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.INTRODUCTION 

This chapter describes an experimental computer program that de-
duces the meaning of novel verbs from the context of story descrip-
tions. The key idea is a variation on Winston's (Winston, 1975) 
program that learned the structural descriptions of block world 
scenes. Instead of learning descriptions of toy block assemblies like 
ARCH and TOWER, the word-learning program acquires frame-based 
descriptions of English verbs like MURDER or DONATE. The program 
works by assuming that similar verbs will play similar causal roles 
in common story plots. For example. ASSASSINATE is like MURDER 
because both MURDER and ASSASSINATE cause similar things to hap-
pen and are caused by similar patterns and events. Intuitively, we 
learn about a new verb like ASSASSINATE as a kind of family re-
semblance variation on a core verb like MURDER. The program works 
in a similar way. Syntactic constraints derived from the parsing of 
story plots are used to drive an analogical matching procedure. Anal-
ogical matching gives a way to compare descriptions of known 
words to unknown words. The "meaning" of a new verb is learned 
by matching part of the causal network description of a story precis 
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containing the unknown word to a set of such descriptions derived 
from similar stories that contain only known words. The best match 
forges an assignment between objects and relations such that the 
unknown verb is matched to a known verb. The causal network 
surrounding the unknown item is then used as a scaffolding to con-
struct a network representing the meaning of the novel word in a 
particular context. In some ways, the model is similar in spirit to that 
of Granger (1977). who also extracted context-based descriptions to 
acquire meaning descriptions of novel words. As we see. this way of 
describing word meaning has several advantages over definitional 
approaches. 

A second aim of this research is to explore the interaction between 
syntax and semantics in learning. The word-learning program is em-
bedded into a larger system that can acquire new syntactic rules for 
English, as described in Berwick (1979, 1960, 1982, 1985 J. The 
word-learning component uses the larger system's determination of 
the syntactic category of a new word and its predicate-argument 
structure. These last two abilities are based on the X theory of Jack-
endoff (1977) and a theory of syntax that assumes a strong principle 
of lexical transparency (roughly, that the semantic argument struc-
ture of a verb appears at all levels of representation). Here. syntax 
means simply the grammatical form of sentences. whereas semantics 
refers to such notions as case relationships (Agent. Affected Object). 
as well as the causal description language used for word matching 
itself. Although some have emphasized either syntax or semantics as 
a key to word learning. the position taken here is that either may 
serve as a constraint on the other. It is the interaction between syntax 
and semantics that drives word leaning. In some cases, syntax helps 
semantics. We see several examples of this here. where prior knowl-
edge of sentence structure plays a vital role in figuring out the candi-
date words for a causally based match. Recently, Landau and Gleit-
man (1965) have independently confirmed this theoretical finding 
by studying a blind child's acquisition of verb meanings. They found 
that syntactic constraints were crucial for successful acquisition of 
verbs such as look at or see. Language acquisition involves the com-
plex interplay between these two sources of constraint. 

Third. this chapter suggests a concrete computational model for 
the acquisition of word protoypes from positive examples. In addi-
tion, it also suggests a way of automatically generating A K 0 ("a-
kind-of") hierarchies from positive examples. Importantly, this 
method follows a natural formal and empirically justified constraint 
on the evolution of categorizations first explored by Keil (1979). 

3. LEARNING WORD MEANINGS FROM EXAMPLES 

The moral of this chapter is that constraints make learning possi-
ble. A learning theory can be built only if one has a good representa-
tion of what it is that is learned. and some idea of the constraints on 
that target state. For our theory, the constraints include a restricted 
vocabulary of thematic relatio"ns (a "case system ") plus a causal 
description language. The hardest part of constructing a theory of 
word learning is figuring out just how to represent the "meaning" of 
a word. Fortunately, a variety of linguistic constraints can help us 
here. The second moral is that learning does not seem possible un· 
less one almost already knows what is to be learned-a principle of 
"incrernentallearning." Whether all learning abides by these prinCi-
ples is not certain. but it seems true that so far all successful artificial 
intelligence (AI) learning programs have followed them. 

Our first job. then, is to describe the representation for word 
meaning to be used by the learning program. Before we do so, how-
ever, it would be best to give an example of the kind of competence 
we want our word-learning system to display. As mentioned. a key 
underlying assumption is that the meaning of a word is determined 
by the role it plays in a causal network description of an event, and 
that similar words are those that play similar roles in the description 
of similar events. Consider the following scenario: 

Suppose we are given two versions of the story of Macbeth, one report-
ing that "Macbeth murders Duncan" and the other that "Macbeth 
assassinates Duncan." Further suppose that MURDER is a known word 
but not ASSASSINATE. We should conclude that ASSASSINATE is most 
like MURDER, because. comparing stories, it seems to us that 
ASSASSINATE plays the same role that MURDER does in the Macbeth plot. 
We should also conclude that ASSASSINATE has political overtones, 
because we note that the Macbeth story includes such relations as 
Macbeth wanls 10 be king and Macbeth becomes king. Probing further, 
later stories should inform us thatlhe uses of ASSASSINATE and MURDER 
are slightly different, because MURDER need not carry that political 
connotations that ASSASSINATE does. We should also be able to use the 
story of Hamlet to deduce the same kind of relationship between 
MUROIiR and ASSASSIN A TE. 

Here is the actual input for the Macbeth story: 

MA is a story about Macbeth Lady-macbeth Duncan and Macduff. 
Macbeth is an evil noble. Lady-macbeth is a greedy ambitious wom-

an. Duncan is a king. Macduff is a noble. 
Lady-macbeth persuades Macbeth to want to be king because she 

wants him to be king. She wants him to be king because she is greedy. 
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She can convince him because Macbeth loves her and also because 
Macbeth is wimpy. 

Macbeth assassinates Duncan with a knife. Macbeth assassinates 
Duncan because Macbeth wants to be king. Lady-macbeth becomes 
insane. She kills herself because she is insane. 

Macduff becomes angry because the king was assassinated. Mac-
duff kills Macbeth because Macbeth assassinated Duncan and because 
Macduff is loyal to Duncan. 

Remember MA. 

Using the techniques described in Winston (1980) and Katz and 
Winston (1982) the system builds a causal network description of 
the story. as shown in Figure 3.1. This network is basically an object-
oriented semantic network. with objects, agents, and qualities (and 
sometimes propositional attitudes like beliefs or desires) serving as 
the nodes in the network. and verbs serving as the links between 
nodes. 
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Figure 3.1. Causal nelworks describe stories 

3. LEARNING WORD MEANINGS FROM EXAMPLES 

Now suppose that a number of other stories have been previously 
analyzed and stored in causal network form (e.g., Macbeth, Hamlet, 
Julius Caesar, and the Taming of the Shrew, as discussed in Winston. 
1980). and that none of these previous plot summaries used the word 
assassinate. (Alternatively, the 'Macbeth story could be considered 
unknown, as long as other examples of murders. say, in Hamlet. 
were already analyzed.) 

A causal network representation can be built for each of these 
stories. For the old Macbeth and Hamlet stories, this network wHl be 
nearly identical to the network built previously, but with some key 
differences that flow from the lack of understanding of assassinate. 
Still, as we see, syntactic constraints permit the entire network to be 
built, because the connections between objects and actions are actu-
ally syntactic. 

The learning procedure then takes the causal network descrip-
tions of each of the candidate stories and runs an analogy matching 
program, pairing objects and relations in the new story against ob-
jects and relations in each of the candidates until the best match is 
obtained. Note that the system can use either similar stories for an 
attempted match or exactly the same story (but with unknown 
words). 

This is a graph matching problem. It tries all possible combina-
tions of nodes (objects) and links (labeled with verbs, prepositions, 
or CAUSE) until it finds one that lines up best with the old story. This 
best match will pair up corresponding objects and links in the net-
work representation of the new Macbeth story and the network of 
one of the other stories. In this case, the best match weds murder and 
assassinate, because these have the most causal links in common. 
This is the first step in forging a representation of the meaning of the 
new verb assassinate. 

