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Abstract

Children are exposed to speech and other environmental evidence, from which they learn language. How
do they do this? More specifically, how do childzen map from complex, physical signals to grammars
that enable them to generate and interpret new utterances from their language?

This thesis presenis a computational theory of unsupervised language acquisition. By computational
we mean that the theory precisely defines procedures for leatning language, procedures that have been
implemented and tested in the form of computer programs. By unsupervised we mean that the theory
explains how language learning can take place with no explicit help from a teacher, but only exposure
to ordinary spoken or written utterances. The theory requires very little of the learning environment.
For example, it predicts that much knowledge of language can be acquired even in situations where the
learner has no access to the meaning of utterances. In this way the theory is extremely conservative,
making few or no assumptions that are not obviously true of the situation children learn in.

The theory is based heavily on concepts borrowed from machine learning and statistical estimation.
In particular, learning takes place by fitting a stochastic, generative model of language to the evidence.
Thus, the goal of the learner is to acquire a grammar under which the evidence is “typical”, in a statiatical
sense. Much of the thesis is devoted to explaining conditions that must hold for this learning strategy
to arrive at the desired form of grammar. The thesis introduces a variety of technical innovations,
among them a common representation for evidence and grammars that has many linguistically and
statistically desirable properties. In this representation, both utterances and parameters in the grammar
are represented by composing parameters. A second contribution is a learning strategy that separates
the “content” of linguistic parameters from their representation. Algorithms based on it suffer from few
of the search problems that have plagued other computational approaches to language acquisition.

The theory has been tested on problems of learning lexicons (vocabularies) from text and speech signals.
It performs extremely well on various objective criteria, acquiring knowledge that canses it to assign
almost exactly the same linguistic structure to utterances as humans do. The theory has application to
data compression, speech recognition, machine translation, information retrieval, and other tasks that
rely on either structural or stochastic descriptions of language.
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Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

Children are exposed to speech and other environmental evidence, from which they learn language. How
do they do this? More specifically, how do children map from complex, physical signala to grammars
that enable them to generate and interpret new utterances from their language?

This thesis presents a computational theory of unsupervised language acquisition. By computational
we mean that the theory precisely defines procedures for learning language, procedures that have been
implemented and tested in the form of computer programs. By unsupervised we mean that the theory
explains how language learning can take place with no explicit help from a teacher, but only exposure
to ordinary spoken or written utterances. The theory requires very little of the learning environment.
For example, it predicts that much knowledge of language can be acquired even in situations where the
learner has no access to the meaning of utterances. In this way the theory is extremely conservative,
making few or no assumptions that are not obviously true of the situation children learn in.

The theory is based heavily on concepts borrowed from machine learning and statistical estimation.
In particular, learning takes place by fitting a stochastic, generative model of language to the evidence.
Thus, the goal of the learner is to acquire a grammar under which the evidence is “typical”, in a atatistical
sense. Much of the thesis is devoted to explaining conditions that must hold for this learning strategy
to arrive at the desired form of grammar. The thesis introduces a variety of technical innovations,
among them a common representation for evidence and grammars that has many linguistically and
statistically desirable properties. In this representation, both utterances and parameters in the gramnmar
are represented by composing parameters. A second contribution is a learning strategy that separates
the “content” of linguistic parameters from their representation. Algorithms based on it suffer from few
of the search problems that have Plagued other computational approaches to language acquisition.

The theory has been tested on problems of learning lexicons (vocabularies) from text and speech signals.
It performs extremely well on various objective criteria, acquiring knowledge that causes it to assign
almost exactly the same linguistic structure to utterances as humans do. The theory has application to
data compression, speech recognition, machine translation, information retrieval, and other tasks that
rely on either structural or stochastic descriptions of language,

10



1.1. SUMMARY 11
1.1 Summary

Why is language learning so easy for children? An instinctive anawer to this question is that parents
trivialise the task, by speaking clearly, pausing between words, pointing at the objects they are referring
to, and so on. Indeed, many adults treat babies as idiots, no more intelligent than dogs or foreigners,
who are accorded similar treatment.

However, as chapter 2 will argue, it is not clear that teaching is a necessary (or even significant) part of
language acquisition. Many societies raise children differently, speaking to them as adults. Furthermore,
there are important aspects of language that are not highlighted in the evidence children receive. To
take a classic example, every adult knows that nouns ending in ¢ are pluralized with the s sound (cats),
while nouns ending in g get the zsound (dogz). But children must discover this fact— no mother employs
special hand gestures to indicate the cause of the variation in the plural marker, which she may not even
be consciously aware of. Similarly, in the sentence

What do you think they're going to do with the kangaroo?

going is pronounced without a pause between go and -ing. Yet children come to know that going is
formed of a root go that conveys meaning, and a suffix -ing that conveys tense information. In fact,
most times such sentences are spoken, they are spoken rapidly, with few or no pauses. In casual apeech,
which children seem to be quite capable of learning from, one word blends into the next, with sequences
like what do you... jumbled together into /wadja/.!

