
Machine Learning 2: ~38 , 1987

@ 1987 Kluwer Academic Publishers, Boston Manufactured in The Netherlands

Learning Syntax by Automata Induction

ROBERT C. BERWICK (BERWICK%MIT-OZ@MIT-MC.ARPA)

MIT Artificial Intelligence Laboratory, 535 Technology Square, Cambridge, Massachusetts
02139, U.S.A.

SAM PILATO

Brattle Research Corporation, 55 Wheeler Street, Cambridge, Massachusetts 02138, U.S.A.

(Received: October 27, 1986)

(Revised: January 15, 1987)

K e y w o r d a : Formal inductive inference, language acquisition, automata theory

A b s t r a c t . In this paper we propose an explicit computer model for learning natu-
ral language syntax based on Angluin's (1982) efficient induction algorithms, using a
complete corpus of grammatical example sentences. We use these results to show how
inductive inference methods may be applied to learn substantial, coherent subparts of
at least one natural language - English that are not susceptible to the kinds of learn-
ing envisioned in linguistic theory. As two concrete case studies, we show how to learn
English auxiliary verb sequences (such as could be taking, will have been taking) and the
sequences of articles and adjectives that appear before noun phrases (such as the very
old big deer). Both systems can be acquired in a computationally feasible amount of
time using either positive examples, or, in an incremental mode, with implicit negative
examples (examples outside a finite corpus are considered to be negative examples). As
far as we know, this is the first computer procedure that learns a full-scale range of noun
subclasses and noun phrase structure. The generalizations and the time required for
acquisition match our knowledge of child language acquisition for these two cases. More
importantly, these results show that just where linguistic theories admit to highly irreg-
ular subportions, we can apply efficient automata-theoretic learning algorithms. Since
the algorithm works only for fragments of language syntax, we do not believe that it
suffices for all of language acquisition. Rather, we would claim that language acquisition
is nonuniform and susceptible to a variety of acquisition strategies; this algorithm may
be one these.

1. Introduction: The role of inductive inference in
language acquisition

As a sophisticated cognitive faculty, language acquisition poses an acid
test for any learning theory. How are children able to learn language so flu-

ently and effortlessly, without evident explicit instruction? Broadly speak-
ing, researchers have proposed two ways to attack this problem: first, as-

10 R . C . BERWICK AND S. PILATO

sume that the child has a rather sophisticated inductive inference engine
that can infer the required rules and representations (whatever those may
be); second, assume that the grammar hypothesis space is small, so that
no sophisticated inference is required. Unfortunately, these differing per-

spectives have rarely been combined; too often, the results and techniques
of one group have been downplayed by others.

For example, many linguists, starting from a position first outlined by
Chomsky in the early 1960s, see their job as delimiting the class of natural
grammars so narrowly that there really need not be any learning theory for

natural language at all something as simple as hypothesis-and-test would
do the job, at least in principle. 1 Such "no learning theory needed" views
have often been criticized as ignoring the actual time course of acquisition,
computational demands, and the need for some kind of induction (if only

the induction of word classes).

On the other hand, researchers concerned with the detailed developmen-
tal course of acquisition (MacWhinney, 1982; Langley, 1982) have assumed
a larger role for mechanical inductive inference in language acquisition.

Finally, though a considerable body of mathematical inductive inference

techniques have been accumulated, these are not usually applied to natural
languages in any detailed way. Either the results supply general "boundary
conditions" that apply to all kinds of learning (see Osherson, Stob, &

Weinstein, 1986), or else the systems described are applied only to artificial
examples (Fu & Booth, 1975) and not to natural languages. 2

This paper bridges the gap between these three traditions by present-

ing a polynomial-time computer model that uses recent advances both in
inductive inference techniques and explicit constraints on natural gram-
mars to learn certain regular (finite-state) syntactic subsystems of English
syntax. Using Angluin's (1982) algorithm for the inference of reversible

automata, we show how substantial syntax subsystems may be learned by
examining finite, positive-only example corpuses. 3 We also compare the al-

1See Wexler and Culicover (1982) for one explicit formulation of this kind of "simple"

learning procedure.

2This is not universally so. Olivier (1968) used a statist ical da ta compression algo-

rithm to pinpoint word boundaries by hunting for cormnonly occurring token clusters,

such as ' t h e' (which are much more common than ' t t h'). The same statistical regular-

ity approach was exploited in Wolff's SNPR system (1978, 1982). SNPR also contained a

general substi tution class algorithm that is less constrained than the one that we present

below.

3Since examples outside the finite corpus are assumed to be negative examples, the

algorithm in fact uses implicit negative evidence. The inference algorithm can operate

incrementally only after we have restricted the space of target grammars it can consider

as valid hypotheses. This restriction can be built in only after we have determined the
right hypothesis space restriction. Exact details of the acquisition procedure are given
in section 2.4. Each corpus contains on the order of 100 to 500 distinct sentence types,

LEARNING SYNTAX BY AUTOMATA INDUCTION 11

gorithm's performance to what is known about child acquisition, and find a
rough correlation. 4 (As always, it is sometimes difficult to assess the child

acquisition data here, so the usual caveats apply.)

More importantly, whatever the particular outcome of these case stud-

ies, our results suggest that finite-state natural language subsystems can
be learned by general induction procedures, provided those procedures are

coupled with restrictive computational constraints. On this view, there is

a role for machine learning theory in natural language acquisition, but it

must be woven together carefully with what is known about constraints on

natural grammars. In fact, grammatical constraints and inductive inference

appear to work hand in hand: in our case studies, just where the gram-

mar hypothesis space becomes enormously large (the number of possible

automata with n states for n > 20 is huge), inductive inference techniques

may be applied because the associated grammatical subsystem is suscep-

tible to efficient induction techniques. 5 This suggests that there may be

general constraints on the design of certain linguistic subsystems to make

them easy to learn by general inductive inference methods.

The remainder of this paper is organized as follows. The next two sub-

sections discuss the limits on grammatical regularities as a source of hy-

pothesis space restrictions and computational limits on inductive inference
algorithms. Section 2 continues with an informal description of Angluin's

inductive inference algorithm, as applied to natural languages. It also for-
mally describes the Angluin inference algorithm. Section 3 applies that

algorithm to two case studies, the English auxiliary verb system and noun
phrase specifiers (material that precedes the head of a noun, e.g., the big
blue in the big blue ball). Section 4 evaluates our case study results and

probes more deeply into how linguistic and inductive inference constraints

may be combined.

1.1 The limits of grammatical regularities

Many linguists adopt the view that natural language syntax is regular

enough to be learned by simple positive examples, without explicit instruc-
tion. But this is really an empirical issue. There are many subportions of a

language's syntax that do not demand a powerful inference engine. As an
example, the complements of most phrases are highly systematic, as one

can see from the English examples given below. A complement is simply

and we are currently conducting experiments with even larger corpuses.

4We have drawn primari ly on the discussion in Pinker (1984) here, though recently

we have examined a computer da ta base from the Brown (1973) corpus.

5In general, it is possible to show that each of these hypotheses must be explicitly

considered, as Gold's 1967 and 1978 results imply. Therefore, "summarization" methods,
like Mitchell 's (1978) version space algorithm, would become unwieldy.

