
15 The Language of the Genes

Rohere C. Berwick

IS DNA A LANGUAGE7

Both DNA and what people speak are commonly referred to as IanguI4ges.

The analogy holds, at least in the formal sense. Both DNA and human

languages encode and transmit information. Both, like beads on astring, form

concatenative symbol-systems. Murlder by far is how much further down the

scientific road this analogy can carry uso That is the question this chapter tries

to answer: 1s there indeed a "language of the genes"? Can linguistic science

repair what Collado-Vides (chapter 9) corredly pinpoints as the weak link in

current molecular biology-namely, the relative poverty of explanatory roo-

lecular biology, as opposed to descriptive molecular biology7 Modem molecu-

lar biology's redudionism comes at a steep price, leaving us chock full of

complex visibles but largely bereft of corresponding simple invisibles. Why

do the baderial sigma 70 and 54 promoters look this way rather than same

other way7 Tobe sure, evolution and physical sdence ultimately fix these

answers. Even so, explanation-seeking scientists rightly posit intennediate,

theoretical selections to account for such things as a quark's spin, an eledron's

valence or, more to the point, aperson'S genes.

Dur initial quesHon about genetic language-regarding whether linguis-

ties can shed light on molecular biology-must have two simple answers:

Yes, molecular biology can benefit from linguistic science (as Collado-Vides

notes) simply by providing the right general scientific scaffolding, including

modem linguistic theory's modularity principles and parameterized abst:rac-

tion. Specifically, as we describe later, the mechanics of both molecular biol-

ogy and natural languages are grounded on the notion of adjacency as a

fundamental principle; there is no "action at a distance" (figure 15.1). Just as

the intron and extron machinery pastes together previously disconneded

pieces of genetic code into an adjacent working whoIe, grarnmatical relations

such as the agreement between sentence subject and verb (in the ngure,

between the plural sending on the guys and the nonexistence of an 5 on like)

are defined only under strid adjacency, and almost the whole point of

Chomsky's transformational gramrnar is to paste together previously discon-

nected sentence elements.



guys and like nowadjacent

danar

now adjacent

exon

intron

exon

like

Agree in number

will

Figure 15.1 80th natural languages and the genetic language contain machinery that

converts superficially "long-distance" relationships inta adjacent ones.

However, no is an equaHy correet answer to our fundamental question

because, as we shall see, natural languages form a much simpler computa-

tional system than the genette code and transcription machinery. In a nutshell,

whereas transcription exploits the three-dimensional twists and turns of bio-

chemistry and resembles a general programming language (as noted in chap-

ter 3), in contrast our curren t understanding is that natural language exploits

only adjacency as its programming "trick." Adjacency is enough to derive

(henee, explain) most of what we see in natural languages. No such corre-

sponding explanation of why the genetic "programming language" looks the

way it does has been forthcoming. The conclusion, then, is that the language

of the genes is not like a natural language but more like a general prograrn-

ming language, the details of which we still do not fully understand. Ir is akin

to looking at the input and output of a spreadsheet and, from that, trying to

figure out not only the specific programming language instrudions used but

also which prcgrarnming language was used-whether C, Fortran, or Pascal.

As Lewontin notes in chapter I, to understand this is probably the most

difficult task of reverse engineering that anyone has ever undertaken. If this

insight is accurate, it suggests that molecular biologists might do better to

study the methods used by "clean-room" programmers to reverse-engineer

spreadsheet programs than to try to figure out whether DNA er its transcrip-

Hon mechanisms generate certain kinds of non-contexl:-free languages. More

specifically, if we search through the space of context-free or non-context-free

languages, we are simply searching through the wrang space. For natural

languages, this is a spaee of restrided adjacency relations (described later). For

the language of the genes, the appropriate representation is not yet clear, but

it may be that something like the space of genetic "circuits" is more fitting

(see chapters 6 and 13; McAdams and Shapiro, 1995).

The remainder of this chapter expands these points. First, we review the

possible conneetion between the genetic code and fonnal language theory,

showing that formal language theory serves as a poor proxy for studying

programming languages and naturallanguages and hence is an unlikely candi-

date for investigating either one. The argument carries over to aHempts to

detect various patterns in the genetic code via different kinds of pattem-

282 Berwick



283

matching languages. Here (as discussed in chapter 3) many papular algo-

rithms are based on linear string matching, including so-called hidden Markov

models. Though such linear models have been successful in mirroring some

aspeds of human language, it is crucial to observe that these linear models

have largely been successful in rnodeling speech-that is, exacHy that area oE

human language that is strictly linear and left-to-right. Second, we turn to the

differences between genetic transcription and natural languages, demonstrat-

ing how much simpler naturallanguages are than DNA transcription. We also

demonstrate that by using a more appropriate representaHon-defined aver

four natural configurations such as subjeet-one can build better search rou-

Hnes for natural Ianguage patterns. Finally, we argue that the language of

the genes might best be expressible as a prograrnming language or same such

constraint system, perhaps like the genetic circuits discussed elsewhere in this

book. Ihis is an area for future research.

