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Mathematics plays a distinct role in the formal analysis of human language, On the
one hand, given the essentially biological character of language, we should not expect
mathematical formalisms to play a greater role here than in the normal sciences such
as biology or physics: that is, formalisms should make explicit otherwise implicit and
unclear implications of linguistic theories. On the other hand, for whatever reason—
perhaps because of its cloge relationship to abstract string Manipulation—linguistic
science has been susceptible to a kind of “overexpectation” effect: it seems as though
mathematics should have more to say about natural language than it has, partially
due to the history of generative grammar. The end result is mixed: we often find
partial mathematical analyses that, in the end, do not have much relevance for the

mathematics of how Cartesian systerns like these might be computed, that is, learned.

1. INTRODUCTION: MATHEMATICAL MODELING AND LANGUAGE

Mathematics and language have had a long and some would say shaky rmarriage.
In the current era, the mathematics-language connection begins of course with the
notion of generative grammar developed by Chomsky, and the classicai demonstration
that finite-state languages are descriptively inadequate for English {presumably other)
natural langnages. These mathematical results had a large impact on the field at their
time: they put a lower bound on the complexity of naturaj language, showing that
gimple memoryless concatenative systems could not begin to describe the complexity of
natural languages.

Through the intervening three and half decades, mathematics has now and again
played a role in the construction of linguistic models, but usually a tangential role.
Rather, mathematical models have been used to give added plausibility to existing the-
ories. From time to time, there have been efforts to use mathematical o computational
techniques to argue for one or another approach to linguistic theory. Thus we find in the
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presentations of Generalized Phrase Structure Grammar (GPSG) [1] the pro-
at eliminating transformational rules is a step forward because we would }Ilalve
rinnings of an explanation” for efficient parsability. However, that possibility
short-lived. Over the next few years, using the tools of modern computational
ity theory, results accumulated demonstrating that to all intents and purposes,
’SG and transformational grammar are equally difficult to parse, in the com-
1al complexity theory sense: both are NP-hard. Thus by the 1985 publication
1 book on GPSG [2] we find that any argument that theory is “better” bas‘led
yutational efficiency has been explicitly denied. The same fate occurred with
Functional Grammar (LFG): in the late 19703 LFG was touted as being more
to parse, in the formal sense, hence superior to transformational grammar; by
1980s, computational complexity results showed that LFG too was NP-hard,
wussion of its superiority in this formal sense was abandoned,
-esults demonstrate at least that formal computational methods can in fact make
lications of even a supposedly formalized theory more clearcut. For example,
 book by Gazdar, Klein, Pullum, and Sag takes great pains to be as precise
r as possible, using set definitions and the Yike. However, because the GPSG
ts build out of several very complicated components, e.g., the “Foot Feature
ion,” that interact with each other, the computational import of this systemn is
eans clear. For a discussion that attempts to remedy some of these deﬁnitiopal
e [3]; indeed, as Ristad points out, many of the GSPG definitions mte'ract' with
ier in such a way as to be circular. Thus, a textually formal presentation is not
ily even an easy path to salvation. . .
lition, these formal results of course do not settle the question of how hard it
'se sentences in practice. Here there has been substantial progress in last few
ch that the gap between parsing sentences using, say, GPSG and using current
mational theory has narrowed: I would estimate that there is no more than an
‘magnitude difference in practical parsing times—10 seconds per sentence at
- a T'G-based system that maps to some level of logical form vs, 1 SeCOI‘ld or
GPSG system. The remaining difference is due mostly to our better grip on
s needed to build efficient parsers for classical context-free grammars, As these
s built up for the T'G designs, the gap has begun to narrow. Thus, some of the
| differences are based on the usual “lamplight” effect and not on any inherent
+ we tend to look where the light is, at systems where ready-made techniques
' parsing,. . ‘
dl though, Cartesian computation for parsing sentences is now a practlca} possi-
iy “Cartesian” I simply mean an account that attempts to be language um‘versal,
struction specific, and highly modular. Many theories of language, including the
cent versions of GPSG, fall under that rubric, and in fact the models described
ould equally well be applied to general GPSG principles. The intended'con—
with linguistic systems that are language specific—for example, sets of highly
ar if-then rules, or context-free rules, as in the classical ATN systems of the
mentioned just above, while there has been substantial progress in parsing sen-
ising such Cartesian models, there remains the important question of Ca.rtes‘m.n
ation in the domain of learnability. We turn to this question in the next section.
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2. HOW MATHEMATICS CAN HELP: CARTESIAN COMPUTATION
AND CARTESIAN LEARNING

A key question for the “Cartesian” view of language is learning. If there is in effect
Just one’universal grammar, then the linguists tell us that individual languages are
acquired by a process of “parameter setting”. The idea is that there are a small number
of (binary—valued) parameters that account for the variation from language to language,
and acquiring say, Japanese ingtead of English means to set those parameter values on
the basis of {positive example) input evidence, plus learn & dictionary for that language.
Learning proceeds piece by piece, switch setting by switch setting.