This is what we want our system to do; the rest of the chapter says 
just how it is done. In the first Section. following much recent work 
on concept acquisition, I discuss why dictionary definitions are in-
appropriate for this task. The next section follows with an outline of 
a causal description language that does seem more suited for repre-
senting verb meanings and a definition of semantic similarity. The 
third section outlines the syntactic constraints used by the acquisi-
tion program and their connection to semantic representations. A 
detailed discussion of the program implementation and some exam-
ples of the system in action is given in the fourth section. It also 
compares the current system to an earlier attack on this problem, by 
Granger (1977). The final section is a discussion of current limita-
tions and some proposed extensions for the learning of Nouns. 
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THE INADEQUACY OF DEFINITIONS 

If tho key to any learning program is a good representation of what is 
learned, then we must have a good representation of word meanings 
before we can learn them. In fact. this has been the biggest stumbling 
block for word learning. What is the meaning of a word? 

One common analysis has been decompositional. Words are 
viewed as chemical compounds. built out of constituent primitives. 
So fOl: example. dog might be labeled Animate. Four-legged. Mam-
mal. ... This "word chemistry" is a classical technique that aims to 
account for our apparent "generative" ability with words-our abil-
ity to represent the meaning of a potentially unlimited number of 
words with finite means. Researchers as diverse as Schank and 
(much earlier) Katz and Fodor have embraced this method. For in-
stance, as should be familiar. Schank takes the "meaning" of verbs 
as representable by a graphic language consisting of primitives like 
I'TRANS (physical movement) assembled into a picture of the rela-
tionship between objects in an event representation of a sentence. 

The difficulties with a "pure" compositional account of word 
meanings are by now well known. There is a familiar skeptical tradi-
tion in 20th century philosophy of language. stemming in part from 
the later work of Wittgenstein, arguing that it is impossible to give 
definitions-necessary and sufficient conditions-for words. In a 
classical passage, Wittgenstein observed, for example, that there can 
be no definition of a game. because there is nothing held in common 
between board games, sports games, and the like. The most that can 
be said is that there is a kind of "family resemblance" between the 
members of the group of games. More recently, psychological argu-
ments have been advanced that mitigate against definitional ac-
counts of meaning. Fodor. Garrett. Walker. and Parkes (1980) point-
ed out that it is impossible to find "if-and-only-if" conditions for 
words, aside from examples of such words as jargon or kinship 
terms. (Note that AI programs for word acquisition have often 
focused on just these sorts of items, such as bachelor.) They also 
provide psycholinguistic evidence-based on reaction time tests-
that feature decomposition into primitive elements is not carried out 
in on-line processing . 

. Whatever the status of these experiments and others like them 
(see. for example. Hayes-Roth and Hayes-Roth, 1977. who present 
similar evidence against decompositional theories). it is plain that 
"if-and-only-if" conditions for word definitions must be rejected. 
Definitions should admit exceptions and graded categorization judg-
ments, as well as networks of family resemblances. What is the alter-
native? One approach that has been emerging out of work in AI and 
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psychological analysis is that of prototype theory. Prototype theory 
holds that the criterial features of a word-say. apple-are de-
scribed via some paradigm or core example. We picture an apple by 
conjuring up a familiar red object in our mind's eye. Even so, this 
prototypical apple admits exceptions and gradations in each of its 
characteristic qualities: the skin may be green. if the shape is right; 
the apple may be mis-shapen. if it is otherwise applelike; a huge 
apple is still an apple. and so on. In the traditional AI parlance. we 
may connect these various sorts of apples by means of difference 
pointers (Winston. 1975) indicating how and by how much the vari-
ous members of the apple family deviate from core apple-ness. 

Difference-pointer families avoid the pitfalls of necessary suffi-
cient conditions because there are no necessary and sufficient condi-
tions for any definitions. Indeed. there are no definitions at all. in the 
"if and only if" sense. Viewed this way. what we learn when we 
learn a new word is not some set of conditions. but a connection of 
some network of already-known words. This viewpoint is not novel. 
of course, being part of most network-based theories of semantic 
representation. What is new is a demonstration of just how this 
approach can be used for word learning. 

At the same time. it is worth pointing out that these claims about 
word decomposition are controversial. An opposing. long-standing 
approach attempts to chop up word meanings, particularly those for 
verbs. into primitives. So for example. kill might be written as CAUSE 
to die. This is a tack favored by Gruber (1965). Schank (1973). and 
Jackendoff (1972). among others. In this chapter we straddle both 
sides of this difficult fence. Rejecting if-and-only-if conditions. we 
adopt a family resemblance model for meaning. At the same time. we 
decompose verbs into causal network diagrams. 

THE ACQUISITION PROCEDURE 

The Causal Description Language 

Having adopted a "family resemblance" model for meaning. we 
have still to say just what our network descriptors should be. As is 
well known. the choice of a semantic network vocabulary is a haz-
ardous game. Ideally, one should follow empirical constraints on 
descriptors. but little is known about what these should be. Is color a 
basic element of our semantic descriptions? If so. what colors? What 
about geometric shapes? Such conditions can be multiplied endless-
ly. It would be useful to have criteria analogous to those for gram-
matical categories and features that would let us know that red is just 
as much a part of semantic descriptions as Noun is for syntactic 
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figure 3.2. Acausal network fragment 

descriptions. The last section of this chapter explores one way of 
attacking these problems, based on work by Jackendoff (1977). but 
we defer the question for now. 

Given that we do not know just what the right primitive elements 
should be. or even that there are primitive elements at all. in this 
work we have simply adopted the position that all elements are 
allowable as potential descriptors on our semantic network. The 
actual representation for the simple English stories in our database is 
called an extensible-relation representation. It was developed by 
Winston (1980). 

This semantic net is object oriented. with agents. objects. and 
qualities serving as nodes and verbs tying them together. If more 
than one object is involved in an act, additional descriptions can be 
associated with the act-specifying relation. These additional de-
scriptions are nodes that are related to other nodes. For example, the 
sentence John killed Mary with a knife because John is evil is de-
picted in Figure 3.2. 

Note that in this scheme all individual words such as knife or kill 
are considered unanalyzable wholes. Nevertheless. it is still possible 
to relate one word to another word. by comparing the networks in 
which each is embedded. 

Causality 

There is one more ingredient to add to our representational language 
that is a primitive. however. One of the key elements in describing a 
situation seems to be causality. To know what an event is about it is 
important to know what causes what and what is caused by what. 
Evidence for this view comes from a variety of sources. Developmen-
tal psychologists have discovered that even very young children are 
disposed to analyze complex mechanical scenes in causal terms, and 
they can do so correctly (Gelman & Gallistel. 1979), For example. a 
long row of standing dominoes can be successfully analyzed as capa-
ble of knocking open a jack-in-the-box, if the leftmost domino is 
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rapped with a rigid swinging stick long enough to reach it. Evidently 
quite young children know enough about causality to reason about 
even these complex situations. 

Then too, the ability to explain what happened depends on a 
causal description. It is no surprise that many AI programs that 
reason about physical processes rely on causal descriptions. Causali-
ty plays a prominent role in other representational languages for 
predicates, particularly in the work of Schank and Wilks. Finally, 
causality adds an implicational structure to an otherwise static de-
scription network. Without before-and-after links of some kind, it is 
impossible to describe a chain of events. Otherwise, words are just 
linked to each other without any directionality. 

Given the central role of causality in the description of events, 
special cause links are included in the network description lan-
guage. Becaus'e causes are so important. there is an extra mechanism. 
demons, associated with them. The following conventions for CAUSE 
demons are obeyed: 

•  If A causes B, then B is caused by A, where A can be people. 
relations. or objects and B can be other relations or acts. The 
caused-by links are automatically generated when causal rela-
tions are inserted in the database. In our previous example. 
there should be a caused-by link from kill-1 to is-1. 

kuifc 

"-
caused-by 

/' "\, 
with-! kilH is-! 

