ROBERT C. BERWICK

PRINCIPLES OF PRINCIPLE-BASED PARSING

L. INTRODUCTION: PRINCIPLES AND PARSING

"This book chronicles the first stirrings of a revolution in the study of
natural language processing, language variation, and psycholinguistics—
what some have called principle-based parsing.

To begin, perhaps it is simplest to say what principle-based parsing
is not. A traditional view of grammar description, and so parsing, relies
on many thousands of individual, language-particular, and construction-
specific rules. 'This is true whether the rules are used by a context-free
parser, an augmented transition network, a deterministic LR-type parser
like the Marcus parser, or a logic grammar of almost any stripe.

. Whatever the parsing method used, the key point is that rule-based
systems attempt to spell out surface word order phrase patterns such
as passive or dative, pattern by pattern and language by language. For
example, a typical rule-based system will encode the format of a passive
sentence such as Mary was kissed by Jokn in a particular if-then format
that includes the details of English-particular morphology (the be form

followed by a verb with an en ending) plus the absence of a logical object

in its expected position, along with a particular left-to-right ordering of
phrases. Note that this is as true of the context-free rule that might
be written as S—NP be V ed+passive as it is of the if-then grammar
rules of Marcus’ (1980) system, or the augmented transition network
rules handling passive as described in Bates (1978) that use register as-
signments and arc ordering. Each encodes the same construction-based
information in roughly the same way. Further, the same view pervades
language acquisition systems grounded on rules, like that of Berwick
(1985): acquiring a. grammar amounts to the piecemeal acquisition of
many construction-specific rules.

Principle-based language analysis replaces this standard paradigm
with another world view: rules are covered by a much smaller set of
principles that reconstitute the vocabulary of grammatical theory in
such a way that constructions like passive follow from the deductive in-
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teractions of a relatively small set of primitives. On this view there is
no ‘passive rule’. Passive constructions result from the interactions of
deeper morphological and syntactic operativiis that ‘bubble to the sur-
face’ as the sentences we happen to describe as active or passive. The
goal of the rest of this book is to show how this principle-based approach
leads to exciting new models for parsing and language translation, dif-
ferent psycholinguistic avenues, and changes in our view of language
acquisition.

Figure 1 illustrates the fundamental difference between rule- and
principle-based approaches. The top half of the figure shows a con-
ventional rule-based approach. Each sentence type is described by a
different rule. The bottom half of the figure shows a ‘principle-based
approach. Intuitively, note that one can get the multiplicative effect of
7y X g X ... rules by the interaction of m; + nz + ... principles. A
dozen principles, each with 2 or 3 degrees of freedom or parameters can
thus encode many thousands of rules. This approach has therefore been
dubbed principles-and-parameters theory.!

Let us see how principles can replace rules in our passive example.
One general principle says that verb phrases in sentences must either
begin with a verb in some languages, or end with a verb in others (those
are the degrees of freedom or parameterization in-this particular prin-
ciple). This basic description of the tree shapes in alanguage, dubbed
X theory, gives us part of the variation between languages like English
and Spanish on the one hand, and languages like German and Japanese
on the other. In English, the verb must come first, with the object af-
ter; in Japanese, the reverse. A second principle, called the Case filter,
says that all pronounced or lezica! noun phrases like ice-crearn must
receive Case, where Case, roughly speaking, is an abstract version of
the Latinate system that gives objective Case to objects, oblique Case
to objects of prepositions, nominative Case to sentence subjects, and so
forth. Case is assigned either from an active verb like ate or an aux-
iliary verb like was; the adjectival verb eaten deoes not assign case. A
third principle, called the Theta-criterion or §-criterion, insists that ev-
ery verb must discharge its Thematic arguments and every noun phrase
must receive a thematic role, completing a description or thematic struc-
ture representation of ‘who did what te whom®. So for example, eat can
mean to eat something (the ‘Affected Object’ in earlier parlance) and
discharges a thematic role of a noun phrase, while persuade could have

“either a noun phrase or a noun phrase and a proposition as its thematic
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(2)

The ice-cream I gave John  Ice-cream, I like John seems to

was eafen  the ice-cream like ice-cream

passive dative topicalized raising
sentence sentence sentence sentence
passive dative topicalization raising
rule rule rule rule
®)
passive dative topicalized raising

sentence sentence sentence senlence

Principle set

Figure 1: The difference between rule-based and principle-based systems is shown
schematically in this figure. The top half () illustrates a rule-based system, with
ore rule per construction like passive or dative. The bottom half of the figure (b)
illu_strates a piinciple-based system. Sentence types are derived from a much smaller
basis set of more fundamental principles that deductively interact to yield the effect
of constructions like passive,
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roles (persuade John or persuade John that Bill is a fool. A fourth
principle, Movement (or Move-a), lets one move any phrase o to any
available ‘landing site’. A fifth genesal principle is Trace theory: any
moved phrase leaves behind a phonologically empty category, & trace,
coindexed with the original phrase,.and bearing a certain configurational
relationship with the moved phrase. A sixth constraint, Binding theory,
determines when one noun phrase (a trace or not) can. be coidentified
with another, as in John thinks that he likes ice-creamn where John and
ke can refer to the same person. And so on; we will see details of these
principles in the chapters to come. A useful taxonomy for principles de-

veloped by Fong in this volume is to brand them either as. filters, ruling
out possible structures fed into them, or generators, admitting possible
new structures. Thus the Case filter and Theta-criterion behave like

filters because they are gates permitting only certain structures to pass,

while X theory and movement act as generators, because they output at
least as many structures as they receive.

Seeing how these principles operate in concert gives us a chance to
understand how the passive conspiracy works and at the same time re-
view the standard model of phrase structure assumed by all the anthors
of this book, as shown in figure 2. Conceptually (but not computation-
ally!) the principles fit together on a four-fold scaffolding tied together
in an inverted “Y’: a representation of a sentence’s underlying thematic
gtructure or D-structure; 4 sentence's surface structure or S-structure,
roughly, an augmented parse tree; a phonetic form or PF; and a sen-
tence’s Logical form, or LF. Returning to our passive example sentence,
we begin with a representation of its D-structure. Our goal is to show
how this D-structure can surface as a ‘passive’ form the ice-cream wes
eaten without ever making reference to an explicit ‘passive rule’.

s [xr 7] [ve was eaten [y the ice-creaml]]]

Here 7 is an empty position, a legitimate landing site for a noun phrase
(NP), and the basic tree shape, indicated by the usual bracketing, is set
by X constraints. Note that Thematic structure makes explicit reference
to the properties of lexical items, in this case that eat requires a thing
that gets eaten.

As figure 2 shows, D-structure is related to S-structure by the Move-c
relation plus some of the other constraints mentioned earlier. S-structure
then serves as a springboard for two ‘interface systems’ .on the left
it maps via phonological rules to an interface with the outside world,
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D-structure {Thematic structure)

} Phrase movement

S-structure (Surface structure)

}Phrase movement

PF LF
(Phonological/ ~ (Logical Form)

Phonetic Form)

Figure 2: The conventional inverted ‘Y’ model of phrase structure used in the prin-
ciple-and-parameters theories described in this boak. It includes four levels of rep-
resentation: (1) D-structure, or the level of Thematic structure, essentially ‘who did
what to whom'; (2) S-structure, or Surface structure, related to-D-structure by the
displacement of NPs from their D-structure positions; {3} PF, the interface to speech,
related to S-structure by-a phonological mapping; and (4) LF, Logical form, an inter-
face to other cognitive systems such as inferential processes, representing quantifier
and NP-NP relations and related to S-structure again by the displacement of certain

phrases (so-called LF movement). The lexicon, not shown, is ‘a source of thematic
and phonological information.

nainely, a spoken or phonetic form (PF)—this is the sentence that we
actually see (more properly hear). On the right S-structure maps to an
interface for other cognitive systems of an inside mental world, a repre-
sentation of quantificational and noun phrase-noun phrase relationships,
or Logical form; this relation is also mediated by a general relation of
phrase movement, suitably constrained. ( Warning: though this sketches
a logical picture of the principle-based components, it does not say how
these representations are to be computed, piece-by-piece or even if at
all, or in what order. It is not even clear that we need all these represen-
tations, computationally speaking. That is a serious topic that all the
authors must tackle.)

How then does the passive cabal get off the ground? Iee-cream can-
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not receive Case from an adjectival form like eaten. (We kuow that eaten
is adjectival by the way that it mimics the analogous John was sad.) So
ice-creqm must move, and can move, to the avallable empty landing site
at the front. Now ice-cream recelves nominative Case from was, meéet-
ing the Case filter. Further, eazt can now discharge its thematic role of
Affected Object, and all visible noun phrases in the sentence receive a
distinct thematic role, because the trace left behind by movement gets
the discharged thematic role just as if it were the object of eat, and
the trace’s link with ice-cream ensures that ice-cream receives that the-
matic role as well. Taken together, there is no explicit passive rule. It
is implicit in the inference from the principles. Importantly, the deduc-
tive chain from principles to surface form is very much longer than the
link from the usual if-then rules to surface form. It is very much like
reasoning from first principles, and it gives us the first hint of the com-
putational thickets we must cut through to gain from a principle-based
approach, as we shall see below. .