In this thesis language acquisition is treated as a problem of unsupervised learning. Rather than suppose
the learner looks for explicit clues in the evidence that give indications as to the underlying the structure
of their language, we assime the learner acquires this knowledge indirectly. The learner’s active goal
is to find the grammar that best predicts the evidence the learner is exposed to. More specifically, the
learner maintains a stochastic, generative model of language that assigns a probability to every utterance
u. This model is defined by a grammar G that attaches distributional information to its parameters.
Roughly speaking, learning consists of finding the grammar that maximiges the joint probability of all
the utterances the learner has heard. For example, suppose the learner entertains two possible stochastic
grammars, Gg and Gp, that assign probabilities p(u|Gg) and p(u|GF) respectively:

u p(u|GE) p(u|Gr)
Hello. ~ 104 ~ 107"
Bonjour. ~10°° ~ 10-2
What's your name? 1071 ~107°
Common tu t'appelle? ~ 1079 =~ 1074

Then given evidence Hello- what’s your name? the learner would choose grammar Gg, because the
probability of the evidence is much higher under it (1072 - 10~*) than under Gp (1075 107?).

1See Appendix A for a description of the phonetic symbols used to transcribe sounds in this thesis.
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For this learning straiegy to make sense, stochastic grammars must be extensions of traditional gramimars
(that can be used to generate and interpret utterances). For instance, in the above example the learner
must be able to extract from Gg the words and syntax of English, or no useful learning has taken
place. Furthermore, it must be true that the best stochastic model for a language is an extension of
its “true” grammar. Unfortunately, this is not always the case. To understand why, realize that in
fitting a stochastic model to the evidence, the learner is in effect discovering patterns in the evidence.
But patterns can arise from sources other than language. For example, a child learning English will

often hear such phrases as eat your peas and clean your plate, but not eat your plate or clean your
) 1

The existence of “extralinguistic” patterns has been the downfall of many previous computationa) the-
ories of language acquisition. Chapter 4 introduces a representational framework for language that is
designed to work around this problem. In this framework words and other parameters in the Eraminar
are represented in the same way as sentences, by composing parameters from the grammar. For ex-

ample, just as the sentence I sqw Mary can be broken into 1, saw and Mary, so a word like blueberry

leatning. One of them is that if eatyourpeas does makes its way into the grammar, it will be represented
in terms of eat, your and peas, just as it would be in the “correct” grammar (at the sentence level).
This mitigates the consequences of such unavoidable migtakes. The representation can also be justified
on purely linguistic grounds, offering a natural explanation for why words like blueberry seem to inherit
Properties of their parts, while stii] introducing new behaviors and meanings.

[national football league]

[national] | football] lleague]
[nation]  [al] Ifoot|  [ball] llea] [gue]
ans /

R N N
In] |t 1] (11 Igl

Figure 1.1: The hierarchical representation of one word learned from a large body of text, National
Football League, in terms of other “words” that were learned simultaneously.

Several instantiations of this framework are presented in the thesis, based on simple models of language.
The first assumes that words and sentences are character fequences, represented by concatenating words.
Thus, every word and sentence is hierarchically decomposged. Figure 1.1 Presents an example of how
one word learned from the Brown corpus [59] using this model is represented. A second instantiation of
the framework extends this concatenative model with an operator that adds meanings to words. This
model can be used to learn word meanings from pairs of sentences and representations of meaninga. In
contrast to previous approaches to this problem, the model can account for non-compositional behavior.
A third instantiation of the framework explores phonetic and acoustic extensions; the resulting model is
used to learn words directly from continuous speech. Finally, an instantiation of the framework based
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on context-free grammars is presented.

In chapter 5 unsupervised learning algorithma are presented for some of these models. The algorithms
start with a simple stochastic grammar and iteratively refine it to increase the probability of the training
evidence. Fach iteration proceeds in two stages: first the stochastic properties of the grammar are
optimized while keeping the underlying linguistic structure fixed, and then the linguistic structure is
altered in ways that are predicted to lead to a better stochastic model. This general strategy has
been used by others, who have found that their algorithms get stuck in local optima- gramnmars that are
suboptimal but which their algorithms can not improve upon. The algorithms presented iu this thesis do
not suffer from this problem to the same extent, because they do not directly manipulate representations
of grammars. Instead, they absiract to less-committal structures that are more closely tied to the data
than to the learner’s model of the data. To give an example, even though the algorithms are based
on the idea that sentences and words are decomposed, sentences and words are stored as flat character
sequences. The beat representation for a given word or sentence can be found by parsing it. Because of
thia, the representation for a word like watermelon can go from wa o term o el o on to water o melon in
a single step that would stymie other algorithms.