C/lllllc-l 

•  If A persuades B to do C. then clearly, A causes C and C is 
caused by A. The appropriate links are added to the database. 
For example. Mary persuaded John to eat a cookie is pictured 
as: 

PCrsuade ea\. 
Mary John JObllT cookie 

caused-by-! t  
cause-! 
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Demons are also used to make certain simple deductions as relations 
are added to the database. For instance. if we add Macbeth kills 
Duncan to our database. a demon adds Duncan is dead. From a 
theoretical standpoint. these demons are simply meaning postulates. 
in Carnap's (1952) sense. But why does one add some set of meaning 
postulates rather than another? Why. for instance, add just "Romeo 
has-quality dead" rather than a whole list of additional deductions 
likely to be true if Romeo kills himself? The idea here is that the 
added deductions are the "simplest" meaning postulates associated 
with predicates, where "simplest" is a one-step deduction according 
to a common-sense language of description. In other words, folk 
psychological terms are used rather than a sophisticated language of 
scientific descriptions for depicting events: We say that Macbeth 
killed Duncan because Macbeth is evil, not because of some account 
averting to biochemical imbalances. To be sure, this way of limiting 
deduction is not perfect, but it at least aims to stay close to the 
deductions people make. 

Although the AKO and causal-based representation has been a 
useful testbed. it is not without problems. We use a preexisting set of 
AKO descriptors, such as king or knife. Ideally, these too should be 
learned. Also. it is not clear that cause suffices to describe all verbal 
relationships. Stative verbs like be that describe changes in proper-
lies or motion verbs like run are not so easily cast in terms of causal 
interactions with objects. A cause-based matcher will have nothing 
to work with here, and so will fail. In the fourth section of this chap-
ler we propose modifications to handle some of these difficulties. 

Thematic Role Structure and Meaning 

In addition to the causal network description, there is one other 
component of word meaning used by the learning program. This is 
the linguistic notion of thematic roles. also called case frames. 
Thematic-role descriptions have been discussed in detail by Fill-
more (1968) and Gruber (1965), but in fact are part of almost every 
linguistic theory. Intuitively, we think of a verb as requiring several 
thematic arguments that flesh out a picture of the event the verb 
describes. For example, eal takes at least three arguments: the eater. 
the thing eaten (sometimes tacit); and optionally the manner, instru-
ment, or place of eating. For our purposes here, what is important is 
that particular thematic roles are ordinarily linked to specific gram-
matical positions in a particular language. In English, the subject 
position is canonically the "doer" of the action or the agent. Impor-
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tantly. the notion of subject is syntactic in English, because it is the 
first noun phrase under the sentence in a parse tree. Likewise. the 
object position canonically plays the affected object or patient role. 
This correspondence between fQrm and meaning implies that thema-
tic structure can be recovered from syntactic form, at least in clear 
cases. 

Interestingly enough. possible form-meaning assignments vary 
parametrically within narrow limits. That is, although other lan-
guages (unlike English) do not link the subject syntactic position 
with the thematic role of agent, the allowed variations are quite lim-
ited. lingUistic analysis suggests a twofold division of the world's 
languages. into either the accusative languages. with a subject-agent 
and object-patient connection; or the ergative languages, with the 
reverse object-agent and subject-patient links. Once this pattern is 
fixed for a given language. it need not be relearned for individual 
verbs, although there may be exceptions to, for example, the gener-
ally accusative character of a language. In English, for instance.there 
is a systematic class of verb:; whose subjects are affected objects 
rather than agents; this data and the table here are from Levin (1983). 

• The glass broke. 
• The puddle disappeared. 
• The book fell off the shelf. 

This analysis carves up English verbs into a few classes according to 
their argument structure. Basically, there are two argument verbs 
with the accusative pattern; one argument verbs with a subject-agent 
link; and the ergative one argument verbs like those just mentioned: 

2 argo verbs 1 argo verbs 1 argo verbs 
(Agent only) (Patient only) 

hit talk come 
kick cough break1 

push wave appear 
give sing fall 
take sniff go 

The learning program exploits these regularities by using the form-
meaning correspondence to guide network matching. No matter 
what the meaning of a novel verb, and unless there are specific 
syntactic clues that indicate otherwise, one can assume that the sub-
ject will be the agent and the object will be the patient. But this 
means that the subject-verb-object links so crucial for the meaning 
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representation can be partially built even for an unknown verb. Syn-
tactic constraints are enough in most cases. Then. the network 
matching program can use this information to attempt to pair up 
only agents with other agents. patients with patients. and so forth. 
This filtering saves a good deal of effort. For example. if we have that 
"X kills Y," then naturally X and Y will wind up playing different 
causal roles later in the story. Given "W assassinates Z" it would 
thus be a waste of time to try to pair the person killed in one story 
with the assassinator in the other. Thematic filtering prevents this. 
Grangor (1977) used a similar method within a very different seman-
tic; representation. He too found that thematic roles were a crucial 
factor in looking for a representation for a novel word. Granger did 
not use thematic roles directly. but instead looked at prepositional 
types and their noun phrase objects. In English. this amounts to the 
same thing as a thematic role. For example. by plus an animate noun 
phrase often corresponds to an agent thematic role. This would not 
work in a language where thematic roles are unmarked by preposi-
tions. It also fails in cases where thematic role varies from its can-
onical prepositional assignment; for example, in the vase broke. vase 
is not the agent. This is one reason why it is better to work through a 
mediating syntactic theory that directly defines thematic roles. and 
then use these for filtering candidate matches. 

With the basics of the syntax-semantics connection described. 
some details are in order. The techniques described in Berwick 
(1985). based on the Marcus (1980) parser, are used to syntactically 
analyze the input. Consider a sentence such as Macbeth assassinates 
Duncan. How can we assign the correct thematic roles in this case if 
assassinate is an unknown word? 

First of all. we may assume that all normal English sentences are 
known to be in the form noun phrase-verb phrase. Unless there is 
evidence to the contrary. the parser will predict that a noun phrase 
(Macbeth) begins this sentence as well. With the NP disposed of. the 
parser now predicts that an a verb phrase (VP) should be found. 
Given that English verb phrases must be headed by verbs, assassi-
nate is forced to be a verb. In this way. syntax actually constrains the 
lexical category of the unknown word. (There are. of course. other 
possibilities. Suppose that an adverb intervened between NP and 
verb. as in. Macbeth quickly dispatched Duncan. In this case, given 
that quickly is known as an adverb. again a VP is predicted. and 
assassinate must be its head. Note that Duncan is assumed known as 
a noun. hence cannot be the verb heading the verb phrase.) 

Finally, Duncan is parsed as an NP and noted as an object of the 
unknown verb. as it is by definition. Given the canonical rela-
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tionship between thematic arguments and syntactic positions. we 
also know that the object is the patient and that Macbeth is the agent. 
So we already know quite a bit about assassinate without really 
understanding its meaning. 

Semantic Similarity and Matching 

We are now ready to describe the matching criteria used for judging 
when two verbs are "close" in meaning. Two verbs Ilre judged se-
mantically identical if: 

1.  Their thematic role structures and selectional restrictions are 
the same; 

2.  The same objects are present in the causal representations of 
both verbs; and 

3.  Their causal links overlap exactly. 

Selectional restrictions amount to simply the type checking of argu-
ments. For example. admire demands an animate subject Uohn ad-
mires sincerity but not Sincerity admires John). (The final section 
discusses in more detail how selectional restrictions may be 
learned.) 