If you concluded this was a lot of pain for little gain, then you were
right. In just the same way, making one chemical compound out of a
vast stock of molecules and bonding principles seems like overkill. Still,
we can learn much from this small example, namely what the principle-
based enterprise is all about.

The first lesson is that the same small set of principles can be re-
combined, over and over in different ways, yielding the entive array of
surface sentences, and, by varying the parameters, different dialects and
languages.

Second, note that the principles themselves are highly abstract and
heterogenecus, often stated as a set of declarative constreints, unlike a
more uniform representation like a set of coniext-free rules in a deriva-
tional framework. That is, we can imagine the set of well-formed sen-
tences as those that dodge their way through a gauntlet of quite differ-
ent representational ¢onstraints, rather than as the generative deriva-
tion froin some S starting symbol. To this extent, the principle-and-
parameters approach casts off the old garb of formal language theory
with its emphasis on strings and lasguages.. To take but one exam-
ple, the notion of a language with its grammatical and ungrammatical
strings becomes nearly meaningless: instead, there are simply struc-
tures that pass more or less of tlie way through the gauntlet. {To be
sure, as note 1 points out, many recent linguistic theories have adopted

a 51m1la.r declarative framework. Even so, the declarative character of .
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the principles-and-parameters approach itself is hotly debated, as noted
in the chapters by Correa and Johnson.}) In addition, the principles
themselves apply at different ploces. For instance, movement of phrases
and. constraints on movement apply at the D-stiucture and S-structure
interfaces, while the Case filter applies at S-structure 1tself {on some
accounta).

Third, the principles-and-parameters approach stresses the impor-
tance of the lezicon (for example, as the source of thematic role con-
straints and possibly all language-particular variaiion), leading quite
naturally to a focus on cross-linguistic variation, universal constraints,
and language acquisition. On this view, there is one basic ‘chassis’ for all
human grammars, with parametric variations setting the range of pos-
sible variations. For instance, Japanese differs from English in part be-
cause Japanese X constraints place phrasal heads—verbs in verb phrases,
prepositions in prepositional phrases—last rather than first. Learning
Japanese rather than English, then, is partly a matter of setting this X
parameter to head final rather than head first (see Kazman's chapter
for more on this}. Finally, the highly modular and abstract charac-
ter of principles leads directly to a heterogeneous view of language use,
and an emphasis on how linguistic principles actually enter into human
cognition. '

Each of the cha.pters focuses on one or more of these major issues.
Abiey, Corzrea, Epstein, Fong, Johnson, and Stabler stress the major ar-
chitectural and computational design features of principle-based parsers,
including the issues of computational efficiency and program control flow
in parsing. Dorr, Kashket, and Kazman treat the topic of cross-linguistic
variation and the lexicon as it bears on machine translation; the pars-
ing of languages as diverse as English and its near opposite, the Aus-
tralian aboriginal language Warlpiri; and langnage acquisition. Thank-
fully, these parsers are not just speculative fancies; each author has a
computer-implemented parsing model to show and tell. Finally, complet-

© ing the circle, Abney, Gorrell, Kurtzman, Crawford, INychis-Florence,

Pritchett, and, to some extent, Stabler, take up specific psycholinguistic
issues that connect facts about human sentence processing to the archi-

. tectural modularity of principle-based systems. (A fourth area, language

change, deserves a place as well but regrettably there are few computa-
tional studies of diachronic syntax—particularly ironic given Chomsky's
original inspiration—1955, 1975—from language change.)
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2. THE PRINCIPAL PROBLEM WITH PRINCIPLES

So far, all this discussion has been mere advertisement. The principle-
based approach asks as many questions as it answers. Can it really
work at all? To see that principle-based parsing ean work, we shalt first
sketch in broadbrush the chief problems with principle-based parsing.
We then review how the authors have solved these probleins, showing
how their solution fit under two unifying umbrellas: the division of pars-
ing algorithms into control plus data structures (section 3); and parsing
as search (section 4).

To begin, note that the p1cture in figure 2 merely sets out what is
to be computed, in the sense of Marr (1982), not how the computation
should proceed. Yet the gap between simply stating constraints and
solving them can be huge; as noted by Abelson and Sussman (1985}, it’s
one thing to define square-root {x) as the set of all y’s such that 2 = z,
and quite another matter to write a square root algorithm. So it is by
no nieans clear that principle-based parsing is possible at all—perhaps
it is just as difficult as with earlier transformational theories.

Second, two related computational difficulties lie at the heart of
principle-based parsing: overgeneration ard slow parsing, The first
problem plagues such: systems precisely because the constraints of a
principle-based system are heterogeneous and parceled out to many dif-
ferent components that we run into a computational brick wall at the
start. By design, any single principle will not constrain the ultimate
sentence structures very much. Thus we already know before we begin
that a key problem faced in principle-based analysis is overgeneration:
too many illicit structures will be produced that never mate with the
input sentence. For instance, even a simple X theory, without recur-
sion, can generate thousands of possible structures—just imagine three
layers of tree structure with left- and righthand sides, each filled with
any one of, say, 10 possibly different lexica! categories. Then, each of
these several thousand structures branches out a half-dozen or more
new possible S-structures each, via Move-a. This is not just idle spec-
ulation, but hard-won computational and psycholinguistic experience.
For instance, Fong has confirmed that there are tens of thousands of X
possibilities for even a simple sentence, a result seconded by Kolb and
Thiersch (1988} for German. Coping with overgeneration is therefore
an important theme that runs throughout the parsing analyses in this
book.
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Slow parsing is the natural heir of overgeneration. But there is more
to poor performance than that. As the bottom half of figure 1.1 shows,
the other reasonis that the deductive chains from principles to surface
forms are now much longer than before. Modularity, then, is both a
blessing and a curse. Simply enumerating possibilities will be slow be-
cause there are too many of them and a long way between sentence and
structure. If one has to figure out from first principles liow to open the

_}front door, then gettmg a.rouncl can become very slow indeed.

This raises yet another immediate question. Why then use. princi-
ples at all? Why not simply ‘compile out’ small lemmas that store the
repeated deductive chains, liké the piece of reasoning about passive that
we carried out earlier? But wouldn’t this lemma then be a rule? Would
we lose what little we've gained? One can see then that every architec-
tural question about the relation between linguistic theory and the data

_structures of an implemented theory looms behind the overgeneration

and parsing time problems. We won’t answer these vital questions com-
p}etely here—that’s what the rest of the book is about—but we can at
least see right away the centrality of overgeneration and slow parsing to
the whole enterprise.

The general outline of what to do seems clear enough: startmg from
an input sentence, an orthographit representation of PF, we must ‘invert
the Y diagram’ ancl recover at least the S-structure a.nd the information
in D-structure and LF, if not those structures themselves. Since all the
filters and generators are grounded in phrase structure definitions—the
Case filter must look at a particular configuration of tree structure, such
as a verb next to an NP-—we must somehow bootstrap ourselves from
the input sentence and start building phrases. This is by no means easy.
One cannot just reverse the arrows in the figure because the mappings
are not obviously one-to-one and the constraints one needs aren’t always
immediately at hand (but see below on this point).

For instance, given the orthographic PF form the ice-cream was
eaten, in-order to build an S-structure it makes sense to bring thematic
constraints from the lexicon into play, namely that eat might demand
something eaten, because after all S-structure is in part a product of the-
matic constraint. But this information is hidden from PF’s direct view
back in D-structure. At the same time we have the problem of guessing
that there is a phonologically null trace after was. eaten that does not
even show up in' the input sentence. Similarly, consider the X compo-
nent. Typical English structures would include forms for John ate, John
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ate the ice-cream, John thought ice-cream was wonderful, and so on. But
the bare X component says simply that X — X {Complements}, where
Complements can be nothing, or an NP; or a PP; or a CP (a propo-
sitional complement); or NP CP,-and so on. However, some of these
will be impossible depending on the verb. We can’t have an NP as a
complement of think as in John thought ice-cream (of course thére is
an elliptical construction that looks like this but is simply a truncaticn
of a full propositional complement). If this is so, then expanding the
skeletal X template out to a full set of complements wiil waste time and
computer money because all expansions will be tested even though we
know in advance that some are not possible. For instance, if the sentence
were John ote, then an overzealous system might just invent an empty
element after ate, to satisfy the NP complement possibility. But it is far
better to consult the lexical entry for the allowable complements. We
need to factor in information from the lexicon into the system at the
PE-S-structure interface—even though this is not the logical arrange-
ment of the ‘Y’ diagram where the lexicon hooks into the D-structure
alone. .