12 R.C. BERWICK AND S. PILATO

the phrasal sequence tha t follows the Head of a phrase, e.g., the Noun in

a noun phrase (NP), the verb in a verb phrase (VP), and so forth. As a

simple example, in John hit the ball against the .fence, hit the ball against

the .fence is the verb phrase, and the ball against the fence is the comple-

ment of the verb hit. It is made up of two separate phrases: the object

noun phrase the ball and the preposi t ional phrase against the fence. More

generally, the following array of possibilities is pe rmi t t ed in English:

Verb Phrase ~ Verb
Prep Phrase ~ Preposition
Adjective Phrase --* Adjective
Noun Phrase ~ Noun

Noun Phrase (Prep Phrase)* (Sentence)
Noun Phrase (Prep Phrase)* (Sentence)
Phrase (Prep Phrase)* (Sentence)
(Prep Phrase)* (Sentence)

Evidently, within a language like English, all complement phrases can be

expressed via the schema X P ~ X NP PP* (S). T h a t is, they obey the for-

m a t Head-Complement, where Head is a metavariable replaceable by verb,

preposit ion, adjective, noun, and where Complement is a metavariable re-

placeable by NP PP*(S). Note tha t the Complement roughly denotes the

"arguments" of the Head. 6 If all na tura l g rammars have this s t ructure,

then what the child mus t learn is quite trivial: since the order of comple-

ment phrases is fixed, the only decision to be made is whether the head

comes first (as it does in English, French, or Italian) or last (as it does

in Japanese). If word classes are known, this evidence is readily available

from simple sentences. 7

While this is not the whole story of phrasal acquisition, many linguistic

authors (Lightfoot, 1982) have noted tha t it goes a long way to explain-

ing the relative rapidi ty and error-free acquisition of basic phrase s t ruc ture

among children. This highly constrained s t ructure can be exploited in com-

puter models of language acquisition, as Berwick (1982, 1985) has shown.

We may contrast the extreme regularity of phrasal complements with so-

called specifiers, the mater ial tha t precedes a phrasal Head. For instance,

in the following examples the specifiers are italicized: a very big deer; a

60f course, there are additional factors that intervene to complicate this simple pic-
ture: NP may be replaced by 2 or more NPs, depending on a verb's type; and NP must
not be present if the head is an adjective or a noun. These constraints arise essentially
from the case marking properties of the language; this is not a part of basic phrasal
information, but additional constraints that must be learned. For example, in other
languages the noun may mark case, and in these languages NP may appear after a head
noun.

7Continuing the point made in the previous footnote, we note that in any individual
language there may occasionally be variation in this strict Head-first/Head-final division,
but presumably the bulk of sentences, and in particular the sentences used for learning,
exhibit a clear-cut choice. See Lightfoot (1982) for additional discussion.

LEARNING SYNTAX BY AUTOMATA INDUCTION 13

.few dozen deer; a great number of deer; and so forth.

Allowable specifier sequences are highly idiosyncratic within and across

languages. Jackendoff (1977) puts it this way:

There are problems in studying specifier systems that do not arise in
studying complements. First, specifier systems involve very small num-
bers of lexical items and are riddled with idiosyncrasies. Thus general
phrase structure rules must be supported on the basis of impoverished
and skewed surface distributions ...

A second problem with specifier systems, at least in English, is that

it appears much less possible to correlate semantic regularities with

syntactic positions.

It does not appear, then, that learning specifier systems should be as easy

as learning phrasal complements because there are more than one or two

binary decisions to make. This would seem to require a powerful kind of

inductive inference engine. Indeed, Pinker (1984) has noted that fixing

noun subclasses seems to be quite difficult:

How might the identity of Noun subclasses be established? ... There are

several ways this might be done. One could combine two word classes

that overlap to some minimum extent ... but this step is treacherous.

On Pinker's view, combining word classes is "treacherous" because of the

tremendous number of possibilities involved and because one does not know

how to define overlap properly: should two words be substituted if they

occur only in exactly the same contexts, or only if their one or two word

surrounding contexts are identical?

In the remainder of this paper, we probe exactly this point by examin-

ing two specifier systems: first, English auxiliary verbs (such as could have

been won, which may be loosely regarded as specifiers of the main verb);

and second, noun phrase specifiers (such as three dozen deer). Despite the

"small number" of lexical items involved (see the appendix for the actual

sentence sequences), we discovered substantial variation in how difficult

these systems are to induce (as measured by the computational complex-

ity of the required inference program), and corresponding variation in the

difficulty children have in acquiring these two systems. See section 4.2 for

further discussion.

1.2 The l imits of formal inductive inference

Having pointed out a natural language domain where simple, linguistic-

ally-motivated learning procedures fail, and hence a suitable domain for

formal inductive inference, we turn next to the limits of mechanical in-

14 R. C. BERWICK AND $. PILATO

ductive inference itself. We maintain that unless inductive inference is

formally restricted and applied to narrow linguistic domains, it rapidly

becomes computationally intractable. This may account in part for the

reason that formal mechanical inductive inference techniques have been so

rarely applied to full-scale language acquisition studies. Thus, such proce-

dures are bound to limit themselves to simple artificial examples, with at

most a few distinct word categories.

To begin, we first note that finite-state inference is in general compu-

tationally intractable. Finding an automaton of n states or less agreeing

with a given sample of positive and negative data is NP-complete (Gold,

1978). s If the number of states is not known at all, then as Gold (1967)

showed much earlier, positive exa~nples alone will not suffice.

The reason for this computational difficulty is intuitively clear. If all we

know is that a target automaton is a finite-state automaton with n states,

then it may take a very long string to distinguish that automaton from all

other n-state machines. Indeed, Angluin (1977) shows that in some cases

one must look at all O(2 n) strings of length n, where n is the number of

states in the target machine.

In order for inference to be computationally feasible, we must restrict

the class of target automata to be acquired, just as the linguists have ar-

gued; not all finite-state automata can be in the hypothesis space. We

propose that the target automata are all deterministic, finite-state, and

k-reversible. This constraint guarantees an O(n 3) time inference algorithm

from positive-only examples (Angluin, 1982), where n is the number of

example sentences examined. The associated induction procedure is also

incremental; that is, it can process one example sentence at a time, rather

than the entire corpus all at once. This constraint is again designed to be

consistent with knowledge about human language acquisition. In the re-

mainder of this paper we use an explicit computational model to show that

the English auxiliary verb and NP specifier systems meet these constraints,

allowing them to be easily inferred from a positive-example corpus.

SThe problem is NP-complete in the number of states of the target automaton. This
problem can be solved in polynomial time if we exhaustively list all strings of length
n or less over the assumed alphabet , but only by a coding trick. It is important to
remember that the statement of the problem itself includes in its encoding the set of all
sentences (strings) of length n or less, which in this case will be an exponential amount
of data. To get this result, then, we in effect do not "charge" the learning algorithm for
the time to read the positive and negative data. If one changed the representation used
for characterizing finite-state automata, then it might also be possible to develop more
efficient inference algorithms.

LEARNING SYNTAX BY AUTOMATA INDUCTION 15

2. Learning k-reversible languages f r o m e x a m p l e s

We now introduce the notion of k-reversibility, and follow with a formal

definition. The next section presents Angluin's inference algorithm itself.

Informally, a zero-reversible language supports the simplest kind of word

class induction: If you were told that Mary bakes cakes, John bakes cakes,

and Mary eats pies are legal strings in some language, and if one then

guessed that John eats pies is also in that language, then you have assumed

that the target language was zero-reversible. The strings mentioned above

might been generated by the language expressed by the following regular

expression: (Mary[John)(bakes[eats)(cakes[pies).