These three conditions are identical to what Salveter (1982) used 
in the MORAN system for learning Schank-type representations of 
words. Plainly, however. these exact-match conditions are too 
strong. Similar verbs can violate any or all of conditions (1)-(3). 
Verbs may differ in argument structure and yet be alike in meaning: 
Eat takes an object argument and dine does not Uohn ate an apple vs. 
John dined an apple). Similar verbs may have different selectional 
restrictions: Assassinate differs from murder in that it requires the 
thing killed to be a person and a political figure. The requirement of 
object identity is also too strong. It is clear that two verbs may be 
nearly synonymous. and yet one verb might appear in a story men-
tioning only Hamlet. whereas the other verb occurs with Macbeth. 
Finally, similar verbs may have causal structures that do not exactly 
overlap (e.g .. steal usually leads to a pattern of causes and effects 
that is distinct from take, yet the two verbs are alike in some ways). 

All of these considerations suggest that one give up the tight con-
straint of exact matches for a graded system of inexact matching. 
Computationally, the problem is one of (directed) graph isomor-
phism. We want to find the best possible correspondence between 
graphs G1 and G2 labeled with cause, verb, and preposition links. 
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Aside from this labeled correspondence, then. the matching process 
is completely syntactic; only the pattern of the graphs matters in 
matching. In addition, two nodes are not considered for matching 
unless they play the same thematic roles (agent. patient, and so 
forth) in the graph representations (in particular, two objects may be 
matched if they denote different instances of the "same" object, e.g .. 
KNIFE-1 and KNIFE-3). (It might also be reasonable to use a weakened 
condition here that permits two objects to be matched even if they do 
not fill the same thematic roles. if they are the same object or nearly 
the same kind of object. but this change has not been investigated.) 

The matching process is in general computationally intractable. 
There are n factorial possible 1-1 mappings of n nodes to n other 
nodes; there are more possible matches if a 1-1 correspondence is 
not required. Worse yet. the program must search as many graphs as 
there are possible stories with candidate verbs. We conclude that 
some potential matches must be filtered out in advance and the size 
of matches should be restricted if at all possible. Two heuristics have 
been adopted to implement this strategy. 

The first heuristic limits the number of stories considered by the 
matcher. It is currently under development. The key idea is to look 
only at a few stories that are broadly similar to the story with the 
unknown verb. Similarity of stories is judged in terms of plot units. 
in the sense of Lehnert (1981). Roughly, plot-unit theory assumes 
that the causal relationships in a story can be summarized byextract-
ing out the "molecular structure" of the causal network. This is done 
by imposing a theory of plot "molecular structure" onto the more 
basic causal network. Given a network description we can form a 
corresponding description in terms of basic plot units like 10ss. gain. 
or intentional problem res01ution. The advantage of this approach is 
that it boils down entire stories to supergraphs of just a few nodes 
and links each. For instance. Lehnert showed how a complex story 
like The Gift of the Magi can be reduced to just 10 linked nodes. 
Applied to our current problem, the idea is to index all stories by 
their plot summaries and to retrieve only those that happen to close-
ly match the current story under analysis. Of course, this extra in-
dexing and retrieval matching itself takes time. but typically far 
fewer nodes are involved for matching. One difficulty is that 
Lehnert's plot summaries are based on a vocabulary of affective reac-
tions, which may not be suitable for indexing causal regularities. 
What is needed is an approach like Lehnert's but with a different 
summarization vocabulary. This has not yet been done. Because it is 
not yet completely implemented, this heuristic currently replaced 
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by an oracle-a programmer who decides what stories to match 
against the network with the unknown verb. 

The second heuristic reduces the number of nodes matched by 
considering only the local graph structure around the unknown 
verb. Specifically. we force the matching algorithm to consider only 
nodes directly linked to the unknown verb plus any nodes linked to 
these directly connected nodes. but no others. Intuitively, this makes 
sense: This means that distantly related events and relations are not 
brought in for matching at all. This is a brute force approach that 
directly reduces the number of matched nodes. In practice, although 
a full story could have a 100 or so nodes. this constraint reduces the 
nodes for matching down to 10 or so-an order of magnitude sav-
ings. with a corresponding savings in computation time. Finally. as 
mentioned. we do not consider match candidates that do not meet 
the tests of thematic role identity. 

Difference Pointers 

Having found a match. the last job of the acquisition procedure is to 
calculate just how the new word differs from the old. This is at least 
as important as finding the best match, for only by finding dif-
ferences do we learn anything new. The calculation is straightfor-
ward. We take the graphical representation of the local network 
around the old verb and add an annotated link indicating how the 
new verb differs from old. Alternatively. one could add pointers to 
the network representation of the new network, indicating dif-
ferences. In this way. the system actually builds up a set of family 
resemblances. Words that are more distant from the "core" member 
of a family will have more difference pointers than words that are 
"closer" to the core. Note that this way of storing information al-
ready admits a prototype with allowable exceptions. A wormy or 
overly large apple can still be an apple because it will not violate 
enough of the prototypical apple qualities to be ruled out. 

Constructing the appropriate difference pointers is often difficult. 
Assassinate differs from murder in that a political figure is involved. 
but how is the program to know (or learn) this? Currently, the dif-
ference pointer constructed in this example reveals two different 
AKO structures: for assassinate the murdered figure is AKO king. 
whereas for murder it is just AKO person. Eventually, we would like 
the system to connect a group of similar assassinates by lumping 
king. president. and so forth into a more general AKO political class. 
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Input story with unknown verb 

Analyze causally-based network 
Compute plot summary 

ind all nodes with thematic role corre· 
udences to unknown case 

Match their local graph structure 
against unknown local graph 

IPick the best match and its assignmenL5 
'I of objects as representation for the new 
verb 

i Compute difference pointers using the 
Imatched story I 

Fillure 3.3. Flowchart lor word learning 

In general. human abilities at forming such natural classes are not 
well understood; some ways of handling this are discussed in the 
section on Learning AKO Hierarchies. 

Flowchart 

We can now give a complete flow diagram of the learning procedure 
(see Figure 3.3). 

IMPLEMENTAnON AND EXAMPLES 

With the entire acquisition procedure described. this section prell-
ents some examples of the system in action. In order to fix the mean-
ing of an unknown verb. stories are first translated into their 
respective extensible-relation representation. Then it provides our 
matcher with the unknown verb. the name of the story in which it 
appears. and the name of the stories to be used as precedents. The 
pieces of the network local to the known verb (the extent of the 
pieces is controlled by the user) are superimposed. one at a time. to 
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the piece of the network local to the unknown verb. The verb that is 
probably the closest in meaning to the unknown verb will have the 
greatest number of matching links. 

The examples use three Shakespearean plots. Hamlet (HAJ. Mac-
beth (MA). and Julius Caesar (lU); 

HA is a story about a ghost Hamlet Gertrude Claudius and Laertes. 
Hamlet is a prince. The ghost is a dead king. Claudius is an evil 

king. Gertrude is a queen. Gertrude is a naive woman. Laertes is a man. 
The ghost was married to Gertrude. 

Claudius. who is married to Gertrude. murdered the ghost because 
Claudius wanted to be king and because Claudius was evil. The ghost 
persuades Hamlet to kill Claudius because Claudius murdered the 
ghost. The ghost can persuade Hamlet to kill ClaudiUS because Hamlet 
loves the ghost. Hamlet is unhappy because the ghost is dead. 
Claudius wants to kill Hamlet because Claudius is afraid of Hamlet. 
Claudius kills Gertrude. Hamlet kills Claudius because Claudius mur-
dered the ghost and because Hamlet is loyal to the Ghost. Hamlet kills 
Claudius with a sword. Claudius persuades Laertes to kill Hamlet. 
Laertes kills Hamlet with a sword. Hamlet kills Laertes. 

Remember HA. 

MA is a story about Macbeth Lady-macbeth Duncan and Macduff.  
Macbeth is an evil noble. Lady-macbeth is a greedy ambitious wom- 

an. Duncan is a king. Macduff is a noble.  
Lady-macbeth persuades Macbeth to want to be king because she  

wants him to be king. She wants him to be king because she is greedy.  
She can convince him because Macbeth loves her and also because  
Macbeth is wimpy.  