FORMAL, NATURAL, AND BIOLOGlCAL LANGUAGES

Because DNA ;5 a formal language, there is a natural temptation to wheel

out the armamentarium of fonnallanguage theory, but can forrnallanguage

theory help us understand DNA7 Ta answer this question, one must first

understand why formallanguage theory was invented. Elsewhere the argu-

ment has been made (Berwick, 1989) that it is rash to exped a complex

biological system such as human language to abide by elegant rnathematicaI

rules such as those that define the Chornsky hierarchy of finite-state, contexr-

free, context-sensitive, and Turing compiere (arbitrary programming) lan-

guages. The Chomsky hierarchy itself is the wrong way to size up natural

languages: Languages simply don't fall neatly into one of these dasses. If that
is so for human languages, then it is doubly so for DNA: Indeed, as we

discuss Iater, although there is at least some new support for an elegant

algebraic description for the U care" of natural Ianguage syntax, in this regard

at least, DNA seems more complex than naturallanguages.

Formal Description oi Transcription

There have been some efforts (see Searls, 1993, for a particularly illuminating

and insightful study) to detennine whether DNA, tRNA, their various sub-

structures, or transcription machinery itself falls inta one or another of the
weIl-known formallanguage theory dasses. T0 understand the results of such

studies, we it wauld da weIl to recall both what fannal language theory

c1asses clefine and what role formal language theory played in aiding linguis-

tic theory and in programming languages. Formallanguage theory was used

in the 1960s to study both formallinguistics and the complexity of program-

ming languagesJ but it has not been used much since then, because computer

science has developed much keener methods for analyzing camputational

complexity.

The Language oE ehe Genes



finite-state: linear

concatenation

context-free: hierarchical context-sensitive:

hierarchical with labels

Turing complete:

any computation

284

Figure 15.1 The Chomsky hierarchy: frorn linear to arbitrary (Turing complete) languages.

Formal Language Theory: ABrief History

Broadly speaking, formallanguage theory and especially the Chomsky hierar-

chy served as a rough proxy for particular complexity analyses and strudural

properlies of both programrning languages and linguistic relations. The hier-

archy's relationship to computation itse1f is indired. The hierarchy consists

of fouT increasingly complex strudural relations that dehne strid subsets of

string classes (languages), as shown in figure 15.2: purely linear concatenative

relations, or finite-state languages; purely nested or hierarchical, treelike rela-

tions, or context-free languages; tree strudures augmented with labeling tags

that can refeT to each other across arbitrary parts of the tree, or context-

sensitive languages; and completely arbitrary relations or arbitrary programming

languages, so-called Turing campleie languages, that can compute anything that

a general prograrnming language (such as Fortran or C) can compute.

Used diagnostically, these classes are a blunt knife because human 1311-

guages da not fall neatly into any one of these classes; for example, it is by

no means clear that human languages need even be computab1e, in the strid

sense, although presumably this is so. Natural languages certainly contain

recursive, hierarchical strudures or phrases, such as "the different types of

RNA po1ymerases," in which the group of words of RNA polymerases is

cIearlya substrudure that modifies different types-so naturallanguages are at

least describable as context-free languages. Beyond this, however, this blunt

taxonomy has yielded very few concrete results for linguistics. Chomsky

(1956) more or 1ess established that human languages cannot be contained in

the dass of finite-state languages. Similarly, Searls (1993, p. 73) shows that

nudeic acids are more complex than simple linear finite-state languages: They

encode palindromes, embeddings, and the like (with one technical caveat that

we elucidate later). Though this is an interesting discovery about nucleic

acids, and though it does suggest that pattern-matching techniques for ana-

lyzing sequences will have to do more than just look at linear models, again

it is important to ask whether we gain by this any new insight. Searls (1993)

himself notes that it does not gain us much. The real question is whether

formal language theory could ever hope to tell us much.