But what is the Cartesian computation corresponding to this process? Until recently,
there have been few concrete suggestions as to how the parameter settings might actually
get computed. The learning models we have for language are based on older notions
of rule-by-rule acquisition and generalization. Linguists by and large have assumed the
process is “easy”: there is somehow a special piece of data the child hears, a trigger,
that sets a relevant parameter one way or another, and that is the end of the story.
For instance, one standard cited example is the “Head-Complement” parameter: the
order of verb and its objects, preposition and its objects, and so forth. English is Head-
first: we have verbs before their objects, prepositions before their objects. Japanese is
Head-final; verbs appear at the end of phrases. The ides is that a child in an English-
speaking environment will hear something like drink the milk and fix the order as Head-
Complement once and for all.

Obviously, this is far from a complete computational model. Further, the standard
methods developed in the computational learning literature over the last 10 years all
assutne learning over an infinite family of possibilities, whereas the parametric view
assumes just a finite number of hypotheses—2", where n = the number of (binary-
valued) parameters. Computer science has instead used the “PAC” probably approxi-
mately correct model of learning or else the models of language identification learning
originally proposed by Gold [4]. What is needed is some way to bring the powerful
techniques of modern computational learning theory into this finite realm. (Of course,
this is not to say that such procedures are banished in the parametric view, since the
parametric framework is intended to account for what is called “core” grammar—the
chief construction types of a language—another ill-defined notion—rather than more
“peripheral” constructs. A discussion of this possible distinction would lead us too far
afield here.)

How can we bridge this gap to get a model for Cartesian computation in this domain?
Recently, Gibson and Wexler ([5], GW) have attempted to formalize the notion of lan-
guage learning in a (finite) space whose grammars are characterized by a finite number
of parameters or 1-dimensional Boolean-valued arrays, n long. A grammar in this space
is simply a particular n-length array of 0’s and 1’s; hence there are 2" possible grammars
(languages). One of Gibson and Wexler’s aims is to establish that under some simple
hill-climbing learning regimes, namely, single-step gradient ascent, some such natural,
finite, spaces are unlearnable, in the sense that positive-only examples lead to loeal
mazimoe—incorrect hypotheses from which a learner can never escape. More broadly,
they wish to show that learnability in such spaces is still an interesting problem, in that
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i a substantive learning theory concerning feasibility, convergence time, and the
at must be addressed beyond traditional linguistic theory and that might even
between otherwise adequate linguistic theories.

is section we show that one can considerably extend their results by adopting a
mathematical model for Cartesian, or parameter-based learning. The sequel is
1 to exploring this model and demonstrating the pitfalls in avoiding formalization
particular instance.

s first outline the GW model The hypothetical Gibson-Wexler parameter learner
by certain central constraints, and uses an learning method that they call the
ing Learning Algorithm (TLA}. We also recall their definition of a local trig-
10r notational changes aside): given values for all parameters but one, a local
for value v of parameters p;, p;(v), is a sentence s [rom the target grammar Gip
at s is grammatical iff p;(v) = v. Then they state their TLA as follows:

nitialize] Step 1. Start at some random point in the (finite) space of possible
arameter settings, specifying a single hypothesized grammar with its resulting
<tension as a language; :

’rocess input sentence} Step 2. Receive a positive exaniple sentence s; at time
(examples drawn from the language of a single target grammar, L{G,)), from.a
niform distribution on the language (we shall be able to relax this distributional
»ustraint later on);

searnability on error detection] Step 3. If the current grammar parses (generates)
, then go to Step 2; otherwise, continue.

lingle-step gradient-ascent] Select a single parameter at random, uniformly with
robability 1/n, to flip from its current setting, and change it (0 mapped to 1, 1
» 0) iff that change allows the current sentence to be analyzed; otherwise go to
tep 2;

wurse, this algorithm never halts in the usual sense. GW aim to show under
onditions this algorithm converges “in the limit”—that is, after some nwumber
:ps, where n is unknown, the correct target parameter settings will be selected
ver be changed. Their central claim is stated as their Theorem 1 (p. 7 in their
ript), Note that the notion of “trigger” does not enter into the statement of the
' the constraints the TLA employs, but only into their theorem.

em 1 As long as the probability is always greater than a lower bound b (b > 0)
2 learner will 1) encounter a local trigger for some incorrectly-set parameter P,
then reset P accordingly to the targel value, it turns out that the target grammar
rays be learned using the Triggering Learning Algorithm.