Macbeth assassinates Duncan with a knife. Macbeth assassinates  
Duncan because Macbeth wants to be king. Lady-macbeth becomes  
insane. She kills herself because she is insane.  

Macduff becomes angry because the king was assassinated. Mac- 
duff kills Macbeth because Macbeth assassinated Duncan and because  
Macduff is loyal to Duncan.  

Remember MA. 

JU is a story about Caesar Brutus Anthony and Cassius. 
Caesar is a general. He is an ambitious and foolish emperor. He is a  

man. Brutus who is an honest and unhappy man loves Rome. Antony  
is a man. Cassius is a thin man.  

Cassius convinces Brutus to murder Caesar because Cassius hates  
Caesar and also because Brutus is weak. Brutus murders Caesar with a  
knife. Brutus murders Caesar because Cassius told Brutus that Caesar  
was evil. Brutus is unhappy because Brutus murdered Caesar and  
because Brutus loved Caesar. Antony who loved Caesar persuades  
some people to attack Brutus because Brutus murdered Caesar. Brutus  
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attacks the people because the people attacked him. Cassius also at-
tacks the people. Brutus kills himself. He kills himself because he is 
unhappy. Cassius kills himself also. 

Remember JU. 

To begin matching, we need to obtain the relations that are linked to 
the verbs. An auxiliary function, CE'NtELATIONS, returns the root of 
cl,lch different relation linked to each verb. Invoking this function on 
MURDER-1 returns the list (CAUSE CAUSED-BY). Note that MURDER-1 can 
be thought of as premeditated, first degree murder. 

In this implementation, two nodes or links in a network are possi-
ble matches if: 

• they are the same object or 
• they fill the same thematic roles or 
• they are connected by AKO links (Le., Macbeth and Gertrude are 

both a-kind-of persons) or 

Macaisa (1984) is chiefly responsible for the matcher's implementa-
tion, and we follow her description of its next steps: 

Because verbs frequently have multiple instances of the same rela-
tions, we risk not finding the best match were we to pair up the 
instances randomly. How do we decide whether CAUSE-IS or CAUSE-21 
matches better with, say, CAUSE-2000? We make this decision by 
matching the objects of each relation to the objects of the relations of 
the candidate verbs. In practice. most conflicts are settled at this level. 
However. if there is still uncertainty, we choose the first match. The 
consequences of this choice will be examined later. 

The routine that performs the steps indicated above is called DO-
MATCH. and it returns the matching relations and matching objects. 
Returning the objects is necessary because we allow the user to control 
the extent of the local network which is to be matched. The variable 
controlling the locality of the match is "MATCH-LEVEL, and if its value is 
greater than 1, DO-MATCH is called on each pair of matching objects. 
The matching relations are collected into a list by the procedure call-
ing DO-MATCH. This procedure checks membership before adding a 
new pair of matching relations since our extensible-relation represen-
tation allows cycles. When there are no more new matches, or when 
we have reached the specified "MATCH-LEVEL. the scoring function is 
applied to the list of matching relations. We use a simple scoring 
function, one which merely counts the number of pairs of relations. 
(p. 5) 

Let us run through an example. Let us assume that Hamlet is 
retrieved as the story closest to Macbeth in terms of plot summaries 
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or causal similarity. We then try to find a verb closest to murder. 
where the score is defined as described previously, by the number of 
matching pairs of relations. 

(setq "match-level 1) 
1. 
(define-verb 'murder-1 'he 'ma)  
Matching MURDER·1 with KllL-1 soores 1.  
Matching MURDER-1 with ASSASSINATE-1 scores 2.  
(setq 'match-Ievel 2) 
2. 
Matching MURDER-1 with ASSASSINATE·1 scores 3. 

Two verbs score well: KILL-l and ASSASSINATE-1. If we increase the 
local distance of matching, then ASSASSINATE-1 does better still. 
Most relations are eliminated by the case filter: 41 out of 66 in this 
example. 

If we carry out the symmetric match we get this: 

(setq "match-level 1) 
1. 
(define-verb 'assassinate-1 'rna 'ha)  
Matching ASSASSINATE-1 with KILL-7 scores 1.  
Matching ASSASSINATE-1 with MURDER-1 scores 2.  
Matching ASSASSINATE-, with KILL-4 scores 1.  

Next. the program adds difference pointers connecting murder and 
assassinate. In this case, there really is no difference at all. All fig-
ures in both plots play political roles; indeed, both persons killedl 
assassinated (as matched) are rulers. A more interesting example is 
the matching of assassinate to murder in, for example, Romeo and 
Juliet. Here also, the match scores 2, but this time the players are not 
political. A difference pointer is constructed to indicate this subtlety 
(see Figure 3.4). 

kill-:l, waul· :I 
calise-IS j 

persuade-2- ('.'lllse- 2 

call:ICu-by-17 
kill·4 J-13 

Figure 3.4. Two networks with diHerence poinlers 
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Further stories should prompt the relevant generalization of the A 
K a RULER difference to a political classification. Note how this 
method builds up prototypes automatically. A causal network that 
reappears in many different plots will be richly connected to other 
networks of verbs. whereas a rarely occurring verb will be woven 
only weakly to other stories. Thus. what a "typical" verb is falls out 
automatically as a consequence of the matching procedure: it is sim-
ply a densely connected verb. (It will therefore be easily accessible. 
under whatever measure of access one uses, again as suggested by 
psycholinguistic work.p 

Macaisa (1984) carried out some other interesting experiments 
with the matcher. Love and hale were similar, as were persuade and 
convince. Macaisa's summary table runs as follows. The score is 
defined as previously stated, as the number of matching relations. 
The column labeled filter shows the number of relations in the two 
stories before and after a subcategorization filter is applied that re-
moves relations that do not have the same case frame structure. 
Some of these results deserve further comment. Note that attack and 
kill are considered to match each other in Julius Caesar and Hamiel. 
Careful examination of the relevant subnetworks reveals that this 
conclusion is correct. Altack plays a big role in Julius Caesar. Here is 
the relevant excerpt: 

Antony who loved Caesar persuades some people to attack Brutus 
because Brutus murdered Caesar. Brutus attacks the people because 
the people attacked him. 

This is similar to kill in Hamlet because of a similar causal role. Both 
verbs are the result of a persuasion prompted by a death and love of 
another entity: 

The ghost persuades Hamlet to k.iIl Claudius because Claudius mur-
dered the ghost. The ghost can persuade Hamlet to kill Claudius be-
cause Hamlet loves the ghost. 

Initial tests of this method proved successful enough to encourage a 
full-scale test with a large verb computer database currently being 

IJackendoff (1983) correctly observed that because brains are finite we cannot 
store an infinite number of such prototypes. However. it is still possible to store rules 
to generate an arbitrary number of prototypes. It remains to investigate a "grammar" 
of this kind. 
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No. of Rets 
Story and Before and Matching 

Verb Precedent Aher filler Verbs Seo're .-
HA, MA 1 

assassinate·' 
murder-' 66.25 kill-' 

2 
murder-1 kill-10 1 

murder-2 
HA. JU 70.25 

2 
assassinate-I kill-7 1 

murder-1 
MA. HA 83.31 

2 
kill-4 1 

altack-1 kill·7 1 
kill-4 

JU. HA 83.30 
1 

love-! MA. JU 70.25 hate-3 ! 
hale-1 1 
persuade-4 

JU. MA 66.24 love-1 
persuade-2JU. HA 283.21 

1persuade-3 

developed by the MIT Linguistics Department. This database in-
cludes languages other than English. Among these are some ergative-
type languages whose different syntactic-thematic linkages should 
provide a good test of the flexibility of the approach. 