Thus as it stands the inveried ‘Y’ model does not seem well suited
for parsing. Historians of transformational grammar may recall that
this is precisely the same paradox that faced a much earlier generation
of transformational grammar parsing pionesrs (early systems at MIT
and IBM, described in Petrick, 1665; and thdse at MITRE, reviewed
by Zwicky et al., 1965): transformations only apply to soimne structure,
so we must first conjure up some structure from the senterice to start
with, perhaps by employing a distinct covering grammar—a modified $-

structure that can be used to start the jigsaw puzzle—and by carefully

building inverse transformations that can be coupled with their forward
generative counterparts, As we shall see, some of their solutions can be
used in modern dress, but in addition we can do betier now becauss
we know more al;out conbrol structures and computation, in particular
trade-offs in search techniques that can model the covering grammar idea
and much more besides. What is more, the theory has changed: there
are no ordered, language-particular rules; traces and moved NPs can
appear only in certain positions, not anywhere, so deletion is restricted.
All this helps.

Let us then turn to our two umbrella views of the authors’ solusions |

to overgeneration and slow parsing, beginning with algorithms viewed
as control plus data structures.
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3. MAKING PRINCIPLE-BASED PARSING WORK:
CONTROL AND DATA STRUCTURES

Figure 3 sutnmarizes where all the authors stand oa these matters. In
what follows we shall refer to that figure and table I for a bird’s eye view
of the entire bock. We shall now explore each branch of this taxonomy.

For those who have implemented parsers—Abney, Correa, Dorr, Ep-
stein, Fong, Johnson, Kashket, Kazman, and, at the borderline with
psycholinguistics, Stabler—there are two chief clamps to place on over-
generation, following the familiar division of computer algorithms into
conirol structures {how something is computed) plus date structures
(what is computed). Half of these parsers cut down on overgenera-
tion by adopting both flexible control structures and data structures,
while the other half do their work with flexible data structures alone,
leaving the control structure fixed. Those who work at principle-based
psycholinguistics—Gorrell, Kurtzman et al, and Pritchett—carve up
their hypotheses in the same way, ouly their game is complementary to
the computer investigations. They aim at confirming or disconfirming
‘the facts of the matter’ about the use of principles. Do human sentence
processors aciuglly interweave principles and constraints—Do people ac-
tually use the Case filter or access lexical or thematic information when
parsing? If so, when?

3.1.  Flexible Control Structures

Of those using flexibie control structures—Epstein, Fong, Johnson, and
Stabler—Epstein alone commits to Lisp-based, hand-built exploration
of six different contro! regimes, based on well-known heuristics that at-
tempt to do as much filtering as early as possible, or as cheaply as possi-
ble, or by building as little structure as possible. (We shall take a closer
look at these control regimes in section 4 on search below.) His domain
is that of quantifier scope interpretation, and the tradeoff between the
modularity of four simple principles for fixing scope and computational
efficiency, as in Bvery professor ezpects several students to read meny
boaks, which has 70 possible candidate LFs, but just a few viable ones.

‘By carefully attending to principle ordering, and banking on the local

and compositional nature of scope, Epstein achieves rernarkably good
parsing time,; often reducing many thousands of possible LFs to just a
Khandful.

The remaining flexible control structure devotees—Fong, Johmson,
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Table-1

A summary of what each author has proposed computationa]ly for, thelr parser, in
terms of flexible and fixed control structures. :

‘Flexible Control Structure
Heuristic ordering strategles & others for computing
logical form
Fong Manual & automatic ordering of principle modules
for optimal speed
Covering grammar for S-structure

Epstein

Johnson 5 different control structures, incl. coroutining, ordering,
& combining principles )
Stabler Clause selection ordering for online semantic
interpretation
Fixed Control Structure
Correa Attribute grammar o enforce local and long-distance

constraints; Covering S-structure grammar that includes

moved phrases

Dorr Coroutined Earley parser and principle-based constraints -
Covering S-structure grammar

Bottom-up multi-pass parser projecting words into X.structures
separating linear order & hierarchical structure for free

word order languages

Abmney Bottom-up multi-pass parser separating prosodic structure;
small phrase ‘chunks’

{projected bottom-up from X structures); and full ‘S-structure

Kashket

Kazmen "Coroutined bottom-up X parser pius principle-based
constraints; parameterized for language acquisition
Psycholinguistics: Fixed Control Structure
Gorrell Verb subcategory constraints applied ag soon as possible
Pritchett Thematic (theta) theory applied as soon as possible
Kurtzman | Verb constraints applied as soon as possible
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parsing psycholinguistics
flezible Control fized control Gorrell
structures structures Kurtzman
Pritchett
. [fized control
i‘,pstem ' : gprrea structured|
ong Orr
Johnson ‘Kashket
Stabler Abney
Kazman

Figure 3: A tree diagram showing the computational territory the authors cover:
The basic breakdown is into parsing and psycholinguistics. The implemented parsers
fall into two camps: those with fixed control structures, and those separating control
structure from data structure. The psycholinguistic studles all implicitly adopt fixed
conirol structures.

and Stabler—have explicitly chosen an implementation language that
allows one to make a clean separation of the parsing algorithm into
control plus data structures—Prolog or some variant of first-order logic.
Thiss a big advantage, because.it allows one to separately abstract away
from control structure issues. For example, Johnson’s chapter amounts
to a skillful set of finger exercises that explore an entire range of possible
control structures, embodied in a series of five parsers, including some
that order principles automatically, some that coroutine structure build-
ing and principle application, and some that avoid explicit construction
of D-structure or S-structure entirely, building only Logical form. The
beauty of using logic here is that the new parsers are provably equivalent
to Johnson’s original. It is very difficult to do this by hand, as Correa’s
attempt shows. We sketch these parsers further in section 4 below on
search.

Fong and Stabler drive home the flexibility point, demonstrating how
data and control structure partitioning yields tremendous power: Fong
shows that one can reorder principles to construct many hundreds of
different parsers within a single theory, even parsers that dynamically
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adapt their structure (the order in which principles are applied) accord-
ing to what sentence types have been parsed before. This is an intrigu-
ing result for psycholinguistics, since it allows for individual variation
in parsers from person to person, within a certain paramétric envelope.
Stabler establishes that ordering principles lets semantic interpretation
proceed online, because one can start interpretation before an entire S-
structure is built, thanks to a control regime that differentially queues
at the front those statements that deal with semantic jinterpretation. In
the dce-cream was eaten we can get an interpretation for the ice-cream
before we arrive at eaten. ‘

Logic also admits relatively transparent renderings of the English
that linguists use in theories. There is a problem here—the usual one of
getting from English to logic—but that’s a problem for everybody. Logic
still has all the virtues of directness: readability; easy modification in the
face of theories in flux; verifiability of faithfulness to the original text. Tt
is even the historical wellspring of generative grammar: after ail, Chom-
sky’s original Morphophonemics of Modern Hebrew (1953) that started
the modern generative enterprise in motion consciously borrowed the
aotion of an axiom system because that was the only machinery then au
courent in which to run a recursive syntax, As Johnson's paper argues,
deductive inference is still perhaps the clearest way to to think about
how to ‘use’ knowledge of language. In a certain sense, it even seems
straightforward. The terms in the definitions like the one above have a
suggestive logical ring to them, and even include informal quantifiers like
every; terms like lexical NP can be predicates, and so forth. In this way
one is led to first-order logic or Horn clause logic implementation (Pro-
log} as a natural first choice for implementation, and there have been
several such principle-based parsers written besides those described by
the authors of this volume who have built Prolog implementations of
principle-based theories. (see Sharp, 1985; Kolb and Thiersch, 1388).
Parsing amounts to using a theorem prover to search throngh the space
of possible satisfying representations o find a parse, a metaphor that
we’ll explore in detail just below.