Our algorithms are tested on problems of learning words and word meanings from both unsegmented
(spaceless) text and continuous speech. The grammars they produce are evaluated in terms of their
linguistic and statistical properties. For example, after training on a large corpus of unsegmented text,
one algorithm produces hierarchical segmentations of the input such as: '

for the pur poseof maintain ing inter nation al psace and pro mot ing

the advance ment ofall people the umit ed stat es ofamérica joined in

found ing the WNit ed natiom s

These segmentations are compared against word boundaries; the results indicate that the algorithm
produces structure that agrees extremely well with humans’ grammats. On Chinese text, for example,
97% of word boundaries are matched and fewer than 1.3% are violated. On statiatical grounds the
algorithms also fare very well: used as compression algorithms they equal or better almost all other
methods. Chapter 6 presents these and other results, including dictionaries learned both from text
and from speech. In the most ambitious test of any theory of language acquisition, we run on 68,000
utterances of dictated Wall Street Journal articles— complex, continuous speech produced by many
different speakers of both sexes. Among the entries in the resulting 9,600 word dictionary are

/prigiten/ president /gouldminsaks/ Goldman-Sachs
/kmpsutr/ computer /gavrmin/ government
/ministreisin/ administration /sampdin/ something
/bouskgi/ (Ivan) Boesky  /lazd]ir/ last year
/hauwaevr/ however /inidisin/ in addition

Results like these demnonstrate the power of our theory, both as an abstract description of how children
might learn, and as a foundation for the machine acquisition of linguistic knowledge.
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1.2 OQOutline

Chapter 2 introdures the problem of language acquisition and surveys the evidence available to the
learner. It argues that language acquisition is best viewed as a problem of unsupervised learning, and
places constraints on theories of language acquisition, most importantly that they be testable on data
that is unequivocally available to children. Finally, it argues that the phonological lexicon is the best
starting point for a complete theory of acquisition.

Chapter 3 introduces stochastic language mode!. and the statietical estimation technique of Bayesian
inference. It explains how stochastic models can be used to differcatiate between the many grammars
that are consistent with any given body of evidence, but cautions that unless the class of language models
satisfies certain conditions the learning process may not preduce the desired form of grammar. Finally,
it discusses the problem of model selection and generalization from finite evidence to grammars that
explain new utterances. The minimum description length (MDL) principle ia adopted as a substitute
for structural risk minimization. Both of these strategies weigh the complexity of the set of candidate
grammars against the amount of evidence available.

Chapter 4 presents the compositional framework in which both sentences and linguistic parameters are
represented by perturbing a composition of parameters. Arguments for the framework are given from
the dual perspectives of learning and linguistica. Four instantiations of the framework are presented,
that explore issues of learning from speech and learning from simultanecus exposure to linguistic and
extralinguistic signals.

Chapter 5 describes two algorithms, one that learns grammars from character sequences under the
concatenative model, and another that learns from character sequences paired with multiple (ambiguous)
representations of meaning. A survey is made of related algorithms and ideas from the fields of data
compression, language modeling, formal grammar induction, and orthographic segmentation.

Chapter 6 presents the results of various applications of the algorithms to large bodies of text and speech.
These tests explore performance on tasks of segmentation, data compression, and lexical induction.
Results are compared to other existing methods.

Chapter 7 summarizes the thesis and discusses possible future work.



Chapter 2

The Problem of Language
Acquisition

At its most abstract, language acquisition is simply a mapping from some input, consisting of speech and
perhaps other evidence from the learning environment, to “knowledge of language” - a grammar that can
be used in the generation and interpretation of new utterances. An understanding of language acquisition
must therefore be founded on an understanding of the nature of the input, the form and interpretation
of grammars, and the mapping itself. These can each be understood at different levels. For example,
Marr [94] distinguishes between the broad goals of a computation, the particular representations and
algorithma employed, and their hardware implementation. Given our limited understanding of language,
computation and cognition, a complete theory of language acquisition at all three levels is presently
beyond reach. This thesis seeks formulate a computational theory that can be implemented using
specific algorichms and representations and tested on real input, by which we mean evidence undeniably
available to children.

This chapter serves as an introduction to problems and theories of language acquisition. It surveys
the evidence available to learners and the parametera! that learners must acquire from this evidence.
Switching attention, the chapter introduces several conditions on theories of acquisition, in particular
that theories be testable and make as few unjustified assumptions as possible. This leads to a discussion
of what assumptions can safely be made about the nature of the input to the learning mechanism. The
chapter concludes by arguing two important points: first, that language acquisition is beat thought of
as a problem in unsupervised learning, where the goal is to identify structure in the input that is not
evident on its surface; and second, that the logical starting point for a complete theory of language
acquisition is a theory of the acquisition of the phonological lexicon.

1The word parameter here refers to any scquired piece of knowledge that contributes to langunge variation. This
definition extends the notion of o paramecter as & characteristic constant ( “the parameter thut determines word ordering")
by also referring to such learned entities as words and rules.