LEARNING NOUNS AND CLASS HIERARCHIES 

Having seen the learning procedure in action, it is time to step back 
and assess its competence. One complaint might be that people cer-
tainly do not learn the meaning of verbs in the manner suggested. 
For example, one could just use a dictionary. But this comment 
misses several points. Miller (1984) noted first of all that many verbs 
are learned before mastery of reading. Even so, examination of dic-
tionary-reading behavior reveals that children will substitute known 
words rather than sayan unknown word that is being defined by the 
very entry they are reading. This is only suggestive, but it hints that 
context-learning plays a dominant role even given learning from 
dictionary definitions. It certainly fulfills Wittgenstein's admonition 
"don't tell me the meaning, tell me the use" of a word. 

More pointedly, there are many other aspects of the procedure 
subject to question. In this section. we review two parts of the learn-
ing systems behavior that are most open for revision. The first weak 
point is our choice of representational language, and the second our 
predefined set of AKa relationships. Two corresponding remedies 
are suggested: a modified representational language with some prim-
itives, and a systematic method of generating class hierarchies. 
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Beyond Causal Verbs 

The system as designed so far performs adequately on verbs that 
have a rich causal structure. primarily verbs such as love, murder. or 
persuade. This is to be expected. The matcher uses causal relations. 
and so is sensitive to them. Verbs without rich causal relationships 
cannot be distinguished. because there is nothing to match. It is not 
clear, then. a simple causal structure is the right way to describe 
stative verbs like be or become, or motion verbs like run. 

One alternative here is a description language outlined by Jacken-
doff (1983), originally proposed by Gruber (1965) and extended by 
Schank (1972) and Jackendoff (1972). It decomposes verbs of state or 
motion into primitives along a few principle axes or semantic 
"fields" such as temporal. possessional, or identificational, com-
bined with three primitive verb types: STAY, GO and BE. BE denotes a 
state, STAY lack of motion, and GO, motion (over the semantic field). 
Jackendoff observed that a wide variety of verbs are modeled on the 
same scaffolding as these three verbs, but with modifications de-
pending on the semantic field involved. For example, consider the 
temporal field. We find the following sorts of verbs: 

is: Bf: The book is on the table 
move: GO John moved the book to the table 
kepI: STAY The book was kept on the table 

The same three primitives work for possessional verbs: 

give: GO John gave a book 10 Mary 
sell: GO object to recipient: "money" from recipient to agent 
keep: STAY John kept the book 

Finally, we have identificational examples: 

is: BE John is a leacher 
become: GO John became a teacher 
remain: STAY John remained a teacher. 

How can we graft this modified vocabulary onto our previous word-
learning algorithm? All that really must be done is to expand our 
formerly atomic verb names such as become or give into their parts. 
This alters just the arc labels on the network descriptions. Matching 
will be modified to take note of GO, STAY, and BE labels, as well as 
semantic subfields. Consider the following example. Macbeth got a 
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l'llh'r - D.FF -- hlllllllfl 
I I 

AIW AI{O
I Ix- nssnssinatc X-murder -.,.Y  

I (mise I I mllse I  
AIW IIQ AKO I1Q  

ImlllIan <le·na 111l'm.au dead  

Flgllre 3.5. Old and new representations lor gal 

knife has the two representations depicted in Figure 3.5. Now con. 
sider a verb like obtain. Not only does it participate in the same 
causal network as get, but it decomposes in the same way. The ques-
tion is: How is this learned? Once again, we can simply use the 
network matching algorithm to tell us that obtain and go POSSESS are 
paired up. 

What are the advantages to this modification? Evidently, to fix a 
verb decomposition we must fix (at least) two parameters: first, one 
of the proto-verbs GO, BE, or STAY; second, one of the semantic fields. 
One positive example fixes one possible variant of the verb's mean-
ing, but it is easy to get others simply by choosing another parameter. 
For instance, if we set the semantic field to IDENTIFICATIONAL, then 
we get the verb get used in the sense, Macbeth got religion. Thus. 
given this decomposition, we can delineate a space of parametric 
variation outlining the space of possible verbs of this kind. 2 

It is interesting to compare this approach with another model for 
word acquisition. that of Granger (1977). Granger also determined 
the meaning of an unknown word via a matching procedure that 
extracted similar network representations across stories. Granger's 
work is founded on the same nondefinitionaI. context-based theory 
of meaning as ours, but differs in significant ways. Unlike our 
causally based representation, Granger's model used a conceptual 
dependency representation of a story. As mentioned earlier, Granger 
filtered story matches by (indirectly) computing the thematic roles 
for nouns, and retaining only those candidate matches whose thema-
tic roles align with those of the unknown input. This representation 
language takes a stronger stand on decomposition than the one we 
adopted earlier, but is otherwise would be quite close to the modi-
fied decomposition model as just suggested. Granger's system had 
more trouble with verbs than nouns because its matching procedure 

2Miller and Johnson-Laird (1976) probed further into a decompositional approach 
of this kind. 

http:111l'm.au
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was grounded on a conceptual dependency representation that in 
turn required one to know what verb one was analyzing. With an 
unknown verb. much information is absent. and so it is difficult to 
start matching. In addition. the system explicitly does not build a 
syntactic representation of a sentence; this makes it all the more 
difficult to bootstrap a match. In contrast, the system described in 
this chapter makes explicit use of syntactic constraints to drive 
matching. It also directly uses thematic role constraints. Finally, the 
causally based description says that what causes what is more 
important to a word's meaning than any primitive decomposition 
into a series of "physical transfers." 

Both models benefit from a parameter-setting approach. First, the 
essentially combinatoric character of parameter setting immediately 
accounts for the productivity of word meanings. If recursive devices 
are some kind are allowed. then an indefinite number of word mean-
ings can be accommodated. Second, a theory of parameter setting 
translates directly into a learning theory. "All" that must be learned 
is the settings of the various parameters. Berwick (1985) presented 
one model of parameter setting under the restriction that only 
positive examples are given. The key idea is that if positive-only 
examples are used. then at no time should the learner make a general 
guess that leaves open the possibility that the correct answer is a 
subset of the guess just made. The reason for this constraint should 
be apparent. If a subset of the hypothesis can be the correct "target," 
then there is now no way for the learner to find this out. Why? If the 
correct target is indeed a subset of the hypothesis, then any positive 
example will be compatible with the now overly general hypothesis. 
In fact, the constraint that one cannot interpolate a subset between 
one guess and the next turns out to be necessary and sufficient for 
learning using positive examples. 

Learning AKO Hierarchies 

The second weak point of the learning model is that it depends on a 
preexisting set of AKO descriptors. It would be better if these could 
themselves be learned. Why, for instance, should be class RULER or 
HUMAN be given rather than POLITICAL? Yet the choice of these de-
scriptors figures crucially in what the matcher does and what dif-
ference pointers are created. 

In the remainder of this section we outline one possible method of 
inducing the AKO categories themselves. The central idea rests on 
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is interesting 
/' is thought about I!' about x 

is nearby  
is at the corner tTU\.  

I Idea 

I 
is red  
i!' heavy,  

leaks out of boxes  
water 

I 
is taU,  

is fixed,  
car 

is honest 
I 

man 
girl 

Figunt 3.&. The M conslraint 

an observation of Sommers (1971) about semantic networks, ex-
plored in detail by Keil (1979). 

Briefly, Sommers has suggested that if one arranges terms such as 
dog, cot, love, and so on into a graph structure whose terminal leaves 
are terms and where each node is an item that can sensibly be predi-
cated of all terms below it in the graph, then one never, or rarely. 
finds human intuitions of sensibility resulting in M shaped graphs-
the so-called "M" constraint. Rather, the graph structures take the 
form of hierarchical trees. For instance. the tree in Figure 3.6 (re-
produced from Keil 1979. p. 15, Figure 1) is typical of one that 
comports with human intuitions; an idea can be predicated as being 
true, hence lies under a node labeled true in a predication tree, but 
cannot be at the corner, or red. hence does not lie under nodes 
labelled with these predicates. In contrast, a car can be nearby. at the 
corner, red, tall, and fixed, but not true. The resulting tree of predi-
cates is called a predicobility tree. 