How then can a theory written in English be mapped into logic? Here
for example, following Fong (1951 forthcoming) is a typical statement of
the Case filter: “At S-siructure, every lexical NP needs Case” {Lasnik
and Uriagereka, 1988, p. 20). How are we io implement this statement
as part of a parsing program? Those who live by the Horn clause must
also die by it: We must actually translate the English connectives such
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as needs or every and the required feature checking (the property of
being lezical on NPs), into logical formulas. But in fact this can readily

- be done. Fong’s system (surveyed in his chapter but fully detailed in

Fong, 1991 forthcoming) states principles purely declaratively, as in his
version of the Case filter:

:= caseFilter in_all_conflgurations CF where
lexicalNP(CF} then assignedCase{CF}.

loexicalNP(NP) :- cat(NF,np), \+ ec(NP).
assignedCase(R) :- X has_feature case{Case), assigned(Casa),

This says, close in spirit to the original English, that the Case filter
is met if, in all configurations (CF) where there is a lexical NP, then
make sure that Case has been assigned to that NP configuration. The
Prolog has been augmented a bit with more abstract macros such as
in_all_configurations that render the code closer to the English.
(Following Fong we read the second clause lexicalNP{NP) as stating
that a lexical NP is one that has the category feature np and is not an
empty category. As is conventional, \+ means negation-as-failure—if we
can’t prove something to be an ee or empty category then it is not one.
Finally, the comnma is a conjunciion. ) :

The point is that the person who writes the Case filter staternent
need not be concerned whether this statement is implemented by a tree-
walliing procedure that climbs over all the nodes one by one, or by some
other methiod that combines nodes together first (for more on this, see
section 4},

It ie interesting to compare Fong’s encoding of the Case filter with
Johnsen’s and Correa’s. They are very much alike. Johnson, for in-
stance, says, “The Case filter as formulated in PAD |his parser] applies
recursively throughout the S-structure, assoclating each node with one
of the three atomic values assigner, receiver, or null” (p. 48}, He also
observes (p. 82) that “this association of constituents with ‘properties’
described here is reminiscent of the way a tree automaton associates
tree nodes with automaton ‘states’ ”. Further, it’s the locality of the
constraint that makes this possible—it applies only to a restricted con-
figuration of a verb and verb phrase adjacent to a noun phrase, for
example.

‘Correa has done precisely the same thing in other garb: he uses at-
tributé grammars where the grammar has built into it an augmented §-
structure that includes the effects of the lexicon plus local moverment. An
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attribute grammar is an ordinary context-free grammar plus attribute

information, which we can think of as separate memory registers at-
tached to the different parse tree nodes. The attributes are ‘typed’—
that is, each has a certain domain defined in advance that can hold only
certain values (e.g., the Case type might hold possible Case assignment
values like nominative or Accusative) We assign values to the attributes
by means of rules attached to the context-free expansions; this informa-
tion can be passed either from mother and sisters to daughter (an in-
herited attribute) or from daughter to mother (a synthesized attribute).
Thus attributes can pass information down and from tfee substructures
below so that local constraints like the Case filter can be applied, as Cor-
rea notes: “the attribute Case is associated with NP, the categories of
potential Case assigners, such as V[erb] and P[reposition]. .. The domain
of the attribute is [nominative, accusative, dative, ... nil], which includes
the special value nil” {p. 96). Here, the Case assigner and assignee are

_determined by the attribute rules themselves, where the attribute values

are in brackets:
S— NP VP

attribution:
NP[Case] + if VP[tensed] then Nominative, else VP[Case]

Case filter: .
if ~NP[empty] {(an empty category} then NP[Case|# nil

Not only is this almost exactly Fong’s definition, but Correa even im-
plicitly hints at Johnson’s suspicions: as is known, unrestricted attribute
grammars are more powerful than tree automata, but if one restricts the
attribute grammanr so that it can be evaluated in onie depth-first left-to-
right pass over the derivation tree, as seems to hold in Correa’s system,
then such a grammar's language is equal to the yield {fringe) of the lap-
guages recognizable by deterministic tree automata (Engelfriet and Filg,
1979). Thus there seems to be a connection between tree automata and
restricted attribute grammars of the kind needed for natural grammars,
unifying all three accounts. All structurally local constraints, including
X theory and Thematic theory, can be formulated in thi_s way, it ap-
pears. It would be a useful probe this connection in more detail to prove
it to be so.

Besides these local conditions, there remain ‘long-distance’ princi-
ples: movement of NPs and Wh-phrases in sentences. like What did you
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think John ate, where there is a chain of traces or empty categories
linking what to a position before John and then to a position after ate.
The same things happens with LF where quantifier phrases like several
students are moved about so that they can take wide scope in a sen-
tence like Epstein's above. How can these be modeled? Here again, the
authors are in basic agreement: instead of explicitly computing these
chaing via a derivation from D-structure to S-structure or S-structure to
LF, they have all opted to:formulate chains as a set of constraints on S-
structure itself. Astonishingly enough, this works. For instance, Fong’s
parser can actually parse basically all of the several hundred example
sentences in Lasnik and Uriagereka’s textbook (1988), just the way the
theory intends.  Astonishingly is the right word because it hardly seems
believable at first that one could actually translate all of several linguists’
often incompatible written ideas into. a logical formulation that zooms
inon just the correct analysis of many hundreds of sentence types. It
is by no means clear that this translation can even be done into Pro-
log (as Stabler, 1991 forthcoming, argues}, and that powerful first-order
theorem provers will be required. But it has been done; it works; and it
works quickly (in just a few seconds on an older model Lisp machine).

For whatever reason, this declarative formulation seems much more
computationally tractable. Again a full proof waits in the wings, but his-
torically at least, under close scrutiny generative conditions have slowly
given way to declarative admissibility constraints (for example, compare
the discovery by Peters and Ritchie, 1973, that context-sensitive rewrite
rules have been used for local tree analysis, and under this interpre-
tation they admit only context-free languages. See section 4 for more
discussion). This is also a viable linguistic option, advanced by Koster
(1978) and others. Thus it is no surprise that Correa, Dorr, Epstein,
Fong, and Johnson all use constraints on S-structure representations to
encode long-distance pheénomena. This choice also has a lingnistic ef-
fect: D-structures are not actually computed by any of these parsers,
as Johuson demonstrates in detail, even though D-structure information
is factored into the parsers (again see section 4 for how this is done).
The psycholinguists paint the same picture: D-structure information is
tapped, but nowhere need one compute D-structures explicitly.
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3.2. Fized Control Structures, Flezible Data Structures

Turning now from those who have advocated the separation of control
and data structures, those authors who have chosen Lisp or a close cousin
for their implementation language—Abney, Correa, Dorr, Keshket, and
Kazman {and, more casually, psychelinguists like Gorrell and Pritch-
ett)-—have bound their fates to a fixed pazeing control structure.

Of those embracing fixed control structures, most, like Abney, Cor-
rea, Dorr, Kashket, and Kazman, have opied for a basically boftom-up
implementation using the two-decade old idea of a covering grammar—
a phrase structure grammar that augments S-gtructure, tapping into
the lexicon, movement, and other constraiuts to come .up with a dif-
ferent grammar than S-structure, yet one that incorporates all these
D-structure effects at once. D-structure is no longer directly computed;
the modularity of the theory is partially destroyed in order to salvage
computational efficiency. The psycholinguists Gorrell, Kurtzman et al.,
and Pritchett also find this nonexplicit D-structure approach attractive.

The key point to attend to, though, is why covering grammars can be
successfully revived at all, after more than two decades. The answer is
that a theory built on principles rather than rules has two advantages:

“ first, a natural and simple covering grammar—as mentioned, the one
formed by augmenting X structure with movement and some thematic
and Case constraints; and second, a much simpler notion of transforma-
tion. In the older approach, each transformationsl rule had to be spelled
out by means of a complex structural description (an if condition) that
dictated when it applied, followed by a structural change (the then part),
as in this subject formation example from Petrick {1973, p. 33) that at-
taches a Wh-NP to the Auxiliary position, to convert e.g., will who eat
ice-cream into whoe will eat ice-cream, checking that the sentence has not
already been turned into a question. Each subtree camponsnt is marked
with a number (1 through 6, 6= the Sentence; 1= bou:;da.ry marker #,
2= the Auxiliary tree; 3= NP; 4= any subtree X; and 5= a boundary
marker #). The transformation adjoins component 3, the Wh-NP, to
subtree 2, leaving behind nothing: g :
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RULE SUBJFRMA (subject formation)

structural .

description: S1 # AUX NP X #

1 2 ¥ 4 5
constraints: Vv nof S1 marked + Ques
NP is marked + Wh.

structural

change: 1 (32) 0 4 5
Note that on top of these detailed surface-patterned conditions, rules
were marked as obligatory or optional, cyclic or posteyclic, and so forth.
None of this is required in the principle-based framework. The move-
ment of the Wh-NP is allowed because there is & ‘landing site’ (the
Complementizer position at the front of a clause, not known in the ear-
lier formulation), and because the resulting move passes all the other
modular conditions. Nothing more has to be stated beyond what is al-
ready needed for other general properties of the systemn; there isn’t any
specific rule of subject formation. Because each principle-based con-
straint contzibutes just a bit to the overall coastraint that fixes possible
surface sentence forms, we have a fighting chantce, For example, one
can show that an S-structure covering grammar can be small encugh
to succumb to LR-passing techniques, with a parsing table of ooly a
few hundred entiies (smaller than what’s needed for a typical computer
brogramming language; see Fong, 1991 forthcoming). This is possible
only because each component does not try to do too much at once; the
allowable X structures are really quite simple.