The answer to this last question for linguistic theory has been plain. Be-

yond Chomsky's original discovery (1956), forrnallanguage theory has not

Berwick



285

contributed substantially ro our understanding of human language strudure.

Chomsky showed that linear analysis does not suffice to model human lan-

guage; we need at least some notion of hierarchy. (In a later sedion, we show

just what kind of hierarchy is required). The problem with going beyond this

is that the formal language theory classes do not correspond to human

languages. An infinite number oE context-free (stricHy hierarchical) languages

are not natural languages, and these include sequences found in nucleic acids.

For instance, consider the example that Searls (1993) uses to show that

nudeic acid sequences are not purely linear, or finite-state: palindromes, or

mirror-image, nucleic acid sequences. Such sequences are very easily gener-

ated by simple first-in, first-out push-down stacks-like placing a pile of

dinner plates one on top of anorher and then rernoving the last one put on

first-so one might exped to find such patterns, in the form W1WzW3W3 W2 W1

or a nested dependency, in human languages. lnstead, we find that a pattern

more commonly found in natural languages, as in German or Duteh, is the

opposite of push-down stack order-that is, the pattern W1W2W3Wl W2W3 er an

interseeted dependency. Evidently, this int-ersected pattern can also be found in

sorne of the substructures of gene regulation. In this sense, nucleic acids

patterns are not like natural languages-they conrain more than do natural

languages. Similarly, computer programming languages such as Fortran are

syntadically context-free yet are certainly not naturallanguages; unlike natu-

ral languages, they require explidt instruetion to leam, as any beginning

programmer could tell you.

Of course, there also 1S no reason to believe that natural languages are

some subset of the context-free languages. In hindsight, formal language

theory turned out to be eminently helpful in describing prograrnming Ian-

guages but not natural languages. One might then wander why fonnal

language theory was wheeled out at an to attack the problem of natural

languages. Ihis appears to be simply an instance of the "Iamplight faHacy"-

looking where the mathematical light shines brightest-as is discussed else-

where (Berwick and Weinberg, 1979): Researchers turned to fannallanguage

theory because it had clean mathematical properties and none oE the unruly

tangles of human language.

This aesthetic urge still surfaces even in the recent fonnal demonstrations

about nudeic acids mentioned earlier. Most commonly, the argument runs

this way: (I) We isolate same subser paUem in, say, English; (2) we show that

this subset pattern has propedy P; and (3) we conclude therefore that English

has property P. For example, for nucleic acid sequences, we might point out,

as Searls does, that they contain palindrome sequences (step 1). Because

palindromes cannot be generated by any finite-state cr purely linear auto-

maton, but can be generated as a strictly context-free language, we cauld,

following step 2, identify non-coniext-free as the property P we want to isolate.

Finally, according to step 3 of the argument, we condude nudeic acid

sequences are not finite-state. However, this argument is flawed: Whereas this

The Language of the Genes



286

subset oE the nucleic acid sequences is not finite-state, it does not follow that

the entire system is not finite-state. T0 explain further, note that the language

of all possible nucleotide sequences of A, T, G, C-that is, the language I;1fo

defined over the alphabet A, T, G, C-is certainly a regular or finite-state

Ianguage but just as surely contains palindrome sequences, because it contains

all possible sequences. Ta make the three-step argument apply, one must

intersect the language studied-English or nueleic acid sequences-with

some specially constructed filter designed to pick out just those sequences we

know to be palindromes. OE course, this filter itself must be finite-state, and

we must show that the filtering operation also is finite-state or regular (in the

usual prooEs, one can use set interseetion as the filter because finite-state

languages are closed under intersection), otherwise, we could introduce spuri-

ous non-finite-state complexity. To be sure, this point about subset properties

is not easy to see. In fact, even Chomsky's original demonstration that

English is not finite-state (1956) suffered frorn exactly this fallacy: Chomsky

demonstrated that English contained patterns that were not finite state but did

not precisely speIl this proof out via interseetion with an English-like "test

pattern" so that the proof would apply formally. At least on first glance, then,

Searls's demonstration (1993) that DNA is not context-free contains the same

problems. However, it is usually easy to patch such proofs, so this is not

meant as a damning critique. Rather, we should remain aware that it is too

easy to single out mathematical purity at the expense of biological reality:

Formal language theory does not naturally correspond to the theory of

human languages, and we should not expect it to.

The Case of Hidden Markov Models

Another lesson to be leamed from the lamplight fallacy relates to currently

popular methods such as neural networks and hidden Markov models for

discovering structure in sequence data. Here too one roust be extremely

careful in considering the assumptions about sequence or linguistic struclure

that these models make; otherwise, one will get back only what these models

are able to find.