The "M" constraint relates to acquisition in the following way. 
Keil found through empirical studies of children that the hier-
archical tree structures demanded by the "M" constraint developed 
the foliation of the trees-that is, children formed new categories by 
splitting old ones, rather than creating entirely different tree struc-
tures. For instance, at the earliest ages studied (5-6 years), some 
children's predicability trees looked like that in Figure 3.7. 
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Figure 3.7. Tree al early age 

When second graders were tested. their trees were foliated ver-
sions of initial trees of this kind. Figure 3.8 shows the result. 

We can use the foliation constraint to learn new AKO categories as 
follows. Assume at step n that the system has built some predi-
cability tree. For concreteness, we shall use the tree given in Figure 
3.9. 

The root node corresponds to a universal predicate Po that applies 
to all things. Several layers below it is a chain of predicates that 
apply Duncan. Macbeth. Romeo, and Juliet. That is, these predicates 
apply to all these items as a class; we could can this the class IIUMAN. 
Call the last predicate node dominating all of these P j .3 

Now suppose that the system acquires a network representation of 
(Jssassina/e. The network indicates explicitly that Duncan can be 
assassinated. and the difference pointer notes this as distinct from 
Homeo's murder. To abide by the "M" constraint. the predicability 
tree should be bifurcated at Pi' carving Duncan away from its old 
dass. Now we have the situation as depicted in Figure 3.10. 

We could name the new category "political entity." but actually 
there is no need to name it explicitly. The class is defined by the 
predicates that can apply to it. A "ruler." for example, is simply 
something to which one can apply the predicates ALIVE. CAN REIGN. 
CAN HE ASSASSINATED. and so forth. Class formation follows the gen-
eral principle of acquisition from positive evidence cited earlier. 
Suppose we define a predicability tree as a set of direct domination 
relations among predicates Pi: We say that dom (Pi' Pj) if and only if 

JOne remark in passing: this way of defining a noun in terms of the predicates that 
can apply to it is quite close to Montague's (l973) analysis. 
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Figure 3.8. Foliated tree 

Pi directly dominates PJ' Then according to the class refinement 
scheme defined earlier. any new predicate is not permitted to de-
stroy existing dom relations; it can only add new dom relations 
(between it and old P's). 

The justification for this monotonic refinement follows from the 
general principle of acquisition from positive-only evidence cited 
earlier.4 Recall that if a learner is not to overgeneralize, then a new 
hypothesis should not allow the possibility of a correct target that is 
a proper subset of the new hypothesis. But this precisely the situa-
tion previously described: If a correct target predicability tree could 
include interpolated P;'s then such trees would be subsets of the 
hypothesized trees (see Figure 3.11). The criterion of learning from 
positive-only examples would be violated. 

To a certain extent, then, the empirical fact that the evolution of 
children's predicabiJity trees does not allow for interpolated new 
predicates constitutes evidence that the constraint of acquisition 
from positive evidence has played a role. To make predicability trees 
learnable. they are constrained to obey the "M" principle. By follow-
ing this constraint, the learning procedure too can make use of 
positive-only example, without relying on explicit negative correc-
tion. This is just a particular illustration of the general point that if 
negative examples are not allowed. then additional constraints are 
required. 

4For examples of monotonic refinement in other domains of learning, see Berwick 
(1965). 
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flau" 3.9. A predicabilily tree Iragment lor the Shakespeare world 

Po 
I 

p. 

I 
J 

P, 
I 

Pi+l (as:mssiuate) 
OUllcun 

!V/llc/If!th 
Julict 
Romeo 

flgu,. 3.10. New predicabilily tree 

/ 
Po 

P,
I 
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P, 

flgu,. 3.11. An impossible predicabilily tree 

CONCLUSIONS 

To sum up, the acquisition theory for words described here seems to 
meet Wittgenstein's challenge for a theory of word meaning that 
does not depend on dictionary definitions, but instead on a "family 
resemblance" model of word relationships. It successfully acquires 
causally based network models of verbs by the analogical analysis of 
story contexts containing them. Some extensions of the method for 
noncausally based verb descriptions were also presented. A method 
for learning AKO hierarchies (class descriptions) using positive-only 
evidence was presented. All of these learning procedures work be-
cause they are tightly constrained. The verb-learning model uses 
only causal.links and syntactic filtering to guide it. The extension to 
other verbs depends on a limited set of descriptors closely linked to 
a spatial vocabulary. Finally, AKO learning depends on monotonic 
tree refinement obeying the "M" constraint. Future success of natu-
ral-language learning hinges on the discovery of constraints like 
these that make learning possible. 
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3, LEARNING WORD MEANINGS FROM EXAMPLES 

APPENDIX 1: THE STORIES 

; ;Tbis is for the Shakespeare story file - slavisb attention to consistent 
;;usage was avoided on the ground the programs should be robust enough 
;;to deal some variety and error -- much of the initial 
; ;stuff sets up demons and establishes the A-KIIID-OF tree 

; ; initialize 

(reset) 

; ; do not insert PART relation automatically 

(setfv -insert-part. nil) 

; ;read ne':-style demons 

(fread "canalog>demons.lsp") 

; ;read demons for Nacbeth-Wr analogy 

;;(fread "Canalog>xcross.lsp·) 

; ;create some demons 

(make-if-affirmed murder 
(affirm reference (affirm subject '}:ill object» 
(affirm subject 'hate object» 

(make-if-affirmed kill 
(affirm reference 'cause (affirm object 'is 'dead») 

(make-it-affirmed cruel (when (eq relation 'is) (affirm subject 'is 
'evil») 

(make-it-affirmed loyal (when (eq relation 'is) (affirm subject 'is 
'good») 

(make-if-affirmed honest (,:hen (eq relation' is) (affirlt subject' is 
'good») 

(make-if-affirmed married 

(cond «eq (relation reference) 'is) 
(let «partner (get-one-object reference 'to») 

(cond «and partner (true? (consider reference 'to partner») 
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(affirm (affirm partner 'is 'married)  
'to  
(8ubject reference»»»»  

;;build ako tree  

Per80n is an instance of s people.  
I.!an womlln lind masochist are in8tances of a person.  
Father son boy gentleman and ba8tard are in8tances of a man.  
Notber daughter girl lady hag and witch are instance8 of a woman.  
Shrew i8 an instance of a bitch.  
General and colonel are instances of a soldier.  
Emperor Empres8 King and Queen are instances of a ruler.  
Prince liable Ruler Emperor and King are instances of a man.  
Prince is an instance of a noble.  
Empress Queen and Prince8s are instanceB of a  

Knife and sword are inBtances of a weapon.  

;;insert PART relation automatically  

(setfv 'I.) 

(make-if-affirmed ako 
(loop for clsss in (get-classes subject) 

do (affirm subject 'ako class))) 

APPENDIX 2: THE MATCHING FUNCTION 

The following code is from Macaisa (1984), 

(p  . I !·!atching I verb • I with I reI . I scores I score»  
(setq .given-mstches current-matches)  
) ) 

o 
» 

,.  Is the given verb in storyl "close in meaning" to any verb in story2? 

(defun word-match (wordl \IIord2) 
;;  l:ATCHES contains all the matching objects; llEXT-I·IATCHES contain8 

the matching objects at each level, including ones which are 
already in 1.IATCHES; llEV.'-I·:ATCHES contains all the matching objects, 
not already in at each level. 