\ the standpoint of learning theory, however, GW leave open several questions
n be addressed by a more precise formalization of this model in terms of Markov
{a possible formalization suggested but left unpursued in a footnote of GW). We
ture the hypothesis space, of size 2%, as a set of points, each corresponding to
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one particular array of parameter settings. Call each point a hypothesis state or simply
state of this space. We arbitrarily place the (single} target grammar at the center of
this space. Since by the TLA the learner is restricted to moving at most 1 binary
value in a single step, the theoretically possible transitions between states can be drawn
as (directed) lines connecting parameter arrays (hypotheses} that differ by at most 1
binary digit (a 0 or a 1 in some corresponding position in their arrays). Recall that
this is the so-called Hamming distance for binary arrays. We may further place weights
on these transitions, corresponding to the nonzero b's mentioned in the theorem above;
these are actually the transition probabilities between hypothesis states (we cmit ares
between states that have 0 transition probabilities). Given a distribution over L&), we
can further carry out the calculation of the actual b’s themselves. Thus, we can picture
the TLA learning space as a directed, labeled graph V with n vertices.

More precisely, we can make the following remarks about the TLA gystem GW de-
scribe,

HRemark. The TLA system is memoryless, that is, given a sequence s of sentences up
to time s;, the selection of hypothesis & depends only on sentence 8, and not {directly)
on previous sentences, ie.,

plh(s:) < milw(t),t <t} = P{z(t) < zilz(ta 1)}

In other words, the TLA system is a classical discrete stochastic process, in particular,
a discrete Markov process or Markov chain. We can now use the theory of Markov chains
to describe TLA parameter spaces[6]. For example, as is well known, we can convert the
graphical representation of an n-dimensional Markov chain to an n X n matrix, where
each matrix entry (z,7) represents the transition probability from state ¢ to state 7. A
single step of the Markov proeess is computed via the matrix multiplication M x M: n
steps is given by M™.

However, as mentioned, not all these transitions will be possible in general. By
assumption, only differences in surface strings can force the learner from one hypothesis
state to another. For instance, if state 4 corresponds to a grammar that generates a
language that is a proper subset of another grammar hypothesis 7, there can never be
a transition (nonzero ) from j to 4, and there must be one from i to j. Further, by
asswmption and the TLA, it is clear that once we reach the target grammar there is
nothing that can move the learner from this state, since all remaining positive evidence
will not cause the learner to change its hypothesis. Thus, there must be a loop from
the target state to itself, with some positive label ¥, and no exit arcs. In the Markov
chain literature, this is known as an Absorbing State (AS). There is one other kind of
Absorbing State: any state that exits only to another AS. Finally, if a state corresponds
to a grammar that generates some sentences of the target there is always a loop from
any state to itself, that has some nonzero probability. Clearly, can conclude at once the
following learnability result, which is at once more transparent and accurate than the
one given in GW:

© Theorem 2 Given ¢ Markov chain C corresponding to a GW TLA learner. J exactly

1 AS {corresponding to the target grammar/language) iff C is learnable.
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<«=. By assumption, ' is learnable. Now assume for sake of contradiction
ere is not exactly one AS. Then there must be either 0- AS or > 1 AS. In the
®, by the definition of an absorbing state, there is no hypothesis in which the
will remain forever. Therefore C is not learnable, a contradiction. In the second
thout loss of generality, assume there are exactly two absorbing states, the first
iponding to the target parameter setting, and the second 5 corresponding to
her setting. By the definition of an absorbing state, in the limit C' will with some
probability enter 5, and never exit 8. Then C is not learnable, a contradiction.
ur assumption that there is not exactly 1 AS must be false
ssume that there exists exactly 1 AS ¢ in the Markov chain M. Then, by the
n of an absorbing state, after some number of steps n, no matter what the
state, M will end up in state 4, corresponding to the target grammar, I
that this approach avoids the pitfalls of proceeding without a formalization, as
»f given in GW {pp. 7-8 in manuscript) contains a small, but crucial, flaw:

That is, if the learner never goes through the same state twice, then she
bound to end up in the target state at some point, because the parameter
ace is finite in size. Thus the probability of avoiding the target state forever
equivalent to the probability of cycling forever through some ordered set
states (a cycle).