2.1 T h e f o r m a l de f in i t i on of 0 - revers ib i l i ty

To formally define when a regular language is reversible, let us first

define a prefix as any substring (possibly zero-length) that can be found at

the very beginning of some legal string in a language, and a suffix as any

substring (again, possibly zero-length) that can be found at the very end

of some legal string in a language. In our case the strings are sequences of

words, and the language is the set of all legal sentences in our simplified

subset of English.

Also, say that in any legal string the suffix that immediately follows a

prefix is a tail for that prefix. Then a regular (finite-state) language is

zero-reversible if, whenever two prefixes in the language have a single tail

in common, then the two prefixes have all tails in common. Pu t another

way, a language is 0-reversible if the automaton recognizing it remains

deterministic when one swaps initial and final states and reverses all arcs. 9

Figure 1 gives some simple examples. The top half (a) shows a non-0-

reversible automaton, generating strings such as walks very very fast, walks

very very very very •ast and talks very fast. The automaton in the bot tom

half of the figure (b) generates an infinite 0-reversible language. 1° One can

see how automaton (a) fails to meet 0-reversibility: the prefixes talk and

walk share the tails very very fast in common, but they do not share all
tails in common, since automaton (a) does not generate walks very fast.

In contrast, the second automaton in the bo t tom half of the figure is 0-

reversible, as can be easily seen by reversing all the arcs and swapping

initial and final states.

9Of course, the reversed automaton does not accept the same language as the original;
reversing the automaton just tests for a property of the original language.

1°In fact, automaton (a) is not even k-reversible; see the next subsection for a
definition.

16 R.C. BERWICK AND S. PILATO

(a) A v e r y

walk ~ ~ ~ fast

very (~ very

q3

Figure 1. (a) A non-0-reversible automaton; this automaton also happens to be
non-k-reversible, for any value of k. (b) A 0-reversible automaton.

LEARNING SYNTAX BY AUTOMATA INDUCTION 17

2.2 The formal definition of k-reversibility

Intuitively, the extension from 0- to k-reversibility expands the backward

context that must be deterministic. A regular language is k-reversible,
where k is a nonnegative integer, if whenever two prefixes whose last k
words match have a tail in common, then the two prefixes have all tails

in common. In other words, a deterministic finite-state automaton (DFA)

is k-reversible if it is still deterministic with lookahead k when its sets of

initial and final states are swapped and all of its arcs are reversed. A higher

value of k gives more conservative inference, in the sense that it will not

overgenerate as readily (because it looks at more possible sentences). 11

2.3 A simple language example

Before presenting the induction algorithm proper, we will give a simple

example showing how the notions of 0- and k-reversibility may be used for

inference.

Consider again just the sentences Mary bakes cakes; Mary eats pies; and

John bakes cakes. Suppose we assume that the target automata are 0-

reversible. (This would be an a priori restriction on the class of possible

learnable languages, like that made by linguists.) But then, since the

language is assumed to be 0-reversible, all prefix tails must be held in

common. In particular, the prefix Mary has the tail eats pies, but the

prefix John does not. In order to maintain 0-reversibility, the string John
eats pies must be in the target language. Thus we have inferred a new

string, just enough to make the language 0-reversible.

The same idea holds for other values of k. For example, if we assume

the target language is 1-reversible, then we must tack on an additional

word and see whether May bakes and John bakes have all tails in common

(and hence that the language is 1-reversible). In this case these two-word

sequences do have all tails in common (cakes), so the three-sentence corpus

does not force any additional inference. However, if we now added the

sentence Mary bakes pies, then we would have to add the sentence John
bakes pies to the language in order to maintain 1-reversibility. Adding one

more sentence, Mary bakes, would force us to add John bakes, resulting

in the seven-string 1-reversible language expressed by (MarylJohn) bakes
[cakeslpies] I Mary eats pies.

With these same examples, assuming the target is O-reversible would

have produced the regular expression (Mary I John) (bakes I eats) (cakes I pies)*

l l In the worst case, if we make k as long as all possible sentences, then the procedure

cannot overgenerate. Of course, the time required for inference also increases modestly:
Angluin's algorithm runs in time O(kn3).

18 R.C. BERWICK AND S. PILATO

Table 1. Example of incremental k-reversible inference for several values of k.

Sequence of new New strings inferred:

strings presented k = 0] k = 1

NONE Mary bakes cakes

John bakes cakes

Mary eats pies

Mary bakes pies

Mary bakes

NONE

John eats pies

John bakes pies
Mary eats cakes

John eats cakes

John bakes
Mary eats

John eats
Mary bakes cakes cakes

John bakes cakes cakes
Mary bakes pies cakes

(Mary[John) (bakes [eats)(cakes [pies) *

NONE

NONE

NONE

Johnbakespies

John bakes

k = 2

NONE

NONE

NONE

NONE

NONE

This generates an infinite language, as indicated in the second column of

Table 1.12 On the other hand, assuming that the target language is 2-

reversible would force us to add no new sentences. For a particular language

we hope to find a k that is small enough to yield some inference. However,

k should not be so small that we overgeneralize. Table 1 summarizes our

examples of 0-, 1- and 2-reversible inference. 13

2.4 An inference algorithm

With the definitions of k-reversibility and a simple natural language ex-

ample behind us, let us consider the inference algorithm itself. In addition

to formally characterizing k-reversible languages, Angluin (1982) also de-

veloped an algorithm for inferring a k-reversible language from a finite set

of positive examples, as well as a method for discovering an appropriate k

when negative examples (strings known not to be in the language) are pre-

12Because of loops like these, the 0-reversible algorithm may in general be able to infer

infinite languages.
13Note that since we minimize the resulting automaton, we always obtain the smallest

reversible automaton that just covers a corpus.

LEARNING SYNTAX BY AUTOMATA INDUCTION 19

start

John ~ M a r y

bak es

 Oes

Figure 2. A prefix-tree for some simple sentences.

sented. She also gave an algorithm for determining, given some k-reversible

regular language, a minimal set of examples from which the entire language

can be induced. We have developed a LISP program that implements this

procedure, as well as some refinements on Angluin's incremental acquisition

algorithm.

Given a sample of strings taken from the full corpus, we first generate a

prefix-tree automaton that accepts or generates exactly those strings and

no others. As its name implies, a prefix-tree is simply a directed acyclic

graph with a single root, where every sentence is "spelled out" by tracing

a unique path from the root to the terminal nodes, which are all final

automaton states. Figure 2 gives a prefix tree for the sentences Mary bakes
cakes and John bakes cakes.

We now want to add additional strings to maintain a k-reversible lan-

guage, for some chosen k. The key idea is to collapse equivalent states

in the prefix tree, starting from the final states and working backwards,

according to the following definition of equivalence:

Let us say that when accepting a string, the last k symbols encountered

before arriving at a state is a k-leader of that state. Then to generalize

the language, we recursively merge any two states for which either of the
following two conditions are true:

20 R. C. BERWICK AND S. PILATO

1. Another state arcs to both states on the same word (this enforces

determinism); OR

2. Both states have a common k-leader AND either

(a) both states are accepting states, OR

(b) both states arc to a common state via the same word.

When none of these conditions obtains any longer, the resulting DFA ac-

cepts or generates the smallest k-reversible language that includes the orig-

inal sample of strings. 14 This procedure works incrementally. Each new

string may be added to the DFA in prefix-tree fashion and the state-merging

algorithm repeated. The resulting language induced is independent of the

presentation order of sample strings.