We have already briefly catlined Correa's techrique in this computa-
tional war: ‘using attribute grammars, he can handle the local constraints
like Thematic theory that are obvious candidates for local tree attribute
assignments, What about long-distance constraints? Again, a chain is
composed from strictly local tree atiribute assignments: in the What
did you think Johi ate example, we can build the chain link by link in
both directions, From the top down, we can propagate a chain valye
ever downwards, step by step; from the bottom up, we can propagate
the proper value upwards: first a link ig made between the empty cat-
egory NP position after ate and the complement position before Jokn,

by ‘passing up’ the attribute via attributed assignment from the NP po-

sition to the complement position; then this attribute value is passed up
once more to the front of the sentence to link up with the value passed
down from what. No Ds-structure is used; instead, Correa, assumes, fol-
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lowing Koster (1978), that empty categories can be base generated in
S-structure itself. _

Because there are two types of chains in the theory—movement to so-
-~ called argument or A positions, like the Subject of a sentence in passive
constructions, and movement to nonargument or A positions like the
complement position at the head of a sentence in Wa-questions, Correa
uses two attributes, A and AB (‘A-bar’ or A). However, as he notes, this
chain composition algorithm has its own gaps. There can be only one A
or A chain formed per phrase. Since only two attributes are used, one
can only move out one NP to an argument position. This is & problem,
since Scandanavian languages evidently admit many more than one Wh
word at the head of a sentence, and even problematic in English, where
so-called parasitic gap sentences such as Which book did I buy without
reading, where there are two empty categories, one after buy and one
after reading, that are both linked to which book. One can show that
these empty categories are both A—roughly, they are both variables,
linked to the logical operator which bosk (see Lasiik and Uriagereka,
1988, p. 78 for discussion). But this cannot work with only one AB
attribute. This problem underscores the difficulty of hand-crafting an
algorithm that combines many different linguistic principles: one can
never be quite sure that it is logically cortect. The reader is invited to
check whether Correa’s account of ‘structural’ determination of empty
categories is in fact correct, and then judge whether a logic programming
approach would have been better.

Dorr adopts a coroutined, hand-built covering grammar to get parsers
for Spanish, German, and English translation. To do this, Dorr in-
terleaves a conventional Earley parser with principles by applying con-
straints when phrases are started or completed. The system also assumes
an augmented covering grammar that incorporates phrase movement
and thematic constraints, thus leaving aside D-structure at run-time.
To cover several languages, like Fong and Johnson, Dorr implements
a specification language as a buffer between the parametric vocabuy-
lary of linguistic theory and the algorithmic guts beneath: at the top
level, different languages apply the Case filter or not, and have their
phrasal Heads first or final; this information is then compiled behind
the scenes into a covering grammar that includes some details about
possible phrase movement and Thematic constraints. Note that many
constraints remain untested, so this grammar will overgenerate. It is
this covering grammar that the Earley parser actually works with. The
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system starts work by projecting from an input word the maximal cov-
ering X augmented structure possible, e.g., the Spanish wio {ver, to
see) is projected to a VP. When a phrase is completed, then, much like
Correa’s system, one can stop structure building and propagate certain
features and carry out certain tests like Case assignment and Thematic
role assignment; these are done procedurally rather than via the formal
ma.chinei:y_ of attribute grammar. For example, Dorr shows how the pro-
jection of the V to 4 VP then institutes a search for an NP clitic (la, ke)
as a thematic role of ver to the left of the verb, given information in the
lexicon. Despite these procedural differences, the bottom-up algorithm
and its subtree by subtree construction remain close to Correa’s model.

Kashket’s parser for the free-word order language Warlpiri also uses a
bottom-up parser that starts with the lexicon to project phrases, which
are then tied to each other by other, thematic principles. This makes
a great deal of sense given the word order freedom of Warlpiri. All the
possible permutations of phrases are permitted, and noun phrases can
even be interwoven with other noun phrases. There are 24 possible ways
of saying the following sentence, where we have listed just one other
possible permutation:

Karli ka-mq-rla punta-rni ngajulu-riy kurdu-ku
boomerang imperf-1s-3d take-nonpast I-ery child-dat
‘It is the boomerang I am taking from the child’

Kurdu-ku ka-rna-rls  ngajulu-rly karli punta-rng
child-dat #mperf-1s-3d I-erg boomerang take-nonpast
‘From the child I am taking the boomerang’

To make order out of this apparent word salad, Kashket again turns to
the bottom-up and lexical projection style parsing used by Correa and
Dorr. Each lexical item is first projected bottom-up into its X coun-
terpart. For instance, kurdu-ku (child-dative) is projected to form an
NP subtree, bottom-up. A second pass then applies the principles of
Thematic theory and Case to sweep subtrees into larger structures, ac-
cording to the Case markers, like the dative ku, attached to the ends
of words. It is by using the Case markers and an S-structure that con-
tains no left-to-right precedence information at all that absolutely free
order can be handled. Importantly, Kashket shows that Case marking
is also operative in languages like English, but here, since marking is
carried out by the infiection in second position and the verb marking to
its right, English winds up with & basically fixed Subject-Verb-Ohject



22 ’ ROBERT C. BERWICK

order. Thus, on this view, there are no ‘fixed’ or ‘El:ee’ word O?dercla:n-
guages. As with passive constructions, this is an artifact .of a superficial
analysis. Languages can vary according tc a parameterizaticn of Case
marking, from free to fixed order, even Within.the saine langrage (a.d-
Junct prepositional phrases are relatively free in English becails¢ their
Case is inherently fixed, like the Waslpiri NDPs, rather than assigned}.
Abney’s work is closely allied to Kashket’s. Abney too uses a batto}rlx}n
up parser (but a parallel bottom-up parser} for phrase c.hunks.} ‘1s
twist is to add a three-stage bridge between {1} prosody (_1I1t'0na.l.10ndl
patterns); (2} phrase chunks as a medi;ting- between p:osodlc [‘Jhrasies
and syntactic phrases; and (3) full syntaciic phr:dse construction via
thematic role determination. The prosodic level aims to capture some
of the constraint in spoken input. ‘Chunks’ are extracted fl'OJED ?.sentenc'e
including prosodic salience peaks, like the buld man was ssztmg.on his
suitcase—namely, [the bald man}, [was sitting], and [on hls‘stntcase].
These are quite close to the projections that Kashklet. defines. G;ve.n.the
prominence of prosodic cues in Warlpiri, perhaps this is.not 80 suUrprising.
The grammar of chunks is again a covering grammar for X _st;:ucture plPs
some movement factored in. Next, a second-stage pass, 111{9: Kashket's,
pastes some of these phrases together, following the cons.tré?ants.of Case
theory and Thematic theory—ifor example, it attaches on his suitcase to
was sitking. . )
Kazman is the only author to explicitly address th-e prob}em o.f lan-
‘guage acquisition in a principle-based systemn. His parsing design mirrors
Kashket’s and Abney’s: for each word in the sentence, the parser first
constructs NPs, VPs, etc., according to X theory. A e%eCOnd stage then
atternpts to attach the phrases to one another, subgect.to Case t%;e-
ory, Thematic theoty, and so forth. Next, by parametrically v‘ary}ng
the parameters—e.g., by turning off the Case ﬁiteera.‘zman strives tz
reproduce the patterns of child language, tested by using the alteref
parser to process actual examples of child speech. Uémg four ?’ets_'_ o
50 sentences each from two children, he shows that this pa.r:?.meterlza.-
tion works: the lobotomized parser adequately descri.bes child fpeecl'i
from about age 2, and, by changing the parameters, arrives at an ‘adult
arsing competence.
g Thi psycl-;lolinguistic studies also all (implicitly) adopt fixed control
structures—bottom-up parsers, soms (like Gorrell’s) paratlel aud cl?se
in design to Kazman’s or Abney’s, soiiie not. Re.ga.rdless of. .the pasing
design, the basic point that each one of them drives horue is that prin-
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ciple application and interpretation takes place as soon ag possible. In
particular, Gorrell, Kurtzman et al., and Pritchett show that informa-
tion from subcategorization frames or thematic theory—roughly, what
phrase sublypes/thematic roles can be associated with each verb, as
whether a verb is transitive or not—seems to be used early on in pars-
ing, and, more generally, principles and constraints are applied as sdon
as possible. This supports Stabler’s point; not so Surprising perhaps,
but. the authors do more. They go on to show that this early-as-possible
constraint accounts for the human sentence processor’s abilities in pro-
cessing locally ambiguous sentences (after the child had visited the doctor
prescribed a course of injections [ after the child has sneczed the doctor
prescribed o course of tnjections); garden path sentences, as in gfter
Steve ate the soup proved to be poisoned; and the difficulty of finding
the ‘gaps’ associated with Wh-phrases, as in what did Jokn escape from,
where what is associated with the position after from.