Consider the case of hidden Markov models (HMMs). These are a subcase

of the finite-state languages (Le., a linear sequence of states) but with the

addition of probabilities on state transitions (which are hidden from our ex-

plicit view; hence the term) and associated probabilities on the act:ual output

letters (e.g., the base alphabet) that are observed. The rough idea behind the

HMM method is an update "leaming" loop based on Bayes's rule: Start with

some prior estirnate of the hidden transition probabilities between states (say,

a uniform one that assigns equal probabilities to a11 transitions) and then

update those probabilities based on counting the sequences that are aetually

found, as opposed to those that are not found. (The exact method uses the

Dempsrer-Shafer expedahon maximization, or EM, algorithm.) After some

Berwick



287

initial set of sequence data has been processed in this way, we arrive at same

"finar estimate of the hidden state transitions., which then can presumably

be used as a more accurate reflection of the "true" model underlying the

sequenee generation.

T0 understand what HMMs can buy us in both the linguistic and the

molecular biology worlds, we must understand their limiHng assumpHons.

First, HMMs make striet assumptions about the generative processes creaHng

the observed nudeotide sequence-narnely, that ie is a linear, memoryless

process. Clearly, this does not encompass the long-distance cuHing and past-

ing oE inrron and extron machinery, let alone more complex transcripHon

prograrns. Thus. HMMs can discover linear patterns or classincations, but

we cannot exped them co discover the transcription "prograrn" because

HMMs cannot even represent such sophisticated properties. Further, the

EM search method has Hs own limitations: 1t is a local-gradient-ascent, or

hill-clirnbing system; the probability esHmation algorithm tries locally to

improve its current esnmate based on where it currenHy is in a search

space. Such an algorithm is guaranteed to find a maximum, or best estimate,

but only a local maximum. JE the search space contains sharp ridges or

peaks, then the algorithm can get stuck there (one reason why heuristics

and parallel search methods such as those described in chapter 3 often are

appealed to).

Not surprisingly, then, for natural languages, HMMs have been most

successfully used for precisely those representations that are linear-namely,

sound sequences. They are used for speech recognition because, for the most

part, one single articulated sound depends on just the one or two sounds

preceding it. For more complex linguisticdescriptions that go beyond 10eal

linear descriptions, HMMs perfonn much worse. For example, consider a

sentence such as, ''How many guys do you think were arrested7" (in which

guys and were must both be plural, we say that they agree in number). Note

the problem with a sentenee that violates this constraint, such as "How many

guys do you think was arrested?" Here, there 1s a relation between gUl/S (the

subject) and were or was (the verb) separated by a lang distanee. The whole

point of modem transformational grammar (indeed, an modem grarnmatical

theories) is to propose descriptive levels where these two elements are

brought inro adj acency (so rhat their features can be checked for agreement).

In this case, Chomsky's modem transforrnational theory posits an unpro-

nounced element (seen in the representaHon, but not heard) thar serves as the

objed of arresfed and is Hnked ro guys: "How many gUYSi do you think were

arresred [emptyJt (where the index i indicates the link). Using this representa-

tion the verb form were and the word guys are adjacent to one another.

However, the operation that puts them together-a transformation-is not

linear or loeal: The single transformaHonal operation in current linguistic

theory says that one can move a phrase such as many guys anywhere. This is

beyond the descriptive power of HMMs, because HMMs, by definition,

The Language oE the Genes



288

describe memoryles5 processes and, in an example such as this, one has in

effect "rememberedJl the position of the objeet of arrested so as to link it

arbitrarily far away from the position where many guys adually is spelled out.

Thus, we would not exped HMMs to provide a good discovery procedure

for such linguistic relations.

One way [0 shore up the weaknesses of linear HMMs is to add same

noHon of hierarchical patterns. This has been affeded in the basic EM algo.

rithm and is used also in hierarchical pattern-matching algorithms; for natural

languages, the analog is to use stochastic context-free grammars. However,

here tao one can show that these methods work mostly to the extent that

the right hierarchical structure is prebuilt into thern. The "topology" of the

relations-what variable is linked to what other variable-must be under-

stood in advance; otherwise, the search algorithm will not find the correet

representation for uso

For instance, it can be shown that the EM algorithm simply will not find

the right strudure for a simple phrase such as walking on air (the true strueture

being a verb phrase in the form verb-prepositional phrase, wHh the pre-

positional phrase subtree consisting of the preposHion on followed by the

noun air). Instead, it will converge to a local minimum, wherein the verb is

clustered erroneously with the preposition as a unit, apart from the noun air.