Returning to our example in Figure 2, suppose we assume a 0-reversible

target automaton. We now work backwards from the bot tom of the tree.

We first note that both states q5 and q6 are final states and that the last 0

symbols (that is, no symbols) before arriving at these states are the same;

therefore, we merge these two states. Call this new state q56. Continuing

upwards from this newly merged state, we merge states q3 and q4 under

condition (2) because both arc to the same (new) state q56 on the same

word and both have the same 0-leader. Finally, we do not merge states

ql or q2 because neither of the two conditions is met. This gives us the

regular expression [(JohnlMary) bakes cakes].

One can determine for what value of k a (finite-state) language is re-

versible (assuming it is reversible at all) if some negative as well as positive

examples are known. One simply tries increasing values of k until the in-

duced language contains no negative examples. In our case studies, we

assumed that the learning procedure in effect knows in advance what the

appropriate value of k is for a given corpus; this is like the linguists' assump-

tion that the learner knows something about the class of target languages

to be acquired. In practice, we carried out this approach by the following

procedure that is executed external to the learning algorithm itself: We

assume that every sentence outside a particular finite corpus is a negative

example. We set k = 0 and see whether the resulting DFA covers the cor-

pus and does not generate any negative examples. If so, we are done; if not,

we increase k by 1 and try again. 15 Once we know that a particular corpus

14This usually is not the smallest DFA for the language; we can minimize the corre-

sponding DFA using s tandard techniques.

15In fact, the learning procedure could use this same method to discover the proper

value of k for itself, but only if it has access to some negative examples or a complete set

of positive examples and hence, implicitly, negative examples. We discuss this proposal

explicitly in section 4.3, since it seems to correspond to what happens in children's
acquisition of these syntactic subdomains.

LEARNING SYNTAX BY AUTOMATA INDUCTION 21

is k-reversible for a specific value of k, we can then impose this as an a

priori constraint on the class of target automata acquired by the learning

system via positive-only examples. As we shall see, for interesting natural

language syntax fragments, setting k to 1 or 2 seems most appropriate.

Though the inference algorithm takes a sample and induces a k-reversible

language, it is quite helpful to use Angluin's algorithm for going in the re-

verse direction: given a k-reversible language we can determine a minimal

set of shortest possible examples (a "characteristic" or "covering" sample)

sufficient for inducing the language. This is helpful in determining a min-

imal corpus that suffices for acquiring a particular language fragment, or

in calculating the "inferential power" of the algorithm; the fewer sentences

required to infer the full corpus, the greater the inference power. Though

the minimal number of examples is of course unique, the set of particular

strings in the covering sample is not necessarily unique.

3. Applying formal inductive inference to natural language

As our example corpuses, we aimed to select subportions of English syn-

tax known to be partly regular, yet with some exceptions and variation.

There are two well-known examples: auxiliary verbs and noun phrase spec-

ifiers. Linguists point out that auxiliary verbs are more regular than noun

phrase specifiers (Akmajian, Steele, & Wasow, 1979).

3.1 Learning the English auxiliary system

We represent the English auxiliary system as a corpus of 92 variants

of a declarative statement in third person singular. The variants cover

all standard legal permutations of tense, aspect, and voice, including do
support and nine modals. We simply use the surface forms, which are

strings of words with no additional information such as syntactic category

or root-by-inflection breakdown. For instance, one present, simple, active

example is Judy gives bread. One modal, perfective, passive variant is Judy
would have been given bread. It is clear that this corpus does not cover all

modals: for example, negatives are not represented, and examples such as

Judy need not bake bread or Judy got taken to the bakery are also omitted.

Nonetheless, we feel that this corpus is reasonably representative; in later

experiments we plan to expand the range of sentences covered.

We first determined for what values of k the corpus is in fact k-reversible.

We found that the English auxiliary system can be faithfully modeled as

a 1-reversible regular language. Thus, if a learning system assumes that

the target corpus is 1-reversible, it can use the 92 positive examples to

learn auxiliary system in time 0(2 • n 3) in the number of corpus examples

22 R. C. BERWICK AND S. PILATO

(Angluin, 1982).16 If the learning system assumed that the auxiliary system

were 0-reversible, it would overgeneralize; the inferred DFA contains loops

and so generates infinite numbers of illegal variants.

Figure 3 compares a correct DFA for the English auxiliary system with

the 0-reversible, overgeneralized DFA. Both are shown in a minimized,

canonical form. The top (correct) automaton can be generated in two

ways. First, one can minimize the prefix tree for the full corpus; second, one

can minimize the result of k-reversible inference applied to any sufficiently

characteristic set of sample sentences, for any k _> 1. One can read off

all 92 variants in the language by taking different paths from initial state

to final state. The bottom (overgeneralized) automaton is generated by

subjecting the first to 0-reversible inference.

Does treating the English auxiliary system as a 1-reversible language

yield any inferential power? Making this assumption, the system can in

fact infer the entire auxiliary system from a cover of only 48 examples out

of the 92 variants in the corpus. Further, if the learning system "knows"

that the corpus divides into subportions that can be separately acquired

(this might be known on other syntactic or semantic grounds, for example)

then additional savings may be won. For instance, if we split up active

and passive forms and acquire them separately, the active corpus requires

only 38 examples out of 46 and the passive corpus, 28 examples out of 46.

Treating the full corpus as a 2-reversible language requires more examples

(76), and a 3+-reversible model cannot infer the corpus from any proper

subset whatsoever.

3.2 Learning noun phrase specifiers

Our second example corpus, noun phrase specifiers, is more challenging.

No simple, exhaustive covering corpus is directly available. We first used

84 example sentences culled from Jackendoff (1977) as a test case. We

then expanded the Jackendoff corpus to 735 example specifier sequences.

As far as we know, this is one of the largest and richest subfragments of a

natural language ever analyzed by an automatic induction technique. For

example, it includes such long sequences as these very oldest two hundred

very big deer. Still, as we shall note below, even this sample is known to be

incomplete and omits some NP specifier sequences; we believe that several

thousand sequences are possible. Second, the noun phrase specifier cor-

pus divides into many more "natural" semantic subcomponents than just

active/passive; for instance, it might divide into sequences with mass and

count nouns, or into sequences with partitives (of, as in some of those deer)

16It will also successfully acquire the auxiliary system if it assumes the target language

to be k + 1 reversible, for k > 0.

LEARNING SYNTAX BY AUTOMATA INDUCTION 23

(a)
(giveslgave)

• give

(islw~s)

/ (h~slhad)

/MMoa~ls ~

etc.) I f l
I be ~ ~ (givinglgiven)j/

L given j

give ..~

r

(gives Igave)

(b) f %

(islwas]haslhad) (beenlbeing)

~Modals (get ~ " - - ~ (givinglgiven)

give j

Figure 3. The top automaton (a) generates the English auxiliary system• Zero-

reversible inference merges state 3 with state 2 and merges states 7 and

6 with state 5, resulting in the bottom overgeneralized version (b).

24 R.C. BERWICK AND S. PILATO

and sequences without partitives. Whether these divisions can be exploited

remains largely an open question, though it appears that some divisions

(see below) can make the system 1-reversible, like the active/passive forms

for the auxiliary verbs.

The noun phrase specifier sentences fall into the following rough groups:

demonstrative-quantifier-adjectives, such as those several deer; article-ad-

jective-cardinal numbers, such as no big deer or any two deer; quantifier-

adjectives, such as many deer, many old deer; article-adjectives, such as

this deer, this big deer; seminumerals, such as a score deer, only a score

deer; cardinal numerals, such as these two hundred deer; intensifiers, such

as very many deer; superlatives, such as the oldest deer; pseudopartitives,

such as a group of some deer; and a residual collection of eclectic examples.