We can divide the parameter space into a finite set of minimal cycles,
were each minimal cycle contains no cycles as a subpart. Becouse the
rameter space is finite, the set of minimal cycles in the parameter space
also finite. [our emph. reb] For each miuimal cycle, we can now calculate
e probability that the learner remains in that cycle forever...

ubtle error is introduced in the second sentence of the second paragraph, in
nition of a cycle. While it is true that the parameter space is finite, it is not
ily the case that “the set of minimal cycles in the parameter space is finite.”
sider the decimal expansion of any irrational number, say the square root of 2
2136.... This will never have any periodic sequence, yet specifies a countably
sequence of states that a 10-state Markov chain could run through, without
reating a sequence. The number of such sequences is infinite, not finite, even
the Markov structure itself is finite. Thus the proof as given is incorrect. One
way to formulate the proof is by resorting to an explicit Markov formulation,
isted but not executed in GW's footnote 9, and as we established above. The
i simple: use formalization as a tool when it helps.

o
=N

r the GW 3-parameter system, which they consider as the most “complex”
they study, in fact, as analyzable only by computer simulation, Its binary
sers are: (1) Spec(ifier) first (0) or last (1); (2) Comp(lement) first (0) or last
- Verb Second (V2) does not exist (0) or does exist (1). By Specifier GW follow
dard linguistic convention of whether there is part of a phrase that “specifies”
ragse, roughly, like the old in the old book; by Complement GW roughly mean a
¢ arguments, like an ice-cream in John ate an ice-cream or with envy in green
vy. There are also 7 possible “words” in this language: 8, V, O, 01, 02,
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Adv, and Aux, corresponding to Subject, Verb, Object, Direct Object, Indirect Object,
Adverb, and Adjective, and 12 possible surface strings. Note that the “surface strings”
of these languages are actually phrases such as Subject, Verb, and Object. Figure (3)
of GW surnmarizes the possible binary parameter settings in this system. For instance,
parameter setting (5) corresponds to the array [0 1 0]= Specifier first, Comp last, and
—V2, which works out to the possible basic English surface phrase order of Subject—
Verb-Object (SVO)}. As shown in GW’s figure (3), the other possible arrangements of
surface strings corresponding to this parameter setting include 8V; SV O1 02 {two
objects, as in give John an ice-cream); S Aux V (as in John is a nice guy; S Aux V O
8 Aux V 01 02; Adv S V (where Adv is an Adverb, like quickly; Adv SV O, AdvS V
01 02; Adv S Aux V; Adv S Aux V O; and Adv S Aux V O1 O2.

Suppose SOV (setting #5=[0 1 0]) is the target grammar (language). With the
GW 3-parameter systemn, there are 2° = § possible hypotheses, so we can draw this
as an 8-point Markov configuration space, as shown in the figure above. Each labeled
circle is a Markov state, a possible array of parameter setiings or grammar, hence
extensionally specifies a possible target language. Each state is exactly 1 binary digit
away from its possible transition neighbors. Each directed arc between the points is
a possible (nonzero) transition from state i to gtate j; we shall show how to compute
this immediately below. We assume that the target grammar, a double circle, lies at
the center. This corresponds to the (English} SOV language. Surrounding the bulls-eye
target are the 3 other parameter arrays that differ from [0 1 0] by one binary digit each;
we picture these as a ring 1 Hamming bit away from the target: [0, 1, 1], corresponding
to GW’s parameter setting #6 in their figure 3 (Spec-first, Comp-final, +V2, basic
order SVO+V2); [0 0 0], corresponding to GW's setting #7 (Spec-first, Comp-first,
—V2), basic order SOV; and {1 1 0}, GW’s setting #1 {Spec-final, Comp-final, V2],
basic order VOS.

Around this inner ring lie the 3 parameter setting possibilities, all 2 binary digits
away from the target: [001], [1 00], [and [1 1 1] (grammars #8, 3, and 2 in GW figure
3). Finally, 3 binary digits away on a third ring lies hypothesis grammar 4, [1 0 1].

It is easy to see from inspection of the figure and without resorting to computer
simulation, that there are exactly 3 absorbing states in this Markov chain, that is,
states that have no exit arcs or lead directly to states with no exit arcs. One AS is the
target grammar (by definition). The other two are what GW dub “local maxima,” states
2 and 4, that lead only to sinks. These two states correspond to the local maxima at
the head of GW’s figure 4. Hence this system is not learnable. The computation of the
local maxima, again a seemingly computationally difficult chore in the GW simulation
as they note, also becomes rather more elegant in the Markov formulation.

How then do we construct this Markov diagram? We first arrange the 8 states in
Hamming distance, with the target in the middle. The intuition for connecting two
"adjacent” states 1 binary digit apart (7,7) is as follows: if there is some sentence
(string) in the target language that is in hypcthesis § but not i, then there is some
positive probability of making a transition from 4 to j. If there are no such target
strings, there is no positive evidence to move the learner from 4 to j. More precisely,
there are exactly four possibilities for this set difference between i and 3: (i) the two sets
are identical, in which case the set difference is the empty set, and then there is no path
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