If one examines more closely just why this is so, it turns out that the

context-free rule space is not searched completely by the HMM algorithm;

instead, there are two "peaks" or loeal maxima that force the system to

cluster either the verb with the preposition first (the wrong result) or the

preposition with the noun (the right result), and most of the space leads one

to the first, erroneous conclusion. This search space is simply the wrang one

to look at. Put another way, context-free rules seem to be the wrang repre-

senration to describe the linguistic relations in this case, and therefore no

amount of clever searching can repair the representational defect. The right

move is to use the corred representation from the start, to say that phrases

consist of a particular grammatical relation-the funetion-argument relation

(the relation between the verb walking and its objeet, such as the whole unit

0/1 air; or the relation between apreposition such as on and its objed, such as

air. As usual in artificial intelligence, finding the correct representation is 90

percent or more of the battle; it is the cornerstone of building theories. The

search engine is secondary.

Turning now to the biological world, the same morals carry over. HMMs

can find only linear patterns. Stochastic context-free grarnmars are far too

broad a dass of hierarchical patterns, so it is likely that search engines

grounded on these will miss important transcription programs. What we need

to understand first is the vocabulary of the transcription programs before we

go looking for the programs themselves. It is unlikely that these insights will

ceme from general indudive inference methods, except in an exploratory

sense.

Berwick



89

Neural Network Models

What about neural network (NN) approaches7 Here too it is important to

understand what work NNs can do. They cannor work magie. Today it is

widely known that what they provide is fundion approximation: Given a set

of dara, NNs fit that data to a particular curve. For example, in the simplest

case, it is known that a single-layer NN (one intermediate layer, one set of

inputs, and one output) aetually is carrying out classical principal components

analysis. Conceptually, the picture is this: Given some doud of data in, say, x,

y, z space, where z is the dependenr variable to be explained in terms of the

variables x and y (we can think of z as the nucleotide sequence and x and )j as

fadors that account for the observecl sequence), then the network leaming

algorithrn finds two things. First, it finds two axes-the principal cornponents

and y'-that optimally account for the dependent variable z. These campo-

nents correspond to the NN "units" or "cells." Second, the system finds the

optimal weights to assign to each component to give the best fit to the data z.

These correspond to the weights assigned to each NN ceii or unit.

In this sense, NNs are doing statistical curve fitting. As staHsticians know,

one cannot build a good statistical model out of thin air: One has to know

something about which variables might be related to which other variables. IE

one Starts with a poor set of hypothesized variables x and y to explain z, then

the NN search method cannot save uso For instance, iE these are (obviously)

poor descriptors such as say, the nurnber of stop sequences, then no amount

of NN leaming can inform us adequately. In this sense, like HMMs, NNs can

greatly help us explore aspace of possible theories and can be extraordinarily

efficient search engines for finding patterns in sequence data. Nonetheless, in

the area oE naturallanguages, NNs have not proved 1:0 be very useful except

in the same places HMMs have been-for instance, in building systems that

leam how to map text to speech. This is troe, as it is for HMMs, because the

topology of simple NNs best refleets the literally linear properlies of a spoken

sound sequence. Though there have been aHempts to caprure some of the

hierarchical srrudure of human language via such networks (using recurrent

[te., recursive or reentrant] nets), such attempts have been generally unsuc-

cessful. 1f it is rrue that genetic transcriplion is far more sophisticated than
natural language-as we show in the next seclion-then this resuIt means

that NNs will never give us the correct answers about hanscriplion. Whai: is

needed is a new theory about the space of i:ranscription programming

guage construds.

In surn, NN leaming algorithms can be efficient search engines for existing

theories about linear language or nudeotide sequences and transcripHon, but

their value for higher-order naturallanguage or sequence constructs is more

dubious. NNs can suggest possibly valuable new cornbinations of proposed

theoretical variables, just as does principal components analysis does. How-

ever, NNs cannot invent new theoreHcal variables out of whole cloth. Once

The Language of the Genes



290

again, starting with the corred representations, the right search spaces, is fhe

most importanr fador.