4. SEARCH AND PRINCIPLE-BASED PARSING

As we have seen, overgeneration and how to avoid it is the key theme
of principle-based parsing and psycholinguistics. To better understand
the overgeneration issue as the tie that binds all the chapters together,
We now turn to our second unifying umbrella, the metaphor of pars-
ing as search. Our parsing task is a classic search problen. We must
enumerate a space of possibilities, shown conventionally as a branching
tree {not a phrase structure treel) of possible paths, and apply tests to
rule out some, perhaps all of these paths; those surviving are the valid
parses. Overgeneration is one symplom that our searching algorithm
fares poorly. For each author the key to reducing overgeneration is some
Wway to exploit the modularity of a principle-based system, recasting the
principle modules to avoid exhaustive search. Let us see how.

Figure 4 sketches the main possibilities as a kind of graphical taxon-
omy of what the authors do. Each figure 4(a) to 4(d) shows a portion
of & gearch tree for discovering the possible parses. Each circle standing
for some enumerator or negt path generator plus a (partial) structure
already built; the result will be either a single new branch (if no con-
straints are applied); a single new branch or perhaps a dead end {if the

fnumerator is applying a constraint like the Case fitter); or many new

branches (if the enumerator is applying a generator like Move-a). Each
possibility leads to further enumerations, possibly casting some struc-
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tures out as we go, until we arrive at the fringe of the tree where entire
parses are found, and either ruled OK or out. Note that in order not to
miss any parses, the entire space of logical possibilities must be exhaus-
tively explored, but we can limit the exhaustion by cutting down the
pumber of nodes and branches generated {we want the branching factor
or number of new paths generated at any step to be as small as possi-
ble} and reducing the cost of enumeration at-each node, The graphical
sketches lay out the basic methods for doing this. We shall now consider
them, one by one. .

Parts (a) and (b) of the figure illustrate the most direct and costly
ways of coping with overgeneration: ignore it. In (a), given a sentence,
we build all possible structures, without applying any constraints, not
even looking at the input sentence, and then apply all constraints to
each candidate structure in turn. This simple and well-known strategy,
dubbed analysis by synthesis, was proposed in the the earliest discus-
sions of parsing with tra.ﬁsfor[_ua.tiona.l grammars (see Petrick, 1965 for
additional historical discussion).? Alternatively, as in (b), we could gen-
erate each candidate structure in turn, and as each is completed, test
it against the constraints, then generate the next structure, and so omn.
This is the familiar generate-and-test paradigm of artificial intelligence.

Left unconstrained, methods (a} and (b) suffer from serious, even

- fatal, overgeneration. This was was well known from earlier work in
search and is demonstrated again Johnson’s chapter via his first pars-
ing model (PAD1) that adopts generate-and-test search method (b)—it
might not even terminate, as Johnson indicates, because one could gen-
erate an infinite number of D-structures first, as would be true of any
reasonable recursive syntax, and one might not ever get to the next
enumeration stage). To take another example, Correa’s chapter notes
that Barss’ (1983) and Chomsky’s (1981) specifications of the condi-
tions on chain formation are just that: specifications of algorithms, not
algorithms themselves. Strictly interpreted as algorithms, they gener-
ate all possible movements in S-structure first, and then test each one
in turn. Correa shows that this blind generate-and-test approach takes
exponential time in the length of the input string, but that his attribu-
tion grammar that builds up chains by evaluating substructures piece
by piece is evidently linear time—a vast limprovement, if correct.

Somehow then we must mix the constraints from the lexicon and
X theory together with the constraints like the Case filter that apply
at other levels, and do so piecemeal without losing the advantages of
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- (a) (b)

analysis-by-synthesis generate-and-test {sequential)

coroutining, ordering, clause covering grammar,
- selection, freezing unfold/fold, partial evaluation

squash

squash

collapse search
" tree by collapsing
some principles,
possibly offline

rearrange search i
tree {moving
lower node 2)

s0 we can evaluate a

" constraint earlier, or
delay generation as long
as possible, or interleave
with structure building

Figure 4: All the different strategies for speeding up principle-based parsing can
bg viewed as techniques for better enumerating or gearching a space of possibilities.
Parts (a) and (b) of the figure illustrate exhaustive enumeration methods that are
too computationally intensive. The authors use the methods sketched in parts (c)
and (d) of the figure to reduce the search space itself.
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principles that we sought in the first place.

In fact, in one way or ancther all the authors have adopted ways
to weave the constraints from the lexicon and D-structure back into
S-structure, so as to get one foot into the phrase structure door as re-
quired to apply the remaining principles. Ultimately, all these methods
are based on the observation that most principles and constraints apply
locally to parse substructures. Therefore, if some structural subpart fails
to make it past a principle, such as I am proud John {which violates the
Case filter since there is no of between proud and Join to Case mark
John) then a larger structure built out of this, such as I think that I am
proud John will inherit this failure. Therefore, there is no need to apply
all constraints on the entire parse structure. It is enough to apply the
right constraints to pieces of the parse tree as it is built.

Techniques (c) and {d) in the figure do exactly this, and all the
authors have tried to'cure the overgeneration problem by adopting one or
more of these methods. Their approaches follow directly from the logical
possibilities for reducing the enumerated space—either cutting down the
number of nodes and paths generated, or reducing the enumeration cost.
Let’s run through each in turn.

The method pictured in figure 4(c) shows how the related techniqnes
dubbed freezing (Johnson's second parser, PAD2), principle reordering
(used by Fong), clause selection {Stabler), or parse table coroutining
{used by Dorr) can help reduce search. These are control structure
strategies. As the parse proceeds, different principles may be called
on, now drawn from the lexicon, now from D-structure, checking the
well-formedness of the currently hypothesized structires. as we go. Such
coroutining is quite common in compilers for programming languages as
a way to interleave phrase building with other kinds of constraint check-
ing, and that’s obviously just the ticket we need here. If the experiences
of the authors are any guide, these methods can quite effective {for ex-
ample, Fong’s parser just takes a few second on even relatively complex

sentences such as This is the book that I filed without reading, which is -

difficult to accommodate at all in an ATN approach).

Though each of these authors use distinct tools, they amount graphi-
cally to the same thing as shown in figure 4 part (c) and in another form
in figure 5(c). Oun the left, we have some search tree with the generators
and constraints arranged in a particular order, resulting in a bushy tree
with many enumeration circles. On the right, we have rearranged the
search tree by moving one of the enumeration nodes, marked 2 higher
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up in the tree. How can this help? If the newly promoted node win-
nows out many structures, then subsequent generators like Move-c: will
have fewer structures to expand on. The new search tree on the right
illustrates.

How are each of these part (c) methods implemented? Johnsor and
Fong examine automatic means of determining the dataflow dependen-
cies among principles and ordering the parsing system offline so that it
doés not compute unwanted constraints. For example, 15 we saw ear-
lier, it makes little sense to apply the Case filter constraint if there is
no assignment of Case (which in turn depends on establishing certain
structural relationships between verbs, prepositions, and nouns).

Johnson concentrates on semi-automatic logic programming tech-
niques for handling D-structure, S-structure, PF, and LF dependencies,
including the so-called freeze technique drawn from Prolog research that
suspends the computation of one conjunct, say, Move-a, while the parser
works on another that the conjunct depends on, like S-structure. Thus
we say that Move-a is delayed on S-structure.® Because no S-structure
is initially available, this immediately delays, or freezes, any compu-
tations involving Move-c, until the first node of S-structure is built.
See figure 5(b). Then Move-a is applied while the further recovery of
S-structure is frozen; and so on. (Note also that this parser recovers D-
structure by using a declarative description of Move-o and then running
the system backwards, as can be done in Prolog.) In this way princi-
ples can be autématz'ca!!y and systematically coroutined with structure
building.

Fong also focuses on principle ordering effects but without corou-
tining, and uses a finer grain size than Johnson, arranging a proposed
twenty-odd principle bundles or modules like & deck of cards as in fig-
ure.5{a). By rearranging the deck, subject to the logical dependencies of
the theory (as we have seen, some things must be computed before oth-
ers: we can’t apply the Case filter until Case is assigned) we can explore
all the logically possible conjunct orderings, assess their effect on pars-
ing efficiency-—evidently there can be an order of magnitude difference
in parsing times for the same sentence depending on the arrangement

- of the decl-—and even add a means to learn the best way to juggle the

deck for a particular type of input sentence.

