eliminated.

T(1, 1) = fA(1) < 1 and T(2, 2) = 1 − fA(0) = 1. [13]

As expected, the result is a linear dynamics, and, from all initial
conditions and for all p, the population evolves to a community of
all g2 users. There are no bifurcations and g1 can never be stably
maintained in the population under any circumstances. Thus this
model results in a more restricted range of possible outcomes; as
we shall see, this limits the IL model in its empirical adequacy, a
matter to which we turn next in the concluding section.

Empirical Linguistic Applications and Discussion
Turning from mathematical modeling to empirical data, in this
concluding section we illustrate how to use the modeling paradigm
described previously to sharpen our understanding of language
learning and change, providing an explanatory account for certain
linguistic phenomena. We develop the data and analysis according
to our own reading of ref. 22.∗∗

Our key finding is that the SL model with a cue-based learning
algorithm correctly predicts an observed “phase transition” that
took place in the case of an historically verified two language con-
tact situation in the development of early English, resulting in the
rapid loss of a certain type of syntactic construction and a cor-
responding shift to an apparently stable equillibrium lacking this

∗∗We are aware that there are alternative linguistic accounts (notably as in refs. 24 and
25, among others). The general approach presented here may be used to formally model
these as well but a full treatment is beyond the scope of the current paper.
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PS
YC

HO
LO

G
Y

A
PP

LI
ED

M
AT

HE
M

AT
IC

S

construction. In contrast, as far as we can determine, the IL model
with its linear dynamics cannot successfully make this prediction.

The Data: Loss of V2 in English. The particular historical data and
analysis is as follows. English was once what linguists term a
“verb second” language, (abbreviated V2), just as Dutch and
German are today, but English is no longer V2, stably so. We
outline the basic linguistics. Superficially, a V2 language allows
verbal elements bearing tense in exactly the second structural
position in a sentence (besides its normal position), while a non-
V2 language does not. Examples such as the following illustrate,
with verbs highlighted by -Verb. The examples are taken from
ref. 22.

1. Wij zagen-Verb vel studenten in Amsterdam (“We saw many
students in Amsterdam”)

2. Vele studenten zagen-Verb wij in Amsterdam (“Many students
saw we in Amsterdam”); note that zagen is in exactly the second
position after the phrase “many students”.

3. In Amsterdam zagen-Verb wij vele studentent (“In Amsterdam
saw we many students”); again zagen is exactly in the second
position after the first phrase “in Amsterdam”.

In contrast, in a non-V2 language the second position may be
filled by a nonverbal element as in modern English and French,
and an example like example 2 above is not attested, for example,
“In Amsterdam we saw many students”, where “we” occupies the
second structural position in the sentence.

Our reading of ref. 22, covering the basic historical facts and
linguistic analysis relating to the change in an older form of Eng-
lish, Middle English, from a V2 language to a non-V2 language
during roughly the 13th century is as follows.

1. There were two English-like languages in this historical con-
tact situation: (i) Northern (Middle) English, and (ii) Southern
(Middle) English. We label the 2 sets of sentences relevant
for the cue-based distinction between these 2 languages Lnorth
and Lsouth, structurally analyzed as needed by the cue-based
approach.

2. Northern (Middle) English was a V2 language; limited to sub-
jects with pronouns (we, she…), Southern (Middle) English
was a non-V2 language.

3. The grammars for the 2 languages generated different cues. We
denote the cues appearing only in the Northern, V2 language by
the set-difference Lnorth \ Lsouth. These include sentences with
initial phrases of any category apart from subjects, followed by
verbal elements in second position, then pronouns, a sequence
not possible in a non-V2 language, and not found in modern
English. Such cue sentences include the following, glossed in
modern English: “In Amsterdam saw we many students.”

4. The remainder of the model depends on sentences in the inter-
section Lnorth ∩ Lsouth and Lsouth \ Lnorth, that is, sentences in
both V2 and non-V2 languages (e.g., “In Amsterdam saw John
the students”) and cue sentences only in the Southern language
(“In Amsterdam we saw many students”).††

5. According to ref. 22, we assume that if cues occur with a suffi-
cient frequency threshold, τ, children acquire the V2 gram-
mar, otherwise a non-V2 grammar. On this account, when
speakers of Northern Middle English came into contact with
speakers of Southern Middle English, the Northern speakers
stopped hearing a sufficient number of cues, triggering a phase
transition.

Let us now establish this claim. Based on statistics from modern
Dutch, ref. 22 argues that the learning threshold for non-initial

††Note this means there is an inherent asymmetry or markedness principle in that the
learner does not scan for cues for non-V2 languages or compares cues for V2 languages
against cues for non-V2 languages.

subject sentence cues is approximately 30%. Based on work of
Ans van Kemenade from Sawles Warde, an early-13th-century
text, ref. 22 estimates the actual cue percentage at 17%, noting
this “evidence suggests that 17% of initial non-subjects does not
suffice to trigger a verb second grammar, but 30% is enough;
somewhere between 17 and 30% is a phase transition.” We now
proceed to confirm this hypothesis formally by using our cue-based
model.