THE SIMPLICITY OF NATURAL LANGUAGES AND THE

COMPLEXITY OF GENETIC LANGUAGE

If nal:urallanguages and the language of the genes are not formallanguages,

then what are they? We have mentioned several times now that both nucleo-

tide sequenees and the transcription machinery itself seem more akin to a

programrning language than to naturallanguages, and that narurallanguages

may be mueh simpler than the language of the genes. In this sedion, we show

exacHy how simple naturallanguages may be-specifically, that naturallan-

guage syntax might be grounded on just a single, simple, computational

combinatorial operation. Further, this operation, which seems central to all

grammatical relations, does not seem to be diredly refleeted in the language

of the genes.

Natural Grammatical Relations

Let us begin by defining what we mean by natural grammatical relations, the

relationships that natural language syntax does seem to use. Surprisingly,

there seem to be relatively few eentral relations (perhaps only four), defined

over a loeal domain of binary branehing tree structures. This constraint is

interesting because, of course, given arbitrary tree structures-such as those

available if we posited arbitrary hierarchical relationships-there could just as

well be an infinite number of distinct grammatical relations. Yet most of these

are not ever used in natural languages. For instance, we could weil imagine

that there is a relation between, say, the subject and the objed of a sentence.

Indeed, if we adopred an HMM or a context-free grammar model, there is

nothing at all to block such a relationship. It is in trus sense rhat HMMs and

grarnmars are too general and therefore cannot explain why

natural languages are the way they are rather than some other way. Still

worse, from the point of view of discovery procedures, is the fact that search

algorithms that use only the space of possibilities defined by HMMs or

grammars use the wrong space.

What kind of space is right then? Here we can follow recent work of

Epstein (1995). The basic natural grammatical relations are perhaps best ex-

emplified by a simple picture, where X and Y denore nodes or entire subtrees

or phrases, such as sentences, noun phrases, or prepositional phrases. We first

note that the configurations are all binary branching (not a necessary prop-

erty of tree structures generally).

Reviewing the configurations in figure 15.3, the first relation is essentially

that cf verb-objed, or preposition-objed (e.g., ate iee cream or 011 the fable);

more generally, this is the function-argument relation. The second relation is

almost that of tr:ee dominance, which is essential for hierarchical description,

Berwick



x y

Y head-of YP

/'\...
y

X c-conunand Y

y

Figure 15.3 Three basic grammarical relations in narurallanguage syntax.

as in a phrase such as ate ice cream, where the entire phrase is a verb phrase,

denoted by the tree node YP, and Y is a subpart of the rree-in this case, ice

cream. This is adually the notion "head-of": Note that perhaps the most

prominent property of a phrase-its type-depends on the feature propa-

gated or inherited from the word that heads it up. Far example, a verb phrase

such as ate lee cream is buHt around a scaffolding that consists of first a verb:

That is, we rnay think of the lexical property of the verb as being propagated

up from Y co YP (= a verb phrase, or VP) in the figure 15.3. In this sense, this

second relation defines the kinds 01 phrases that one can find in a language.

The third relation may be more unfamiliar to nonlinguistic readers but is, in

fact, one of the most important in natural language syntax: It is dubbed

constifuent command, or c-command: Anode X c-comrnands anode (phrase) Y

just in case the first branching node that dominates X also dominates Y. In

our picture, X does c-command Y (because if we go up to the first branching

node that dominates X, we find that this dominates Y), but Y does not

c-command X (so the relation is not symrnetrical). Intuitively, c-command is

the notion of scope in natural language, similar to the notion of scope in

logical calculi or programming languages: C-command clefines the domain

over which a variable can be bound. In naturallanguages, this corresponds to

sentences such as 'Whorn did lohn think that Mary saw7" which can be

rendered roughly as, "For which z, z aperson, did John think that Mary saw
z7" where the variable z is Iinked to whom. Note that iE one drew out the

syntacl:ical strudure for this sentence, we would have sornething akin to

figure 15.4, wherein the variable z is c-commanded by whom. Because this

kind of linking shows up again and again in modem linguistic theory as the

foundaHon of what used to he called transformations, one can see that this

connguraHon is an important one. These basic relations-funcHon-argument.

head-of, and c-command-seem to be the primitive building blocks for all

other linguistic relationships.