16
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2.1 An Introduction to Language Acquisition

At its most abstract, language acquisition is the process of mapping from environmental evidence-
spoken utterances and perhaps other clues— to a grammar that can be used to generate and interpret
new utterances. Therefore, language acquisition is best understood by understanding the nature of the
evidence, the form and interpretation of grammars, and the mechanism that performs the mapping.
Here each of these are briefly reviewed to provide a general background for further discussion.

2.1.1 The Parameters

Speakers express thoughts by causing rapid changes in air pressure. The production of thia speech
signal does not happen in one step but through a complex derivational process [84] that involves many
intermediate representations, each generated in a manner that depends on information the speaker has
learned. For example, in saying “John caught the weasels” an English speaker relies on his knowledge
that in English

o there is a proper name John and a noun weasel that refers to a kind of animal;
e subjects are spoken before verbs, objects after verbs, and determiners before nouns;
o tense is usually expressed through the main verb and plural nouns are marked with a suffix /8/;

e proper names and ordinary noun phrases are not marked for case, contrasting with pronouns like
he and him;

® the is unstressed and pronounced /8s/ but catch ig stressed and (in a past tense sentence) pro-
nounced /kot/;

e the sound /1/ can serve as the head of a syllable in weasels /wizlz/ even though it is not a vowel;

o the voicing (vocal cord vibration) in the /s/ plural marker is determined by the voicing in the
immediately preceding sound;

o at the start of words stopped consonants like /k/ are pronounced with a little puff of air;

e declarative sentences are generally produced with a flat or decaying pitch.

These facta are peculiar to English and English speakers; they have been learned. Knowledge of lan-
guage thus includes an acoustic inventory; various motor skills; a lexicon that links phonological and
syntactic and semantic information; many phonological and morphological and syntactic dictums; an
underatanding of conversational conventions; and perhaps much more. These parameters collectively
constitute the grammar that is the desired output of the language acquisition process, though of course
their exact form is open to debate.

From the standpoint of acquisition, grammars have several notable properties. One is that they contain
a very large number of parameters, many (like words) capable of seemingly infinite variety. This im-
plies that the apace of grammars can not be practically enumerated. Parameters also come in a great
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variety of forms; languagz seems to be built from different modules that each require different types of
information. Despite thia fact, parameters in different modules are highly interdependent. For example,
syntactic ordering rules have meaning only when combined with part-of-speech tags found in the lexicon.
Furthermore, parameters interact with the generation and interpretaiion mechanisms in such a way that
there are many parameter scttings that could explain any piece of evidence. For example, weasels could
be pronounced /wizlz/ because a root /wisl/ combines with the plural marker and the voicing rule, or
it could simply be listed in the lexicon like caught. Finally, very few of the parameters relate directly to
the speech signal; almost all affect or link different hidden representations.

2.1.2 The Evidence

Children acquire their grammars principally from exposure to spoken utterances, though it is widely
conjectured that they also leverage extralinguistic information derived from non-auditory senses like
sight, and expectations derived from their own internal state. The difficulty of language acquisition
would seem to depend crucially on two things: firat, the amount of evidence available to the learner and
second, the transparency of the relationship between the input and the grammar that produced it. Even
at the rate of ten utterances per minute for ten hours each day, by the age of five a child can have heard
no more than 11 million utterances. At this point most children have attained nearly all the fluency and
linguistic expertise of adults. Though 11 million utterances may seem like a lot, it is far less data than
is commonly used to train computer models of language [28], and allows for precious few examples for
each of the tens of thousands of words that must be learned. However, the paucity of data ia not nearly
g0 troublesome for acquisition as the opaque relation between the grammar and the input signal.

Much of the complexity of the relationship between the grammar of the target language and the signal
available to the learner is caused by factors external to the language faculty. Grammars are not the only
source of variation in the speech signal: language is a channel for the transinission of information, and
changing this information can have the same effect on the speech signal as changing the grammar would.
Other factors that confuse the relationship between the parameters and the signal include background
noise, starts and stops, coughs, other disfluencies, ungrammatical structure and nonsense words. An
utterance may even reflect incoherent thought or be from a different language. Presumably, therefore, a
learner must be suspicious of all input and entertain the possibility that it might not be useful evidence
for the target language at all.