Fong's method does assume a modified generate-and-test approach:
an entire S-structure is built before any other constraints are applied.
From a different angle, (see part (b} of the figure) but akin to John-
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(a)

[ the ice-cream]-i [was eatentrace-i |

Case filter|

Thematic theory i

Movement

X theory

the ice-cream was eaten

(b)

Underspecified  p——————2 Constraint filters
structure builder g ———— 1 & penerators

Figure 5: The principles-and-parameters theory can be organized for processing in,

two distinct ways, as shown in parts (2) and. (b) of this figure. First, it can be
pictured as set of 20 or so modules or groups of principles, arranged like a deck of
cards as in the top half of the figure, {8). Anorthographic representation of a sentence
like the ice-cream was eoten is input at one end, and, if the sentence is- completely
well-formed, one or more valid parse siructures emerges unscathed. at the other end,
The arrows emerging out of each box show that some modules act like filters that can
cut down the number of structures that pasa through them, while other principles act
like generators that expand the space of poseibly valid structures. The bottom half
of the figure; (b), illustrates a coroutined processing model where structure building
and constraint application are interleaved, '
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son, Stablershows that the generate-and-test method is not forced upon
us. The parsing algorithm need not produce an entire S-structure be-
fore beginning to incrementally compute an associated Logical form or
calculating its truth-conditional interpretation, even assuming conven-
tional branching for. English phrase structure {contrary to what some

" researchers have assumed).*

~ Darr develops & coroutining strategy that interleaves the plirase con-
struction carried out by a standard context-free parser (swinging into
action when phrase like an NP is started or completed) with additional

- constraint checking (does the NP meet the Case filter). As Fong, Sta-

bler,. and Johnson demonstrate, this can be done automatically in a
logic-based approach, based on the widely explored notion of selection
rules or ordering strategies. Citing Johnson and following Fong and
Stabler, suppose we regard a well-formed {sentence, LF structure) pair
(what Johnson dubs the parse relation) as the first-order logic conjunce
tion of the various PF, S-structure, D-structure, and LF constraints:

'Vd-strﬂc, ;s-struc, If.nf, f(d—struc) A CaseFilter{s-strue) ALF
PF(pf,s-strucy A LF(if) = Parse(pf,if)
(Johnson, this volume, p. 49)

The details don’t matter here. What does matter is that we can decide
to work on any one of the conjuncts at any time—and then, as we dive
down into those conjuncts themselves, we can stop and build a part of
D-structure, or apply the Case filter, or whatever. Naturally, it makes
the most sense to work on a conjunct whose ‘internals’ will be partly
grounded on what we already know, and this in. turn depends on the in-
put sentence and. the ‘dataflow dependencies’ of the theory itself—what
principles are wired to what other principles. For instance, as we have
seen, it’s unwise to start out enutmerating all possible D-structures be-
fore checking what’s in the input sentence. It makes more sense to first
build a piece of the S-structure by projecting it from the input sentence.
For example, in our ice-cream sentence, we can use conventional tech-

-niques and X theory to deduce that the ice-cream is a noun phrase, and

was eaten a verb phrase. Now we have a skeleton S-structure on which
to hang the other inferences about Case and Trace theory. Better still,

"as Johnson and Stabler’s chapters observe, by interleaving the construc-

tion of structures and the ‘applications of constraints, we need not trap
ourselves in the hopeless task of first enumerating an endless sequence
of D-structures. :
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Plainly then the order in which one works on conjuncts can make a
vast difference in parsing efficiency, as is well known from work by Smith
and Genesereth (1985} and others on search tree rearrangerent. To see
this in more detail, consider the following simple example definition from
their work: to check if 2 has an aunt, euné(z), see if z has a mother y
and that person y has a sister z:

eunt(x) = mother(z,y) A sister(y, z)

Now to compute, say, eunt{elissa) it matters a great deal w_hetht_er we
start in on the first conjunct or on the second. If we start on the
first, we will compute mother(elissa,y), bind y to some value, say,
marilyn, and then check sister(marilyn,z), which will then succeed
or fail accordingly. But if we started on the second conjunct, we would
initially compute sister(y, z), for all possible values of y and z—that
is, we would first find all the sister pairs in the universe, and then
check each one to see if one of them was the mother of Elissa. This
would clearly be much more expensive! Smith and Genesereth show,
sensibly enough, that the optimal conjunct ordering essentially depends
on applying the best-winnowing constraints as early as possible delay-
ing hypothesis-expanding modules as long as possible. The connection
to principle-based parsing ought to be clear: computing all the sisters
first before looking at Elissa is very much like enumerating all the D-
structures before looking at the constraining input sentence.

The search speedup methods just described in part (c) of figure 4 are
all geared to different control strategies that coroutine. Most of the re-
maining search improvenients work as in figure 4 part (d}: by squashing
the enumeration tree, accordion-wise. As the figure shows, this attempts
to collapse two {or more) search nodes into one larger one that meets
both sets of constraints or generators covered by the individual nodes.
The general idea is to apply constraints sooner, rather than la.terl, and so
avoid exploring structures that cannot possibly participate in a solution.
As we shall see, there are many ways to collapse the search tree, but for
now it is enough to see that collapsing reduces the size of the- search
space. It simply squashes together the constraints/enumerators in such

a way that one larger predicate is applied rather than the sequential -

conjunction of several.

This helps, because the number of branches generated is.cut down

immensely. To take a concrete example, the number of bare X struc-

tures possible might number in the many thousands (roughly 80,000
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according to Fong’s experiments, 1991 forthcoming); but the number
of X structures plus following NPs that meet the Case filter and the-
matic constraints are only about 100. Thus if we tested this systemn
sequentially we would first generate 80,000 possibilities, then run each
of these by the Case filter, reducing the number to about 2000, and then
through the Thematic constraints to yield 100 outputs---82,100 tests. In
contrast, if we carry out -all the tests jointly, as one giant enumerator,
we generate only about 100 branches.

Note that collapsing search tree nodes is not necessarily cheaper.
Squashing the search tree can go too far and make the enumerator’s
job harder. If the enumerator is computationally expensive, then the
savings from fewer branches explored can be swept under by the ex-
tra computation. Again consider one concrete example, Mary likes her
mather, where there are two Logical forms, one where her is Mary and
one where her is some other person, not named in the sentence; this is
conventjonally indicated by indexing, or linking of Mary and her. If we
squash all constraints together, then we must in effect, build two sepa-
rate structures, checking all the constraints (in concert) twice. But we
could squash everything eccept the computation of the indexing. Then
we just have to apply our giant combined predicate, sans LF, yielding
one structure, and from there use indexing to generate the two output
possibilities. It turns out that this last approach takes less time be
cause the enumerator does not have to go through the construction of
another entire tree structure that is easily derived from a-single common
form. More generally, if computing the proper structural configurations
required to apply a constraint or principle is expensive, then the bene-
fits of collapsing search nodes can outweigh the costs. This is where a
smart offline computation can help, by figuring out in advance in what
configurations certain principles and constraints will never apply.

In general though there are big savings to be had in squasliing the
search space, so big that almost all the authors—Abney, Correa, Dorr,
Epstein, Fong, Gorrell, Johnson, Kashket, Kazman, Kurtzman ef al.,
Pritchett, and Stabler—adopt it in one form or another, How then is
this accordion move played out? ‘

The first compression technique, covering grammars, simply -col-
lapses several constraints together—for example, X tree structures, plus
Move-x plus thematic constraints—to create a new phrase structure
grammar that has more detail than just X theory alone. The collapsed
search space is smaller because it has additional constraints built in, but
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still covers the same sentence territory as before. We illustrated above
how much this can reduce the search space: we look just at poss1b1e X
plis movement configurations, instead of first generating all possible X
configurations.

Most of the authors who have built pa.rsers"wAbney, Correa, Dorr,
Fong, Epstein, Kashket, and Johnson—take this tack. In effect, they
propose to recover not simply S-structure, but rather a closely related
representation described by a covering grammar. As described earlier,

this is simply a new grammar that has lexical (thematic) constraints

and Move-a factored into it. The new representation is called a cover-
ing grammar simply because it does not include all the constraints of

" the original principle-based system-—if it did, we would just have rules
again—so it must of necessity cover more possible structures than the
original principles. Once again this technique should be familiar to his-

_ torians of the field: early transformational parsers used covering gram-
mars in just this way to bootstrap an imitial, but overgenerating, tree
structure on which to decamp the structural descriptions of (inverse)
transformations.

Such an approach is possible because of a number of changes in
the theory of grammar advanced by the authors; .of which-the most
important is perhaps the view promoted by Koster (1978), namely, the
so-called base-generation hypothesis: if as standardly assumed the X
structures are describable by a context-free grammar, and if S-structure
is derived from D-structure by moving phrases into positions where they
could have been generated originally by the X grammar, then the S-
stricture can plainly be generated by a context-free grammar straight
out, without appealing to D-strncture at all.’

To be concrete, recall our passive example again: the ice-cream was
eaten. To say that the noun phrase Subject ‘landing site’ in this sentence
is base generated is to say simply that there is an X template in the
form S—NP VP, which of course there must be for ordinary sentences
anyway. To take another example, we could write a covering grammar to
accommodate Wh-questions like what did John eat by changing the the
¥ module to include the templates S— what S and VP—=V NP, where
NP, is-a trace or lexically null noun phrase. The new grammar is not

pure X theory--it actually looks more like a conventional context-free

rule-based system, or even something akin to the original conception
of Generalized Phrase Structure Grammar with its-system of displaced
‘fillers’ like what and gaps like NP,.. Despite appearances though, the
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new system is not really rule-based, since the principles like the Case
filier or Binding theory still apply as before.