One can see that the range of these constructions is quite varied, and

the restrictions on them quite subtle. For example, one cannot say, which

many several deer, enough a deer, or many of some deer. As far as we

are aware, this is one of the most complex target languages ever a t tempted

for mechanical inductive inference. Indeed, we did not know beforehand

whether the sample would be 1 or 2-reversible at all.

Before using the learning procedure proper, to determine whether the

corpus was reversible we again applied our incremental procedure first:

we assumed a 0-reversible target language, then checked whether this as-

sumption resulted in a DFA that produced any negative (ungrammatical)

example sentences; if so, we proceeded to assume a 1-reversible target lan-

guage, and so on.

The corpus was not 0-reversible or 1-reversible: both of these automata

vastly overgenerated. The inferred 0-reversible automaton had only 3

states, including a loop from state 0 to itself that collapsed together words

such as a, all, any, no, these, and this. The 1-reversible automaton had

33 states, and did not contain these loops; however, it still overgenerated,

accepting such sequences such as a score of all deer. This is because the

"window" for 1-reversible inference cannot detect the cooccurrence restric-

tion between a bunch or a score and all when they are separated by of.

We found that the NP specifier corpus is 2-reversible, and that it can

be inferred from a subset of the full corpus, 359 examples out of 735.

This represents considerable inferential power. The resulting full DFA has

81 states (see Table 2), which is considerably larger than the auxiliary

system's automaton. Many more states are required to make the requisite

fine distinctions between cardinals, seminumerals, quantifiers, partitives

(with of) and so forth. For instance, in our corpus one can say a hundred

big deer but not a number big deer, so hundred and number must arc to

distinct states, even though they seem otherwise very much alike. Table

2(a) further shows that the inferred automaton does exactly that: hundred

LEARNING SYNTAX BY AUTOMATA INDUCTION 25

maps to state 26, while number maps to state 27. Similarly, enough and

either are different: one cannot say enough two deer, but one can say either

two deer, so these two words must arc to distinct states (5 and 6), as the

table shows. On the other hand, these and those can be substi tuted for

each other, and the automaton shows them mapping to the same state,

16. Additionally, one cannot have two number-like quantifiers in the same

specifier sequence, such as all several deer, or the all deer, though one can

have all the deer.

However, a note of caution must be added about the results. It appears

that in part the larger number of states has to do with the restricted

corpus used. We believe that many of the states from 60 on would be

collapsed if we used a full corpus of several thousand distinct examples.

In other words, plainly interchangeable states in the table probably result

from gaps in our sample data set. Thus, these results are best regarded as

tentative, subject to future revision, and serve mainly as a demonstration

that a large automaton may be mechanically inferred from a very large

corpus. We plan to carry out these even larger experiments shortly; the

existing corpus size is unwieldy enough as it stands to demand the full

resources of a lisp machine.

The inference system takes twenty times longer to process the larger NP

corpus before arriving at a result as compared to the smaller auxiliary cor-

pus - about 30 minutes of execution time compared to a minute and a half.

While the procedure is still cubic time in the number of input sentences,

this increased processing load is not so unrealistic, given the increased dif-

ficulty children have with this richer system (see the next section).

Just as with the auxiliary corpus, the specifier corpus may be split up in

certain semantically relevant ways to make learning easier. For instance,

the partitives - constructions with of, such as a group of some deer

may be removed. Like the active/passive split of the auxiliary system,

this makes some semantic sense, since the partitives are meaningfully dis-

tinct from ordinary specifier sequences and one could argue that a learner

can separate partitive from nonpartitive sequences. The resulting smaller

data set is nearly 1-reversible; unfortunately, being almost 1-reversible is

not good enough. We plan to continue experimenting with semantically

defensible partitions of the NP specifier sequences.

A second kind of corpus division - including only article-noun, possessor-

noun, or adjective-noun pairs - may be more psychologically relevant.

There is considerable evidence that children pass through a two-word stage

(Brown, 1973). On the other hand, this restriction may in part be due to

memory limitations on the speech production side rather than an accurate

reflection of what children actually know; Gleitman and Wanner (1982)

summarize this evidence. Therefore, we could legitimately limit the spec-

26 R . C . B E R W I C K AND S. P I L A T O

Table 2 (a). P a r t o f t h e 2 - reve r s ib le , m i n i m i z e d D F A for t h e N P spec i f i e r c o r p u s .

S t a t e 23 is t h e s t a t e r e a c h e d j u s t b e f o r e r e a d i n g t h e e n d - o f - s e n t e n c e

m a r k e r / . S t a t e 10 is t h e s t a t e r e a c h e d j u s t b e f o r e r e a d i n g t h e h e a d

n o u n , deer; s t a t e 68 is t h e f inal s t a t e .

STATE TOKEN

qo A
ALL
ANY

EACH
EITHER
ENOUGH
EVERY
FRED'S
MANY
MUCH
NO
ONE
ONLY
SEVERAL
SOME
THAT

THE
THESE
THIS
THOSE
TOO
TWO
WE
WHICH

ql BIG
BUNCH
DEER
FEW
GALLON
GROUP
HUNDRED
NUMBER
SCORE
VERY

q2 BIG
DEER
OLDEST
TWO
VERY

q3 BIG
DEER
OLDEST
TWO
VERY

q4 BIG
DEER
FEW
HUNDRED
OLDEST
SEVERAL
TWO
VERY

NEXT STATE [STATE [TOKEN

!
ql ! q5 BIG

DEER q2]
TWO q3 I

q4 ' q6 BIG
q5 ! DEER
q6 VERY

q7 q7 BIG
q8 DEER
q9 TWO

qlo I VERY
ql 1 I q8 BIG
q6 DEER

q12 FEW
q13 GROUP
q14 MANY
q6 ONE

q15 SCORE
q16 SEVERAL

TWO q6 [
VERY q16

q17] q9 BIG
qlS DEER
q~9 HUNDRED

q2o qlo DEER
q21 qll BIG
q22 DEER

q23 FEW
q24 OLDEST

q25 TWO
q22 VERY

q26 qt2 A
q27 THE

q28 TWO
q29 q13 BIG
qlo DEER
q23 HUNDRED

ql0 q14 BIG
q3o DEER
q31 TWO
qlo VERY
q24 q15 BIG
q32 BUNCH
q30 DEER
q31 FEW
qlo GALLON

q24 GROUP
q33 HUNDRED

q26 MANY
q32 OLDEST
q34 ONE
q35 SCORE
q37 SEVERAL

TWO
VERY

NEXT STATE

qlo
q23
q35

qlo
q23
q31
qlo
q23
q37
q31

qlo
q23

q25
q22
q32
q38

q28
q39
q32
q4o
qlo
q23
q26
q23
qlo
q23
qlo
q41
q42
q43
q44
q45
q46

qlo
q23
q47
qlo
q23
q46
q31
q21
q22
q23
q48
q49
q22
q26
qso
qs1
q52
q28
q53
q35
q36

LEARNING SYNTAX BY AUTOMATA INDUCTION 27

Table 2 (b). Second part of the 2-reversible, minimized DFA for the specifier

sequences.