Even if speech signals could be taken at face value, they obacure the parameters of the generating
grammar quite effectively: without knowledge of the generating grammar the derivational history of an
utterance is nearly invisible. To take just one example, the phonological representations that are the
basis for speech production are rooted in coarse articulatory gestures [67] like tongue movements that
have complex and sometimes subtle affects on the acoustic signal [108]. For this reason, it is extremely
difficult to determine the motor commands that produced a signal. Even if they were known, this
would not uniquely determine the control sequence that cansed them, because in the process of speaking
gestures are routinely (but not necessarily nredictably) omitted and otherwise corrupted in an attempt
to minimize muscular effort [79]. Furthermore, unlike in the English writing system, neither phonemes
(primitive bundles of articulatory gestures) nor words nor other units in speech are routinely separated
by delimiters. The pause that is often supposed to exist between words is usually a perceptual illusion
apparent only to competent speakers: unknown languages sound rapid and continuous. Certainly word-
internal boundaries (such as between /wizl/ and /z/) are almost never highlighted, and there ia little
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evidence that pause duration or other information can be used to reliably segment higher structures like
phrases. The fact that the speech signal does not uniquely reflect phonological representations and does
not contain ssgmentation information means that the naive learner can not determine the number or
sounds of the words that produced it, and therefore that no signal provides conclusive evidence for any
lexical parameters. There are many additional ways that information about the derivational process is
lost. For example, many phonological processes destroy or hide information about underlying memorized
forma [3]. For these reasons and many more, the raw speech signal offers few direct insights into the
parameter settings of the process that generated it.

Perhaps the best evidence that the speech signal provides relatively little constraint on the derivational
process (and hence the parameters that control it) comes from the fact that even if the generating
grammar is known, there are many possible interpretations for any given utterance. Indeed, one of the
principal components of any automatic speech recognition device is a highly restrictive language model
that attempts to filter possible word sequences on the basis of language-specific usage patterns [108).

This leaves open the possibility that parameter values can be easily determined from extralinguistic
input, such as the way a mother wiggles her eyebrows, or (more plausibly) the manner in which she
emphasizes differcnt parts of the speech signal. This possibility is explored further in section 2.3; the
conclusion there is that there is little evidence such felicitous cues exist and even less that they are
required for learning. Of course, it is clear that word meanings are not derived from the speech signal
alone, but it is doubtful that the evidence learners use to acquire meaning also serves to determine
low-level parameters.

2.1.3 The Learning Process

Very little is understood about the processes children employ to learn language: researchers that have
studied child language acquisition have concentrated their efforts on characterizing children’s knowledge
at various stages of life. Roughly speaking, phonological distinctions, syllable structure and other infor-
mation concerning sound patterns are learned early [72, 73], followed later by words and syntax [65, 105].
But such facts shed little insight into the character of the process that maps evidence to grammar. For
this reason, theorists have traditionally argued for or against hypothesized learning mechanisms on the
basis of how they accord with abstract properties of the language learning problem (such as the seeming
eagse with which children acquire language). These properties are defined by the nature of the input, the
form of parameters and the mechanisms that interpret them, and the purpose of language.

2.1.4 Summary

The preceding sections have shown that language acquisition is characterized by the following important
facts:

e there is relatively little evidence available to the learner, at least compared to the demands of
existing computational models;
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and on the basis of whether it produces grammars that have qualitatively similar internal representations
to the grammars children would produce in the same circumstances.

The remainder of this section argues several points relating to the formulation of theories of language
acquisition. The first is that a primary goal must be to produce theories that can be tested with only
a minimal number of additional assumptions. The second is that, at the present time, it is relatively
unimportant that learning theories explain the detailed manner in which children acquire language.
Finally, it is argued that although the learning mechanism is at the heart of any theory of acquisition,
it must be justified in terms of general principles. This is essentially a statement that any theory at the
level of algorithms and representations must be related back to a more abstract description at the level
of computational theory.

2.2.1 Testability and Theories of Acquisition

In chapters 4 and 5 a theory of language acquisition is presented, formulated principally at the level
of representations and algorithms. The justification for this level of abstraction is that at this level
theories are both sufficiently abstract to shed insight into the general nature of the learning problem,
and sufficiently concrete to be testable. There are at least six reasons to concentrate effort on theoriea
that can be evaluated with few additional assumptions, and in particular, tested on real data.

o Any theory that can be tested on real data can be falsified or verified in a far more convincing way
than a theory that is either phrased in vague terms, or that is removed from data by additional
assumptions; it therefore has greater content.

® Such theories, if verified, are existence proofs, demonstrating conclusively that certain parameters
can be learned. In this way they can form the foundations of further reszarch that is predicated
on language learnability, justifying certain assumptions.