‘We'might think of the new covering grammar as a run-time version of .
a principle-based system where certain of the principles have been ‘com-
piled’ together. The covering grammar computation is done off-line,
much as a compiler would work. If such a compiler is smart enough,
it can detect principle combinations that never arise, and so eliminate
predicate tests that would be wasteful. For exa.mpIe, consider X theory,
phrase movement, .and Thematic theory again, in particular the assign-
ment of thematic roles. Assignment occurs only under certain structural
configurations. While we could apply the Thematic theory constraints -
to all configurations {as in fact is done by Johnson), in fact this may
be computationally inefficient, since assignment patently -does not oc-
cur in all configurations. We can compute offfine that thematic role
assignment occurs only if the structures invelved include the e phrasal
categories NP, S, and the intermediate phrasal X categories N, V, F,
and A(mtermediate adjective phrases). We do not have to apply the
Thematic constraints if the structural configuration happens to include
other phrases, like PP, AP, etc. Thus, a clever compiler can-saveus from
miich. useless work. L

Of course, compared to programming languages, we don’t know as
much yet about natural language grammar ‘compiling’. The authors
in _this book have taken two approaches to this compile-time/run-time
trade-off: some, like Dorr, Epstein, Fong, and Kashket, have done it by
hand; others, like Johnson in his PAD parsers 3-5, have taken a more
formal, automatic route and used the notions of partial interpretation
and the related notion of unfold/fold transformations possible in logic
programs (Tamaki and Sato, 1984). The unfold/fold idea, which is a
close cousin of the notion of parfial evaluation, is to run deductive inter-
action of selected principles for a bounded number of steps, offline and
without an input sentence—the principles are ‘folded’ together to derive
new predicates that are a combination of the old. This is a provably
valid reaxiomatization of the original system.

To take a simple example in another domain, if we had the combina-
tion sin(z) - sin(z)+cos(z) - cos(z), then we can evaluate this expression
offline to sin?(z) + cos?(c) and then with a second step to 1. Here we
have replaced a runtime computation with & constant—some computa-
tional work for zero runtime work. Note that this indeed exactly what
a programming langnage compiler tries to do. It is also what the cov-
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ering grammar method attempts by hand. The great advantage of the
fold/unfold method is that the reaxiomatized system is provably equiva-
lent to the original: we are guaranteed that the same parse relation can
be deduced in the modified system as before. Ensuring this by hand can
be a much more tedious task. Even so, the automatic partial evaluation
methods are not completely. understood. (For one thing, figuring out
where and how deeply to partially evaluate can be difficult, and the re-
sulting system still applies the predicates it has folded together to some
structures where it cannot p0351b1y succeed. Refér to Correa’s efforts at
reformulatmg chain algorithms.) Thus hand—codmg COVETing grammars
still has a place in the sun, until we have a better understanding of the
trade-offs in offline compllatlon vs. runtime constraint apphca.tron

More importantly for computation, usmg such a COVering grammar

géts at the root of one of the problems in recovering the inverse map-
ping from S- to D- structur%by elimma.tmg D- structure We can ditch
D-structure and incorporate the Theta—cntenon and Move—a constraints
as well-formedness conditions on representa.tmns 5- structures—as filters
that either let certain S-structures pass or not, rather than as cond1~
tions on the derivation of one representation from another. As men-
tioned carlier, this shift from generative to declarative LOI]StI‘&l[ltS on
representations is another hallmark of the pr1nc1p1e—based approa.ch We
have seen that this seemns to make computation easier, and have given
some reasons why, though this has never been formally proved Correa,
Johuson, and Fong -all ta.ke the hne, with Johnson establishing that D-
structure surgical removal i is Iogzcalty correct {the same parsing relation
can be ‘inferred’ as before). -Historically this. line of reasoning extends
back to McCaney 8 1968 paper viewing context-sensitive rewrite rules
as declarative constraints on trees, essentially template hlters, e.g., the
rules S—NP VP; VP— Verb-+animate; NP—noun ___V+animate is in-
terpreted as admlttmg a set of trees dominated by an S(entence) node

with an NP dominating a noun on the left zf there is a verb marked

+animate to the immediate right of the noun. The wark of Peters and
Ritchie. (1973} proved that this declarative formulation was computa—
tionally simpler than the genérative one, since it admitted only context-
free la.nguages despite tapping context-sensitive admissibility conditions
like the template above. Modern prmcrp}e—ba_sed theory awaits some-
thing like this. demonstration as a precise comparison of genera.trve vs.
declarative representations of grammars,
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5. CONCLUSION '

Still, the central achievement of principle-based parsing stands: two
deca.des past the 1960s we now can build efficient principle-based parsers.
The reason? Our computa.trona.l armamentarium is stronger. We know
more about prmcrp}e mterlea.vmg, freezing, and clause selection. The
theory is more constrained: there is no extrinsic ordering or cotnplicated
rule cond1t10na.ls landing sites are limited by structure preservation, and
empty categories are restricted in their distribution.

‘The moral should be clear. There are more things on a principle-
ba,sed heaven and earth.than dreamed of in a simple philosophy of
parsing, Thinking about principles liberates us from the homogeneous
ruie—based format to open before us much wrder logical possibilities for

.parsing control structures hence a much wider range of design strategies
‘and psycholmgulstm outcomes than before. The workmg, systems and

results described in thls volume form the beac:hhead of a much broader
wave of prmcrpie—based resea.rch to come.

ACKNOWLEDGEMENTS

This chapter has benefited from.diacussion with Steve Abney, Bonnie Dorr, Ed Sta-
bler, and, especzaliy, Sa.ndxway Fong This work has been supporte(i by NSF Grant
DCR-85552543 under a Presidential Young Investigator Award, by the Kapor Famxly
Foundation; and by a John Simon QGuggenheim Memorial Fellowshtp Al remaining
errors are of course the responsibility of the author.

NOTES

1 Thrs shift is certainly not unique to principles-and-parameters theory. Many
other current linguistic theories, dnong them Geéneralized Phrase Structure Gram-
mar (GPSG) and Head-driven Phrase Stricture Gramma.r), have gradually shxfted
to declarative constraints that are not constructmn-spec:ﬁc For instance, modern
GPSG theory i is full of prmcrples that fix the well-formedness of surface strings with-
out spellmg out explicitly their detailed phra.se structure: the Foot Fe -ature Prmcrple,
the Head Feature Convention, and the Cont‘.rol Agreement Prmmp]e replace explu:it

- phrase structute rules with constraint sefs. These théories too no longer contain

largé numbers of particular rules, but declarative schemas constiained accordmg to
syntactic and morphological principies.

-2 As.defined here, generate-and-test subsumes the more particular strategy of analysis

by synthesis, because in classic’ analysis-by-synthesis we would enumerate ali possi-
ble D-structure, S-structure, PFs (and LF) quadruples first, and only then test them
against the input sentence PF generate—and-test subsumes thzs pa.rttcuia.r enumera-

tron strategy by admlttmg any posstble sequence of mterlea.ved quadruple generatwn
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and testing against the input.

3 ‘Freezing’ is not the sole province of Prolog; it mmounts roughly to the délayed
binding technique of many other computer programming languages, as described. for
example for Scheme in Abelson and Sussman {1985). ’

4 Indeed, in later work, Fong (1991 forthceming) adopts. just such an approach,
interleaving structure-building and principle filtering or generating Again, instead
of waiting for an entire S-structure to be built before applying any constraints, and
then ‘tree walking’ to jog through the entire structure; checking each constraint, one
can combine two or more constraints—say, the Case filter and restrictions on Move-
t-—into one larger predicate, and. use that super-predicate to guarantee that.any tree
nodes produced incrementally satisfy the constraints to begin with. This method
saves the parser's feet from tree walking, and is generally Faster; it is aclose cousin of
partial evaluation or the reaxiomatization ‘unfold—~fold’ technique used by Johnson,
described later on.

5 Emonds’ {1976) Structure Preserving Hypothesis—that landing sites for moved
phrases are also base generated—is of course central to the base generation approach.
On the base generation view, it is impossible for there to be a derivational history
that recorde the mapping from D-structure to S-structure and so any approach that
relies on intermediate steps between the two in a crucial way—such' as first moving
a phrase to an intermediate position and then deleting a trace—is not replicable in
the base-generation model. The empirical examples that distinguish between the two
approaches are quite subtle, however, as has been noted in the literature (see, e.g.,
Chomsky, 1981, for discussion and the. references cited in Correals chapter).. The
sheer empirical fact that a context-free base plus movemert can be replaced by a
structurally equivalent ‘covering grammar’ that is-exactly or close to context-free
underscores the connection between the base-generation approach and efforts lke
GPSG that also strive to eliminate the D-structure to S-structure mapping.
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