S TA TE

q16

q17

q18

q19

q2o

q21

q22

q23
q24

q25

q26

q27
q28

q29

q30

q31
q32

T O K E N

D E E R

F E W
M A N Y
O L D E S T

O N E
S E V E R A L

TWO
V E R Y
F E W

M A N Y
BIG

D E E R

G A L L O N S

V E R Y
BIG
D E E R

F E W
H U N D R E D

O L D E S T
O N E
S E V E R A L

T W O
V E R Y

F E W
H U N D R E D
M A N Y

O N E
S E V E R A L

T W O

V ER Y
D E E R

O N E
T W O

O F
/.
BIG

D E E R
H U N D R E D

V ER Y
OF
W A T E R
BIG
D E E R

V ER Y
O F
OF

BIG
F E W

BIG
H U N D R E D
V E RY
BIG
BIG
D E E R
V ER Y

N E X T S T A T E I S T A T E T O K E N

q23 q33 BIG
q3a H U N D R E D

q54 O L D E S T
q~5 V ER Y

q38 q34 D E E R

q56 H U N D R E D

q42 O L D E S T

q57 V ERY

q26 q35 BIG
q32 D E E R
qlo H U N D R E D

q23 V ERY

qss q36 BIG
q29 F E W
qlo O L D E S T

q23 q37 D E E R
q24 H U N D R E D

q26 VERY

q6o q3s H U N D R E D

q38 q39 D E E R
q61 H U N D R E D

q62 q40 F E W
q36 M A N Y

q63 q41 BIG
q64 D E E R

q65 T W O

q38 V ERY

q39 q42 BIG
q46 D E E R
q66 H U N D R E D

q23 , q43 BIG
qlo O L D E S T

qlo
q67 [q44 F E W
q68 H U N D R E D

ql0 I q45 F E W
q23 I HUNDRED

q69 q46 H U N D R E D

q36 q47 BIG
qss D E E R

q23 I F E W
ql0 O L D E S T

q23 I S E V E R A L
q36 VER Y

q7o q48 D E E R
qlo ! H U N D R E D

qto q49 OF
q33 q50 BIG
qlo D E E R
q59 F E W
q29 H U N D R E D

qlo VER Y

qlo
q23
q29

N E X T STATE

ql0

q69
q71
q36

q23
q47

q72

q36
ql0

q23
q59

q29

ql0
q33

q74
q23

q59
q29

q77
q23
q47

q33
q76

ql0
q23

q35

q29

ql0
q23

q59
ql0

q74

q25
q26

q49

q26
q59

ql0
q23
q26

q72

q32

q36
q24

q69

q59
ql0

q23
q77
q26

q29

28 R . C . BERWICK AND S. PILATO

Table 2 (c). Thi rd par t of the 2-reversible, min imized DFA for the specifier

sequences.

STATE TOKEN

q51 BIG
D E E R

OF
ONE
SEVERAL
TWO
VERY

q52 BIG
DEER
HUNDRED
VERY

q53 BIG

DEER
FEW
HUNDRED
VERY

q54 BIG
DEER
HUNDRED
VERY

q55 BIG
D E E R

H U N D R E D

ONE

T W O

VERY

D E E R

H U N D R E D

OLDEST

VERY

q57 F E W
MANY
OLDEST

q58 WATER
q59 BIG

D E E R

F E W

VERY

q6o BIG
VERY

q61 BIG
DEER
FEW
H U N D R E D

VERY

q62 BIG
DEER
FEW
HUNDRED
VERY

q63 BIG
DEER
F E W
H U N D R E D

VERY

NEXT STATE [STATE [TOKEN

ql0 q64 BIG
q23 DEER

q78 F E W

q38 VERY

q79 i q05 BIG
q35 D E E R

q29 F E W

qm VERY
q23 q66 F E W

q75 q67 ALL

q31 D E E R

qlo SOME
q23 q68 final s tate

q77 q69 BIG
q47 D E E R

q29 F E W
qlo OLDEST

q23 VERY

q27 qT0 DEER

q29 SOME

qlo qT1 BIG
q23 DEER

q26 F E W
q38 H U N D R E D

q35 ONE
q29 l T W O
q23 VERY

q47 q72 BIG
qso DEER
q29 F E W

q33 SEVERAL

q76 VERY

q74 q73 OLDEST

q23 ! q74 BIG
qlo DEER
q23 H U N D R E D

q26 ONE

q36 SEVERAL

qlo T W O

q29 i VERY

ql0 I q75 BIG
q24 I D E E R

q8~ FEW
q47 : VERY

q29 q76 BIG
qlo D E E R

q23 H U N D R E D

q26 O LD EST

q59 VERY

q29 ~ q77 BIG
qlo i VERY
q23 q78 T H E

q77 q79 BIG
q69 D E E R
q36 H U N D R E D

VERY
q8o H U N D R E D
qs 1 H U N D R E D

NEXT STATE

qlo

q24

q26

q36

ql0

q23

q78

q29

q33

ql0

q23

ql0

ql0

q23

q26

q72

q36

q23

ql0

ql0

q23

q26

q26

q38

q35

q29

ql0

q23

q26

q79

q29

q74

ql0
q24

q26

q38

q79

q35

q29

ql0

q23

q26
q36

ql0

q23

q26

q80
q29
ql0

q36
qlo
qlo

q23
q47

q29
q26

q69

LEARNING SYNTAX BY AUTOMATA INDUCTION 29

ifier corpus to just two-word sequences, eliminating the partitives and the

quantifier sequences altogether, by assuming some kind of processing load

that initially filters out multiword sequences from consideration.

This yields a 0-reversible automaton that collapses two-token sequences

together: the, big, red, Fred's are all put into the same word class. While

this overgeneralizes the adult grammar, it matches the child grammar quite

closely. A possible developmental sequence would then be to add in the

partitive and quantifier sequences, incrementally. The end result would

be the 2-reversible machine described above, but one that is built in two

distinct stages. As we discuss in the next section, an initial pass over

thousands of sample sentences in the Brown corpus data base at least

casually confirms this hypothetical developmental sequence. Pinker (1984)

also presents evidence in favor of this view.

4. Formal induct ive inference in language acquis i t ion

Our two test cases show clearly that formal inductive inference can play

a role in syntax acquisition. In this section we consider the implications of

our tests for models of human syntax acquisition and development.

Our first general observation is that, contrary to some expectations, for-

mal inductive inference need not "run wild" or take extraordinary com-

putational time with full-scale natural language examples. Second, the

learning procedure can work incrementally with just the positive exam-

ples it is given. Some have objected to applying formal inductive inference

to natural language because certain sentences, like the auxiliary verb se-

quences could have been being given, are too rare. But we note that the

inference method correctly infers the very longest (and rarest) auxiliary

sequences from the shorter ones. It also learns the two-word NP specifier

sequences quite easily, while having to work harder at the multiple-word

sequences. This apparently accords with human performance (see below).

4.1 Auxiliary system inference: Discussion

The auxiliary system has often been regarded as an acid test for a theory

of language acquisition. Given this, we are encouraged that it is in fact

learnable via an n 3 method. This success derives from the systematic

sequential structure of the English auxiliary system. In an idealized form

(ignoring tense and inflections) the regular expression

[DO I [<modal>] [HAVE] [BE]] [BEpassive] GIVE

generates all English verb sequence patterns in our corpus. 17

17The double be form now including tense shows up in sentences such as I could be

30 R . C . BERWICK AND S. PILATG

Basically, zero-reversible inference attempts to simplify any partial, dis-

junctive permutation like (alb)zlay into an exhaustive, combinatorial per-

mutation like (alb) (xly). Since except for do the active auxiliary verb forms

in fact pattern this way, zero-reversible inference almost works for active

auxiliary sentences. However, one must move to 1-reversible inference to

acquire a correct automaton.