® As an existence proof, a tested theory also proves that it is not necessary to make assumptions
beyond those that are in the theory. As discussed further in gection 2.3, many have assumed
(without conclusive evidence) that the input children receive is quite rich; such input permits
quite simple learning methods. If it can be demonstrated that rich evidence is not necessary
for learning, then theories that assume it are put under the additional onus of having to both
demonstrate its existence and the fact that children rely on it.

s In the course of applying algorithms and representations to real input, incorrect and implieit
assumptions in abstract theories can be identified. For example, without testing on real data
it may not be apparent that a particular grammatical representation, while sufficient to model
real language, cannot be correct because under it no plausible learning algorithm can identify
a consistent grammar from unstructured evidence (see section 2,2.4). In a similar vein, Ristad,
Barton and Berwick [9, 115] have argued that many theories can be dismissed on the basis of
their computational complexity. Such deficiencies usually become apparent immediately upon
implementation.

e In the course of applying algorithme and representations to real input, the most cignificant “prob-
lems” of language learning are identified. This is not necessarily the case with more abatract
theories of language. For example, as discussed further in section 2.3, many abstract theories have
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concerned themselves with the issue of whether grammars can be uniquely identified on the basis
of positive evidence. But with the sort of grammatical theories that are necessary to explain real
data, it quickly becomes clear that the answer is no. This suggests (see section 2.4.2) that the
more important issue in language learning is how to select the correct grammar from among the
set that are consistent with the input.

o Since any learning theory that can be tested on real data necessarily includes an explicit, computa-
tionally feasible learning algorithm, it simultaneously serves as a solution to engineering problems
involving the acquisition of human language.

2.2.2 Conditions on Theories of Acquisition

In requiring that they be testable, various conditions have been placed on theories of acquisition. In
particular, a theory must be feasible (the learning mechanism embodied in it must make reasonable use
of computational resources and demand no more from the learning environment than what is available),
complete (the parameters, learning mechanism, and form of the input must each be specified in sufficient
detail to be implemented and simulated) and sndependent (the theory must not rely on the presence of
other unattested or undemonstrated mechanisma to preprocess evidence or otherwise aid the learning
mechanism).

One condition not listed above is that a theory should predict learning in the same manner as human
beings [91]. This is omitted for several reasons. First, in any scientific endeavor some simplifications must
be made and relaxing the manner condition is unlikely to alter the fundamental character of the learning
problem. Secondly, it is important to understand how language can be learned, irrespective of mechanism.
For example, it is a goal of the engineering community to create computer programs that mimic the
end-to-end linguistic performance of humans, though there is no desire for a neural implementation.
Even within the realm of science, it is interesting to ask what the range of possible learning mechanisms
for language is. Important questions include “how much of language can be learned from sound alone?”
and “to what extent is the nature of language determined by the learning mechanism?”. Finally, there ia
sufficiently little evidence for how children learn that it is not clear a manner cendition can. be usefully
and fairly applied.

These three conditions are quite restrictive; in particular, the completeness and independence conditions
leave little room for theories that advance our understanding of acquisition without completely solving
the learning problem. It could argued that by instilling these conditions, scientific progress will be stified,
because they cannot be met at the present time. For example, researchers are almost totally ignorant
of the mechanisms that process extralinguistic information in the learning environment and provide the
child with the representations of meaning that must eventually be associated with sound. Plainly some
artificial substitute for theac mechanisms must be used to test any current theory of acquisition. This is
unavoidable, but it does not alter the fact that a more desirable theory would dispense with the artificial
input (and all the assumptions associated with it) and work directly from attested evidence. Regardless
of whether the conditions can be met, they must be active goals.
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2.2.3 Assumptions and Modularity in Theories of Acquisition

No existing theory of language acquisition meets the above conditions. Many assume grammatical and
noiseless input. Some assume the learner has access to unlikely representations of sentence meaning
(section 2.3) or similarly untestified segmentations of the speech signal. Most are based on linguistic
theories that can account for only small subsets of real utterances. Almost all restrict the learning
problem to a small subset of linguistic parameters, assuming input neatly preprocessed to eliminate
all other aspects of acquisition (see below). Some relax all computational constraints on the learning
mechanism (section 2.2.4). And finally, many theories are so vague and incomplete as to be entirely
unimplementable. Of course, some of these violations are less detracting than others: a vague theory
may be contentless and a theory that assumes too much of the input may be irrelevant, but a theory
that adequately explains the acquisition of a small part of language represents considerable progress, if
it makes plausible assumptions about the remainder of the acquisition process. The remainder of this
section explores this issue in more detail.

Theories of language processing generally divide the language faculty into various weakly interacting
modules, such as acoustic processing, phonetics, phonology, morphology, syntax and semantics. The
acquisition literature reflects this split: most (reasonably well specified) theories of language acquisition
restrict their scope to the parameters of particular modules. As a scientific practice this is not without
risk, because the modules themselves may be merely artifacts of current linguistic theory, and because
the boundaries between the theorized modules are unobservable and hence uncertain. There are twa
undesirable but common consequences of this:

¢ An acquisition theory for one part of language may make implausible demands of its evidence,
such as requiring noiseless input, input in a linguistically implausible form, or input that cannot be
computed without communication between modules. Examples include theories of morphological
acquisition that expect segmented, noiseless phoneme sequences as input and theories of syntactic
acquisition that assume side semantic information is tree structured in a manner very similar to
that of syntax.

e An acquisition theory for one part of language may unreasonably assume that the parameters
of other parts can be learned independently. Examples include theories of the acquisition of
phonological rules that presume the underlying forms of words are already known (even though
the underlying forms of words are difficult to derive without knowledge of phonological rules), and
theories of the acquisition of syntax that assume word parts-of-speech are known (even though the
principal source of information about word parts-of-speech is syntax).