(declare (special -nesting-level» 

3. LEARNING WORD MEANINGS fROM EXAMPLES 

(if (not (or (matching? wordl Vlord2) (subj-obj-match? wordl word2») 
() 

(add-to-matches Vlord1 word2) ;; ABBume the hlo words match. 
(let «matches (list (liat word1 word2»)  

(new-matches (liBt (liBt wordf  
(new-match? nil»  

(loop  for i from 1 to .neBting-level  
witb rel"tiona and next-matcbee  
do (let «rehl-Ilnd-obj a (get-next-matchea nllv:-rnatches»)  

(add-matchee (car rele-and-obje) 'relations)  
(setq next-matches (cadr relB-and-objs»  
(setq new-match? nil) (setq new-matches nil)  
(loop for match in next-matches  

do (if (add-match match 'matches)  
(progn  
(setq new-match? T)  
(setq new-matcheB (cons match new-matches»»  
) ) 

if  (and (nct (> i 1) relations) 
; ;do (p 'J "·Ilo matches past level I i) and return relations 
return nil 
finally (return relations) 

) )  
) )  

(defun get-next-matches (old-matches) 
(print old-matches) 

(loop for match in old-matches  
th relations and next-matches  

do (let «rels-and-objs (do-match (car match) (cadr match»»  
;; (p 'IRela:1 (car rell-and-ob]8) . IObja: I (cadr rela-and-oh,.»  

(Ietq relations (append rel.tions (car rel.-and-objs») 
(setq next-matches (append next-matches (cadr rel.-and-obj.»» 

finally (return (list relations next-matches» 
» 

(defun do-match (word1 word2) 
V.orks d th all relations one link away from and word2; 
Adds the matching relations to -matching-relations; 
Add8 the matching objects to -matching-objecta; 
Returns an alist of the matching objects at this level. 

(declare (special ·uninteresting-relationB -uninteresting-objects» 
(let «relsl (get-relations word1» 

(rels2 (get-relation8 word2» 
(matching-rels1) (matching-rels) 
(matching-objsl) (matching-objs» 

(8etq matching-rels (lists-match 
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(list-difference relsl -unlnteresting-relations) 
(list-difference rels2 .uninteresting-relations») 

(loop for rels in matching-rels  
wlth objal and objs2  
do (let «objsl (get-objects wordl (car rels»)  

(objs2 (get-objects word2 (cadr rels»»  
(setq matching-objs  

(Hsta-match  
(list-difference objsl -uninteresting-objects)  
(list-difference objs2 *uninteresting-objects»)  

MATCHIlJC-RELSl \':i11 contain the actual instanstiations 
;: of the matching relations. I.!ATCHIllC-OBJSl contain 
;; a liat of objects matched at this level. 
(loop for objs in matching-objs 

do Oet «rell (consider Vlordl (car reb) (car objs»)  
(rel2 (consider word2 (cadr rels) (cadr objs»»  

(if  (not (subj-obj-match? rell re12» ()  
(add-match (list rell re12) 'matching-relsl)  
(add-match objs 'matching-objsl»  

) ) 
»  

(11st matchlng-relsl matching-objsl»)  

(defun add-match (item list-name) 
(let «fcn-value 1.) 

(list (eval liat-name») 
(loop for iteml in list 

if (or (equal (car item) (car iteml» 
(equal (cadr item) (cadr iteml»)  
do (aetq fen-value nil) and return fcn-value  
flnally (aet list-name (cons item list}»  

fcn-value» 

(defun add-matches (listl lilt-name) 
(loop for item in liltl 

do (add-match item list-name) 
» 
(defun add-to-matchee (.:ordl Vlord2) 

(declare (Ipecial -given-matches» 
(add-match (list wordl Vlord2) '-glven-matches) 
(let «rootl (get wordl 'root» 

(root2 (get word2 'root») 
(if (and rootl root2) 

(add-match (list rootl root2) '¥given-matches» 
» 

3, LEARNING WORD MEANINGS FROM EXAMPLES 

(defun apply-filters (verb relations) 
(let «root (get verb 'root»  

(properties (list 'transitive»  
(pattern) (rels»  

(loop for prop in properties 
do (setq pattern (cona (get root prop) pattern») 

(setq rels (tsort-relations relations properties pattern» 
(car rels) 
» 

(defun lists-match (listl 11st2)  
(let «match-list»  

(loop for elementi in listl  
do (loop for element2 in liat2  

when (matching? elementl element2)  
do (setq list2 (delq element2 list2» and  
return (setq match-llat  

(cons (list elementl element2) match-list»  
»  
match-list) ) 

(defun subj-obj-match? (nodel node2)  
(let. «subjl (get node I 'subject}) (objl (get nodel 'object»  

(subj2 (get node2 'aubject» (obj2 (get node2 'object»)  
(and (matching? subj1 lubj2) (matching? objl obj2»  
»  

(defun matching? (objectl object2)  
(let «answer (matchingl? objectl object2»)  

(if answer ()  
(setq answer (matchingl? (get objectl 'root) (get object2 'root»»  

answer»  

(defun matching I? (objectl object2) 
(declare (special -given-matchel» 
(cond «or (null objectl) (null object2» nil) 

«eq objectl object2) T) 
«or (member (list objectl object2) -giVen-matches) 

(member (list object2 objectl) "given-matches» T) 
«a-kind-of-join objectl object2) T) 
(1. nil») 

(defun aubliat? (listl list2) 
(let «bl (subliatl? listl list2» 

(b2 (sublistl? liat2 li.tl») 
(if· (and bl b2) 
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nil return nil if the two sets are "equal" 
bi) otherwise, return the value of the first boolean 

» 
(defun sublisti? (listl list2) 

(cond «null listi) t) 
«member (car listl) list2) (sublist? (cdr listi) list2» 
(t nil) 
» 

(defun scoring-fcn (matching-rels)  
(let «true-matches (eliminate-inverses matchin,-rels»)  

(length true-matches»)  

(defun eliminate-inverses (matching-rels) 
(let- «sorted-rels (sort-rels matching-rels»  

(cause-reI. (car sorted-rels»  
(cau.ed-by-rel. (cadr .orted-rels»  
(other-reI. (caddr .0rted-rels»)  

(loop for cb-rel. in cau.ed-by-rela  
do (let «cb-rel (car cb-rel.»)  

(loop for c-rels in cause-rels  
do (let «c-rel (car c-rels»)  

(if (inverse? c-rel cb-rel) (del c-rels 'cause-rels»  
» 

) ) 
(append cause-rels (append caused-by-rels other-reI.»  
»  

(defun sort-rels (matching-rels) 
(loop for rels in matching-reI. 

with Cause-reI. and caused-by-rels and other-rels 
do (let- «rel (car rels» 

(root (get reI 'root») 
(cond «eq root 'cause) (add rel. 'cause-rels»  

«eq root 'caused-by) (add rels 'caused-by-rels»  
(t (add reI. 'other-reI.»  
»  

finally (return (list cause-reI. caused-by-rel. other-rels» 
) 

(defun inverse? (rell rel2) 
(and (eq (get c-rel 
(get cb-rel 'object» 

(eq (get c-rel 'object) 
(get cb-rel 'subject» 

) ) 

CHAPTER 4 

An Introduction 
to Plot Units 

WENDY G. LEHNERT 
CYNTHIA l. LOISELLE 
Department 01 Computer and Information Science 
University of Massachusetts 

UNDERSTANDING AND REPRESENTATION 

Representational Systems for Text Understanding 

If a computer is to be said to understand a story. we must demand of 
it the same demonstrations of understanding that we require of peo-
ple. When a person reads a story. an internal representation for that 
story is constructed in memory. For a computer to read and under-
stand a story. it too must represent the story's content in memory. 
We can test both human and computer understanding by using vari-
ous natural-language tasks such as answering questions or sum-
marization. Each task will help us examine a different piece of the 
understanding process and the underlying representation. Question 
answering provides us with a method for examining the contents of 
the memory representation. but tells us very little about how it is 
structured. We can only guess at how the various pieces fit together. 
Summarization. on the other hand. requires concentration on the 
central elements of a story while ignoring peripheral information. As 
such it provides an excellent tool for investigating the global struc-
ture of a memory representation. 
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