Explaining the "Natural" Grammatical Relationships

We next show, following Epstein (1995), that these basic relationships all are

accounted for by a single elementary computational operation based on the

adjacent concatenation of tree structures. (The syntactical reflex of this idea

was first proposed by Epstein (1995].) Note that this is a "natural" result in

The language of the Genes



291

Figure 15.4 The c-command relation between whom and the (unpronounced) variable z, the

object of see, is like the relationship between a quantifler and the variable H binds.

the sense that we know, on independent grounds, that human language

syntadical structure is treelike (rather than purely linear, like beads on a

string). Note also that iE this result is correct, it automatically explains why
HMM models based on linear concatenaHon do not do a very good job

of accounting for human syntax. The central idea here is that hierarchical

concatenaHon is the chief operation we need to derive natural language

sentences. To show how this works, let us see how a sentence such as "John

likes the ice cream" might be derived.

Hierarchical Concatenation

Let us first describe the concatenation operation itself. It is simply a bottom-up

tree composition: We take two subtrees, X and Y, and "glue" them together,

forming a new larger tree in a special way: Either the features of X or the

features of Y are propagated to the new larger tree, forming anode of either

type XP or YP. For example, suppose we have a verb eat (adually a subtree),

and a subtree corresponding to the ice cream (a noun phrase, or NP). We

combine these to form a VP. This abstrad combination oE X and Yas weB as
the specific example combining a verb and a noun phrase are shown in figure

15.5. The leH half of the figure shows the two initial subtrees, drawn as

triangles. The first triangle consists of the verb; the second consists of the

noun phrase. The right half of the figure shows the result of the combinatory

operation that glues these two triangles into a single larger one: (1) The

features of the verb subtree are propagated up to a new node, the verb phrase

(VP) node, that is the rool: or top of the new larger triangle, labeled Z; (2) we

represenl: this top most point via a special seI: notation that marks likes as the

"head" of this phrase; (3) the noun phrase subtree is pasted in place below.

BelWick



likes the ice cream

=

{likes. {likes. NP}}= VP

293

likes the ice cream

Figure 15.5 The basic operation of hierarchical (tree) concatenation. V, verb; NP, noun

phrase; VP, verb phrase.

We club this operation bottom-up because it pastes two smaller adjacent trees

inro a single larger one; H is computationaI in that we take this to be the

operation of a parser proceecling frorn leEr to right through the sentence. In

fact, this operation corresponds to one of the most common ways of parsing

prograrnming languages, so-called LR parsing, in which we paste together

larger LTees out of smaller ones, as shown in figure 15.5,

Deriving a Full Sentence

In this view, then, the derivation of a sentence proceeds by a sequence of

hierarchical concatenation sets (what were called derivation lines in the original

theory of Chomsky [19561). In this case, the derivation steps are as follows,

where by form we mean "construct a hierarchical strucrure like the triangle

dominating likes":

1. Form the hierarchical (mangle, "tree") representation for lohn

2. Form the hierarchical representation for the iee cream (= Y in ngure 15.5)

3. Form the hierarchical representation for likes (=X in figure 15.5)

4. Concatenate X and Y, forming an extended verb phrase, 2 J corresponding

to likes the iee cream

5. Concatenate Z with the triangle representation for lohn, forming a

compIete sentence, "John likes the ice cream"

In summary, note that thus far the whole sentence is derived by a sequence of

hierarchical concatenation steps, and only these.

Deriving GrammaücaJ Relations

The impodant point now is to show that if we assume [his operation of tree

concatenation to be the basic primitive of syntax, then ir follows that the

only grammatical relations we see will be precisely those described earlier. In

this sense, we may say that natural language syntax uses only a single

operation of hierarchical, adjacent rree concatenation.

Let us see why these basic relations follow and no others. The central

insight is that two elements may be re1clted in the grammar iE and only iE they

are adjacent or visible to each other at the time of tree concatenation: that is,

at the derivation step that glues the two trees together. What visible means is

this: Let us say that a tree such as the noun phrase fhe guys, ordinarily

The Language oE the Genes



Noun phrase

Detenniner

I
the

Noun

I
guys

Figure 15.6 A conventional tree representation for the noun phrase Ehe guys.

294

represented as in figure 15.6, is represented by the following set of ferms

(following Epstein, 1995):

Noun phrase = {Determiner-the, {Detenniner-the, Noun-guys}}

Figure 15.6 shows that the tree or noun phrase corresponding to the guys was

built out of the composition operation that pasted together the and guys,

forming a new tree with a new root (topmost) node. Initially, the was simply

the set (subtree) {Determiner-the}, where we have tacked on the syntadical

category Determiner for ease of reading. Similarly, guys was the set (subtree)

{Noun-guys}. The concatenation operation is as described previously, and

we seled one of the two combines as the name of the new root tree. We now

propose simply that two syntaetical elements (i.e., hierarehieal struernres, trees) can

enter into a grammatical relation if and only if there i5 same point in a derivation

(sequenee of coneatenations) at which bofh trees af whieh bofh trees are made

eonneeted terms (members) of the same common subtree (via the eoncatenation

operation).