Many theories fall into these traps: figure 2.1 catalogs a selection of computational theories of language
acquisition and their input-output behavior. Various assumptions are common: no ungrammatical input,
no input from languages other than the target languages, no homonymy, etc. These assumptions violate
what we know about the real environment children learn in. Most theories also demand the extraordinary
from other parts of language: the existence of a remarkable preprocessor that maps from acoustic signals
to noiseless token sequences; access to a similarly unerring module that extracta semantic structure from
the learning environment; a means of segmenting and uniquely identifying words in the input; and so
forth. These requirements are far beyond the capabilities of any known mechanisms. Finally, ali of these
theories assume that other modules can function without feedback and can be learned independently.
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I Paper |  Assumes Input Output I
Anderson 1977 (1] I,NN,NH MI, WM,SM G,WS
Anderson 1981 (2) I,NN,NH MIWM,SM G,WSMPHR
Berwick 1985 [16] | INN,OCWS WI,WM,TR G,WS
Brent 1993 [22] WwW MPH,MPHR
Gibson & Wexler 1994  [61] NN P, TR G
Kazman 1994 [75] ILNH WILWM,WS G ,MPHMPHR
Rayner et al. 1988 [109] | I,FG,NN,NH wI WS
Selfridge 1981 [121] I,NN,NH WI,SM WM
Siklossy 19872 [125] ILNN,NH WI,SM WM
Siskind 1992 [126] I,NN,NH WI,SM G,WS,WM
Siskind 1994 [128] I WI,SM WM

Assumptions
FG Grammar fixed in program.
NN No noise or inconsistent input.
NH No homonymy: each identifier has a single interpretation.
OCWS Syntactic roles of open class words are known.
I Identity: words or morphemes are given unique identifiers.
laputs
wWw Sequence of geparated written words,
wi Sequence of word identifiers.
MI Sequence of morpheme identifiers.
P Sequence of parts-of-speech.
SM Meaning of sentence as a whole.
WM Meaning of each word in sentence.
WS Syntactic role of each word in sentence.
TR Thematic roles (weaker form of sentence meanings).
Outputs
G Syntactic parameters/grammar.
MPH List of morphemes in lexicon.
MPHR Rules that constrain occurrence of morphemes.
WM Meaning of each word in lexicon.
WS Syntactic role of each word.

Figure 2.1: Some notable papers on the machire acquisition =f morphology, syntax, and the lexicon,
cataloged by their assumptions and input-output behavior.
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It is of course not possible to construct a complete theory of language or language acquisition in one
step. But the safest starting poirts are the ones that require the fewes: assumptions, and hence the
ones nearest to attested evidence. This suggests that most effort should be devoted to explaining how
the most primitive parameters are learned; these might include sound classes, constraints on syllable
structure, and other parameters clcse to the speech signal. Of course, if it can be reasonably argued (or
demonstrated) that some parameters are not strictly necessary for the acquisition of others, then their
study can be reasonably deferred. For example, it is possible that the phonological form of words can
be learned even without an understanding of syllable structure,

2.2.4 Specification of The Learning Mechanism

As has been mentioned, there are three principal components to any theory of acquisition: the evidence,
the parameters, and the learning mechanism. The evidence is essentially fixed by what is available to
children (though what this evidence is is not entirely understood). The parameters are theory-internal,
but are defined by the processes that interpret and generate utterances, and these can be investigated
independently of acquisition. Therefore theories of acquisition have relatively little freedom to select the
range and form of the parameters that must be learned. This would seem to imply that a theory of
acquisition boils down to a specification of a learning mechanism. But if a theory emphasizes the role
of the learning mechanism, then it is under an increased obligation to justify its function in terms of
general principles. For this reason, it is unsatisfying to assume a baroque mechanism.

To understand the importance of the learning mechanism, it is worth introducing a simple one (discussed
in more length in the following section). Imagine an algorithm that enumerates grammars in some
predetermined order and stops ai the first one that is consistent with the evidence, under some simple
definition of consistency. Given the number of possible grammars and the possibility of noise in the input,
it is clear that this algorithm is merely a theoretical tool; it cannot possibly be computationally feasible
or reliable. These issues cannot be lightly dismissed on the grounds that the algorithm is merely being
described at the level of a computational theory and abstracts from various details necessary to handle
real-life situations. Efficiency, convergence, robustness and other properties of learning mechanisms all
indirectly bear on other parts of the learning framework. For example, there is significant evidence
that the known induction algorithms for certain classes of grammars (such as stochastic context-free
grammars [31, 48, 104]) are systematically incapable of learning linguistically relevant languages; this
reflects back on the appropriateness of the grammar class as a model of human language. Hence, &
cemplete theory of language acquisition, even at the abstract level of computational theory, must be
explicit about the details of the learning mechanism.