Mapping to a Dynamical Model from Cue-Based Learning. Let us
adopt the conclusion in ref. 22 that cues for V2 must occur at
least 30% of the time for correct acquisition. We therefore exam-
ine how the SL cue-based model behaves with τ = 0.3. For a
fixed K and τ = 0.3, we obtain the diagram in Fig. 1, where x=
the frequency p of V2 cues and y = the fraction of the popula-
tion speaking a V2 language (so that yp is the actual percentage
of V2 cues). Fig. 1 displays bifurcation curves for three different
possible numbers of sentences in the PLD, K = 10, 30, and 70,
respectively, labeled I–III (the intermediate curve II correspond-
ing to K = 30 lies between I and III; its label is omitted to save
space).

Now posit a community where p = 0.44 and 99% of the pop-
ulation uses a V2 grammar, corresponding to the point (x, y)
in Fig. 1 with x = 0.44, and y = 0.99, which is on the curve
labeled I, corresponding to exposure to 70 sentences. This is a
stable point, and the V2 grammar would therefore be maintained
over time. With this in mind, we examine 3 different scenarios
in which a stable V2 community such as this might lose V2 over
time.

Scenario 1: K decreases. The total number of input examples
decreases. Then the bifurcation curves shift to the right e.g., to
curve III. Here, at p = 0.44 there is only one stable fixed point,
with y = 0. For this K regime, the entire population loses V2 over
time.

Scenario 2: p decreases. The frequency of cue production
decreases. Then the bifurcation diagram illustrates how the sta-
bility profile of the dynamics changes (for each K) as a function
of p. Notably, there exists a p∗(τ, K) such that if p < p∗(τ, K), the
only stable mode is y = 0, i.e., a homogeneous population with
a non-V2 grammar. Now imagine the population were stable at a
V2 level with a value of p > p∗(τ, K). If the speakers of the V2 lan-
guage started producing fewer cues (a drift in cue production due
to any cause, whether random or sociological) in a manner such
that p drifted across the critical point p∗, then the V2 grammar
would no longer be stably maintained in the population.

Scenario 3: Jumps from one attractor basin to another. In the
parameter space where p > p∗(τ, K), there are 2 stable equilib-
ria; a population can be stable with a preponderantly V2 grammar
or with a preponderantly non-V2 grammar. However, each stable
point has its own attractor basin. If p > p∗(τ, K), then there exists
a y∗(p, K , τ) s.t. if one begins with any initial condition y ∈ (y∗, 1),
the population moves to a largely V2 grammar, while from an
initial condition y ∈ (0, y∗), the population moves to a non-V2
grammar. One can imagine a population stable at a mostly V2
grammar. Given language contact, if a sufficient number of non-
V2 speakers entered the population, the population mix might be
shifted, due to migration from the basin of attraction of one stable
attractor to the attractor basin of the other. Thus, the population
might move from a largely V2 grammar to one having a non-V2
grammar.

Given this analysis, we return to the statistics cited earlier from
ref. 22: in the early 13th century, τ = 17%. There are 2 possible
interpretations for this value.

First, the text was entirely written by a single author using a
V2 grammar, representative of the general population, and so the
value of p at this historical time point is also 0.17. Referring to
Fig. 1, in such a regime there is only one equilibrium point, with
y = 0, and the V2 grammar would be lost over time.
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Second, the 17% value corresponds to the percentage input
cues provided to typical children of the next generation. Because
we do not know the actual fraction of V2 speakers in the popula-
tion of the 13th century, y, in this case we could only conclude that
yp = 0.17. Then the true values of y and p would lie on the curve
yp = 0.17, plotted as the dotted line in Fig. 1, and this curve lies
entirely in the attractor basin for y = 0 (for K = 30, 70 and gener-
ally for large K). Thus, although we cannot fix the exact values of
y or p, we may still plausibly conclude that the (y, p) pair is in the
basin of attraction of y = 0 and such a system given this regime
would lose V2 over time, as with the first interpretation.

It is important to see why this model allows us to make an empir-
ically testable prediction. From a single snapshot in time, we can
only measure the fraction of V2 speakers (y) along with the frac-
tion of cues p used by them, or more accurately, the proportion of
cues in the PLD of typical children. From a single point in time,
how are we to know whether y will increase, decrease, or remain
the same in the future? Note that if one could sample y at succes-
sive time points one might be able to estimate trends and make
an educated guess. However, all we have is a single point in time.
In the absence of a model, no prediction is possible. However, in

the context of the SL model and its assumptions, if we are able
to position the possible (y, p) points with respect to a bifurcation
diagram, one can in fact make a prediction. One can then com-
pare this prediction against the historically observed trajectory.
This population level evolutionary dynamics is predicted from the
individual level acquisition mechanisms.

In this way we are able to make good on the call in ref. 22
for a formal phase transition analysis that is otherwise only infor-
mally available, arriving at a qualitative prediction that can be
verified from the historical record. Crucially, this is possible given
the dynamical regimes delimited by the SL model, but not by the
IL model. In this sense one can add a new dimension of explana-
tory adequacy to models of linguistic change, a notion of historical
explanatory adequacy previously absent from linguistic accounts,
as well as more generally demonstrating that the notion of true
population learning may be essential to the historical explanation
of linguistic change.
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