For example, in our figure, note that the and guys can enter into a common

gramrnatical relation because they are both terms of same other set at the

time of their concatenation, and they are diredly related via concatenate-

viz., the set that represents the noun phrase. This relation is, of course, simply

the sister-of relation described in figure 15.3 (and also described as the

juncfion-argumenf relation).

The same property holds for the other two basic grammatical relations

mentioned. For the head-of relation, note that in the mother tree {{the,

{Determiner-fhe, Noun-guys}}, the first term in the set, fhe, can, by defini-

non, be related to either of the other two terms: In other words,. the root

node can be related to either of its immediate daughters. However, this is just

ehe head-of relation, as in ngure 15.3. For c-comrnand, note that X and Yare

hierarchically concatenated; then X c-cornrnands a11 the elements (terms) of y.

Für instance, if X = the noun phrase tree corresponding to the guys, then

X = {the, {Determiner-fhe, Noun-guys}}. If Y = the verb phrase tree corre-

sponding to like the iee cream, then Y = the five-term set {like {Deterrniner-

the, {the, Noun-ice eream}}}, and X c-commands every one of those terms

(and not vice versa, crucially). In contrast, iee cream cannot c-command guys

because, at the time the noun phrase corresponding to the ice-cream was built

Berwick



295

(concatenated out of two partst guys was not part of that set of terms. In this

way, the asymmetrical nature of c-cornmand is derived.

In contrast, certain relations can neuer obtain: For example, because the

ice-cream and the guys are never concatenated together direetly but only after

trees above them have been built, there can be no grammatical relation that

holds berween subjeds and objeds, as we find to be [he case in natural

languages. Note that there is no logicaJ reason this should be so otherwise,

unless we assurne some fundamental constraint such as the concal:enal:ion

operation. In other words, in a general context-free system, we can easily

write a grammar that relates subjeets and objects. Why we da not find any

such relations remains a mystery, unless there is a more fundamental con-

straint that underlies naturallanguages. As we have sketched, this law seems

to be a simple one: Natural languages are forrned by a single algebraic

operation of hierarchical concatenation. This, then, is natural1anguage.

CONCLUSION: NATURAL AND GENETIC GRAMMARS

Plainly, the concatenation operation is simple. It is adjacency as extended from

strings to trees. Just as plainly, the proposed "grammars" for genel:ic tran-

scription are vastly more complicated. There appears to be nothing in natural

languages corresponding 1:0 splicing followed by distinct reading frarnes. Ta

take anot:her example, Searls (1993) uses the logic programming language

Prolog to describe exons and translated regions, which is Eine except that

with Prolog we also can describe a connection bet:ween subjecl:s and objeds

in natural languages thaI: we do not see. Of course, all l:his says is thaI: the

constraint lies in the particulars of the program thaI: the scientist writes rather

than in the constraints of the programming language itself. JE this is so, it is

left: to the programmer or scientist to discover the consl:raintsj the space of

possible theoretical descriptions given by I:he representation language-in

this case, Prolog-is vas!. If this is so, then we still do not have any strong

insight into what constitutes the language of the genes. We know what il: is

not: It is not a language or a context-free language, but neither is

it a context-sensitive language. If anything, the language of the genes is much

more like a programming language whose constraints we do not know (or

whose programs we do not know). Now, the problem of identifying a pro-

gram's details from observations of its input and output behavior is very,

very difficult; even in the case of finite-state programs, the problem is un-

solvable unless we assume that we know other constraints (such as the

number oE states in l:he program). Yel: this i5 the task that molecular biologists

seemingly have set fer thernselves. Given that we currently have no gen-

eral means of carrying out such indudions, it would seem best to work out

particular case studies of reverse engineering-looking at transcription in the

way that Collado-Vides (chapter 9) has done anä then determining what kind

of computer program is best suited for describing the engineered constraints

The Language of the Genes



296

we do observe. Our knowledge here seems just at the starting point, so much

so that we must amass many more case studies befare we can come up with

the generalizations that will tell us what the genetic canshaints are. By way

of comparison, it has taken more than 40 years to determine that, in the end,

syntaetical relationships in natural languages are, in fad, derivable from a

single, simple algebraic operation. We can discover what language the genes

are speaking to us only by more years of carefullistening.

Berwick