Rather than raising k, one could instead chop the corpus into finer pieces,

as briefly mentioned earlier. For example, a more realistic model of pro-

cessing English verb sequences might have an external, more linguistically

motivated mechanism that forces the separate treatment of active and pas-

sive forms. If do exceptions were recognized as separate forms and the

infrequent . . . be being . . . cases were similarly excluded from the immature

learner, one could apply simpler and faster zero-reversible inference to the

remaining active and passive forms without overgeneralizing, is In such a

case the active system can be induced from 18 examples out of 44 variants

and the passive system from 14 out of 22. The entire active system is

learnable once examples of each form of each verb and each modal have

been seen, plus one example to fix the relative order of have vs. be, and
one example each to fix the order of modal vs. have or be.

The . . . be being . . . cases are systematically related to the rest, but also

have a natural boundary: as mentioned above, the very rarest sequences

like could have been being given may be successfully acquired from just a

few shorter examples such as could have been given and been being given,

even if the rare sequences are not actually seen. This seems consistent with

human judgments that such phrasing is awkward but apparently legal.

4.2 Developmental evidence for reversible inference

How do our results compare with what is known about child language

development? Children evidently never make mistakes on the relative or-

der of auxiliaries, which is consistent with the reversibility model, but they

do mistakenly combine do with tensed verb forms (Pinker, 1984). In con-

trast, children never make mistakes with auxiliary sequences and modals in

straight declarative form; Pinker (1984, p. 272) notes that "no errors with

auxiliary ordering have been observed in children's spontaneous speech,"
but that auxiliary repetition errors are observed in question formation, e.g.,

Will it will rain. No such repetition errors have been reported in declara-

tive sentences (Pinker, 1984, p. 395). We have confirmed these results by

being given bread. These axe quite rare, but acceptable.

lSGiven that the appearance of do in declarative sentences is also fairly rare, one might

prefer a 0-reversible system that handles do support as an exception, rather than opt for

a 1-reversible inference that is flawless but a slower learner.

LEARNING SYNTAX BY AUTOMATA INDUCTION 31

examining thousands of examples from one computer data base of child

utterances, the Brown corpus.

The NP specifier inference is also supported by developmental evidence.

Children rarely or never make mistakes with article-noun, possessor-noun,

or adjective-noun combinations, a success supported by the 0-reversibility

of the corresponding inferred automaton. For instance, Brown (1973) re-

ports that at what he calls Stage I and Stage II speech, over 30 sentences

with adjective/or determiner+Noun combinations were recorded for one

child, including 15 examples of article+D Noun and many examples of

possessor+Noun (adjective+Noun being less frequent). Examples like more

milk, another book, or big book are frequent (Pinker, 1984, p. 149).

Multiword specifier sequences are also produced by age 3 or so, such as

read dat cowboy book (Pinker, 1984, p. 133); errors occur when children

miscategorize words, as in another one pencil or more some milk (Pinker,

1984, p. 113). This greater difficulty in categorizing multiple word se-

quences is directly reflected in the non-0-reversibility of the corresponding

automaton for such examples: since they are 2-reversible, inference time

is correspondingly greater and the window required for correct inference

and induction of the word classes is greater. We could argue that compu-

tational burden is simply greater in such cases, since 2-reversible inference

is required to determine the correct categorization.

As mentioned, we have also examined thousands of examples from the

Brown corpus data base ourselves. This initial survey shows fewer than one

or two errors in NP specifier order when there are only two words in the

specifier sequence (out of about a thousand examples with those specifiers).

In contrast, there are many dozens of errors with partitives and quantifiers

(out of a few hundred examples). This pattern suggests that human learn-

ers might in fact proceed in the tentative way that we did, by boosting k

in stages: if the learner first assumed a 0 or 1 reversible target language,

they would then get the two-word NP specifier sequences correct, but not

the partitives and complex quantifier sequences; they would overgeneralize

these. 19 If they were then able to apply a principle of indirect negative

evidence, and assume that if some example were not encountered after a

certain length of time it must not be a positive example, they could boost k

and try again, this time succeeding if k were set to 2. Additional evidence

for the validity of this incremental, developmental model of NP specifier

acquisition comes from the relative ease with which the auxiliary system

is acquired relative to the NP specifier system: since the auxiliary system

19Recall that we used this incremental method to first fix the reversibility of the
language in question before applying the actual positive-example inference algorithm

itself. Here we are suggesting that this incremental procedure might be relevant to
human acquisition.

32 R. C. BERWICK AND S. PILATO

is 1-reversible, it takes less time before an incremental learner would suc-

cessfully acquire the auxiliary automaton, as compared to the NP specifier

automaton.

To summarize, an incremental k-reversible inference model mirrors the

ease with which children learn auxiliaries and 2-word NP specifier se-

quences, as well as the greater problems and miscategorizations they make

with multiple-word NP specifier sequences.

4.3 Reversible inference and other language acquisition models

How does our model of k-reversible inference fit into the larger picture

of language acquisition? We see it as one way to combine a domain inde-

pendent inference mechanism with domain dependent constraints, such as

a division into auxiliary verbs, active/passive forms, or two-word specifier

sequences. In this view, both domain-dependent and domain-independent

constraints have their own role to play, and contribute jointly to the suc-

cess of the acquisition procedure, k-Reversibility guarantees cubic-time

learnability, while the language domain itself guarantees that the corpus

fragments are k-reversible for small values of k.

We do not believe, however, that k-reversible inference suffices for lan-

guage acquisition. Rather, we would prefer to claim that language acqui-

sition is nonuniform and susceptible to a variety of acquisition strategies,

and that k-reversibility is one of these. We can compare it, in fact, to

Pinker's procedure P6 (1984, p. 68), that states in part:

If 2 [np] expansions are identical except for one position that contains

one annotated category in one rule, and another annotated category in

the other, collapse expressions by placing the noncommon ones in braces

... if 2 expansions are identical, except for one position that contains

one annotated category in one rule and an additional annotated category

in the other, collapse expressions by placing the additional annotated

category in parentheses.

To unpack this a bit, Pinker's P6 procedure would lead to the following

examples of rule collapsing:

Given: NP -~ X Y

Yields: NP ~ U Y

NP --* U Y

Given: VP ---+ V N P P P [V N P

Yields: VP ---+ V NP (PP)

LEARNING SYNTAX BY AUTOMATA INDUCTION 33

P6 aims at the same kind of similarity collapsing as 1-reversibility, be-

cause it collapses identical contexts, but it is not so systematic or formal-

ized. However, P6 does not say how word classes would be determined to

be equivalent in the first place. Pinker's quote cited earlier on how to fix

noun subclasses hints at something very like 1-reversibility. In the end.

though, Pinker uses semantic equivalence to establish categories for differ-

ent verbs or nouns. In contrast, our results show that such regularities, be

they syntactic or semantic, can be inferred from distributional evidence in

highly restricted subdomains, by assuming a k-reversible target class.

Wolff~s (1978, 1982) SNPR system also aims at something similar to

reversible induction. Given the word sequences Mary eats pies and Mary

bakes pies, Wolff would define a new class X={eats, bakes} corresponding

to substitution in identical contexts. However, Wolff's procedure is prob-

ably less constrained, since it does not require the target language to be

reversible at all.

5. Conclus ion

To conclude, k-reversibility is essentially a model of simplicity, not com-

plexity. It basically induces the substitution classes that are the building

blocks of larger sentence structures. In the linguistic subdomain for which

k-reversibility is defined - regular grammars it functions to induce the

classes that fill "slots" in a regular expression, based on the similarity of

tail sets. Increasing the value of k is a way of requiring a higher degree of

similarity before calling a match. 2°

When applied to idiosyncratic fragments of English syntax, k-reversible

induction is a psychologically plausible and computationally feasible learn-

ing procedure. Further, the greater difficulty of NP specifier acquisition

implied by its 2-reversibility is mirrored by a corresponding difficulty in

child language development. More generally, in at least two areas of En-

glish syntax, just where linguistic constraints are so weak that the trivial

parameter-learning procedures discussed by linguists fail, the formal con-

straint of k-reversibility succeeds. Thus, by combining two different kinds

of language acquisition mechanisms - the domain-independent model of k-

reversibility and the domain-dependent model of syntactic phrase structure

- we can arrive at a more powerful overall language acquisition procedure.

2°See Gonzalez and Thomason (1978) for other approaches to k-tail inference that are

not as efficient.

34 R.C. BERWICK AND S. PILATO

Acknowledgements

Support for this research was provided in part by the Advanced Projects
Research Agency of the Department of Defense under Office of Naval Re-
search contract ONR-14-80-C-0505. Marc N. Light greatly assisted us in
preparing and programming the NP specifier cases and in examining the
Brown corpus. We would also like to thank the reviewers of this paper, in-
cluding Kurt VanLehn and Pat Langley, whose insightful comments greatly
improved this paper's content and presentation.

References

Akmajian, A., Steele, S., & Wasow, T. (1979). The category AUX in
universal grammar. Linguistic Inquiry, 10, 1-64.

Angluin, D. (1977). Inductive inference of formal languages from positive
data. Information and Control, 45, 117-135.

Angluin, D. (1982). Inference of reversible languages. Journal of the As-
sociation for Computing Machinery, 29, 741 765.

Berwick, R. (1982). Locality principles and the acquisition of syntactic
knowledge. Doctoral dissertation, Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA.

Berwick, R. (1985). The acquisition of syntactic knowledge. Cambridge,
MA: MIT Press.

Brown, R. (1973). A first language. Cambridge, MA: Harvard University
Press.

Fu, K., & Booth, T. (1975). Grammatical inference: Introduction and
survey. IEEE Transactions on Systems, Man, and Cybernetics, 5, 95-
111.

Gleitman, L., & Wanner, E. (1982). Language acquisition: The state of
the state of the art. In E. Wanner & L. Gleitman (Eds.), Language
acquisition: The state of the art. New York: Cambridge University
Press.

Gold, E. M. (1967). Language identification in the limit. Information and
Control, 10,447-474.

Gold, E. M. (1978). Complexity of automaton identification from given
data. Information and Control, 37, 302-320.

Gonzalez, R. C., & Thomason, M. G. (1978). Syntactic pattern recognition.
Reading, MA: Addison-Wesley.

LEARNING SYNTAX BY AUTOMATA INDUCTION 35

Jackendoff, R. (1977). X syntax: A study in phrase structure. Cambridge,
MA: MIT Press.

Langley, P. (1982). Language acquisition through error recovery. Cognition
and Brain Theory, 3, 211 255.

Lightfoot, D. (1982). The language lottery. Cambridge, MA: MIT Press.

MacWhinney, B. (1982). Basic processes in syntactic acquisition. In S.A.
Kuczaj, II (Ed.), Language development: Vol. 1. Syntax and seman-
tics. Hillsdale, N J: Lawrence Erlbaum.

Mitchell, T. M. (1978). Version spaces: An approach to concept learning.
Doctoral dissertation, Department of Electrical Engineering, Stanford
University, Stanford, CA.

Olivier, D. (1968). Stochastic grammars and language acquisition mech-
anisms. Doctoral dissertation, Department of Psychology and Social
Relations, Harvard University, Cambridge, MA.

Osherson, D., Stob, M., & Weinstein, S. (1985). Systems that learn. Cam-
bridge, MA: MIT Press.

Pinker, S. (1984). Language learnability and language development. Cam-
bridge, MA: Harvard University Press.

Wexler, K., & Culicover, P. (1982). Formal principles of language acquisi-
tion. Cambridge, MA: MIT Press.

Wolff, J. G. (1978). Grammar discovery as data compression. In Proceed-
ings of the AISB/GI Conference on Artificial Intelligence (pp. 375
379). Hamburg, West Germany.

Wolff, J. G. (1982). Language acquisition, data compression, and general-
ization. Lahguage and Communication, 2, 57 89.

36 R.C. BERWICK AND S. PILATO

A p p e n d i x : T h e A u x i l i a r y D a t a

In this section we list the 92 auxiliary verb specifier sequences used for

the automaton induction experiments. The full set of 735 noun phrase

specifier sequences is available on request from the first author.

Judy gives bread

Judy is giving bread
Judy has given bread

Judy has been giving bread

Judy gave bread

Judy was giving bread

Judy had given bread
Judy had been giving bread

Judy does give bread

Judy did give bread

Judy can give bread

Judy can be giving bread
Judy can have given bread
Judy can have been giving bread

Judy could give bread

Judy could be giving bread
Judy could have given bread

Judy could have been giving bread

Judy may give bread
Judy may be giving bread

Judy may have given bread
Judy may have been giving bread

Judy might give bread
Judy might be giving bread
Judy might have given bread
Judy might have been giving bread

Judy must give bread
Judy must be giving bread
Judy must have given bread
Judy must have been giving bread

Judy shall give bread
Judy shall be giving bread
Judy shall have given bread
Judy shall have been giving bread

LEARNING SYNTAX BY AUTOMATA INDUCTION 37

Judy should give bread

Judy should be giving bread
Judy should have given bread
Judy should have been giving bread

Judy will give bread

Judy will be giving bread

Judy will have given bread
Judy will have been giving bread

Judy would give bread
Judy would be giving bread
Judy would have given bread

Judy would have been giving bread

Judy is given bread

is being given bread

Judy has been given bread
Judy has been being given bread

Judy was given bread
Judy was being given bread

Judy had been given bread
Judy had been being given bread

Judy does get given

Judy did get given

Judy can be given
Judy can be being given
Judy can have been given

Judy can have been being given

Judy could be given

Judy could be being given
Judy could have been given

Judy could have been being given

Judy may be given
Judy may be being given
Judy may have been given

Judy may have been being given

Judy might be given
Judy might be being given
Judy might have been given
Judy might have been being given

bread
bread

bread

bread
bread

bread

bread

bread
bread
bread

bread

bread
bread
bread

bread
bread
bread
bread

38 R.C. BERWICK AND S. PILATO

Judy
Judy

Judy

Judy

Judy

Judy
Judy
Judy

Judy
Judy

Judy

Judy

Judy
Judy
Judy

Judy

Judy

Judy
Judy

Judy

must
must

must

must

shall

shall
shall
shall

should

should

should

should

will
will
will

will

would

would
would

would

have

have

have
have

have

have

have
have

have
have

be given bread
be being given bread

been given bread

been being given bread

be given bread

be being given bread

been given bread
been being given bread

be given bread
be being given bread

been given bread

been being given bread

be given bread
be being given bread

been given bread
been being given bread

be given bread
be being given bread

been given bread
been being given bread