Unfortunately, there are gnod reasons not to overly burden the learning mechanism. Complex learning
algorithms are notcriously difficult to analyze and make categorical statements about. In most cases,
the only means of evaluating them is to simulate their execution. Thinking in terms of general principles
provides greater insight into the language learning process as a whole. It is for similar reasons that
optimization researchers think in terms of an objective function, even though their algorithms may
only consider its derivative when searching. An example serves to illustrate the problematic nature of
complex learning algorithms. Dresher and Kaye [55], arguing that brute-force enumeration strategies
are unsuitable models of human language acquisition, propose a cue-based learning algorithm for the
parameters of a metrical stress system. In cue-based strategies, the learner is aware of the relationship
between various sentences and parameter values. Thus, in Dresher and Kaye’s modcl evidence of a
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certain stress pattern might trigger the resetting of a parameter from its default value to a marked one.
They describe cues appropriate for their simple parameter system and argue that the cues are sufficient
for learning. Unfortunately, the cues are not so simple as to be easily derivable from the paraimeter
systemn, and thus must be a hardwired part of the learning algorithm, selected presumably by evolution.
Little can be said about the nature of the cues without reference to the details of the parameter system;
for any change in the model of stress the feasibility of a cue-based strategy must be re-justified. In
contrast, Gibson and Wexler’s [61] simpler “TLA" parameter-setting algorithm is easily analyzed [101],
though its success is similarly dependent on the structure of the parameter system.

2.3 The Nature of the Input

In section 2.2.3 it was argued that theories of language acquisition should be built up from the evidence
that is available to the learner. This forces us to examine in more detail the nature of the input. There
are two important questions. The first is whether the learner has access to feedback and evidence
for what utterances are not in the target language. The second is the extent to which extralinguistic
input serves to directly transmit parameter values. These are both discussed here in the context of one
particular framework for theories of acquisition.

Chomsky writes [39, 40] that any theory of language must provide

(i) an enumeration of the class s;, 35, . .. of possible sentences;

(ii) an enumeration of the class SD;, 5D;, ... of possible structural descriptions;

(ili) an enumeration of the class G, Ga, - - . of possible generative grammars;

(iv) specification of a function f such that §Dy(; ;) is the structural description assigned to sentence
s; by grammar Gj;

(v) specification of a function m such that m(i) is an integer associated with the grammar G..

In this abstraction, a language is a set of sentences.? Presumably these sentences represent some slight
abstraction of the acoustic stream, though Chomsky is not specific about this. A grammar is a set of
parameters for a process that generates sentences; thus, a grammar G defines a language L(G), the set of
all sentences that can be generated under the parameter setting G. By structural description Chomsky
is collectively referring to information that reflects the derivation of a sentence under a grammar, such as
sentence meaning and syntactic structure. This “side information” might be extractable by the learner
from the learning environment and used to disambiguate between grammars, by means of the function
f. The function m is a preference function over grammars, reflecting some arbitrary criterion such as
simplicity.

Chomsky imagines the following learning strategy: a teacher with target grammar G presents a set
of sentences drawn from L(G) to a child, along with their structural descriptions under G; the child

3Here, the word language is used in the E-language scnsc (sce acction 2.2). In more recent work Chomsky has treated
learning as a problem of learning an I-langunge.
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enumerates grammars in order of their image under m, and selects the first grammar consistent with the
input. Thus, the child’s grammar is a complex function of the input and the class of grammars available
to the child. Having learned a grammar, the child can use it to determine whether a sentence is in her
language, and if it is, assign it a structural description.

In this framework Chomsky is implicitly assuming that learning takes place from positive ezamples—
sample sentences from the target language. This is consistent with Brown and Hanlon’s [29] assessment
(see also Marcus [92]) that children receive no negative evidence, a term that refers to both feedback from
the teacher to the learner and negative ezamples— sentences labeled as outside of the target language.
But this assumption introduces an apparent paradox, since it can be shown in Chomsky’s framework
that under reasonable definitions of learnability, most classes of formal languages that are similar to
human languages are not learnable from positive examples alone. Restricting attention to the input,
one way out of this paradox is to assume the learner has access to side information, such as “meaning”,
culled from the extralinguistic environment or derived independently from the speech stream. This is
consistent with what is known, but from a scientific standpoint it is important to explore the possibility
that such side information plays a limited role in the learning process.

2.3.1 Positive and Negative Examples and Restricted Language Classes

Gold [63] presents a framework for the study of the induction of formal languages that is very similar
to Chomsky’s, but allows for negative examples. There it is assumed that examples (labeled positive
or negative) are presented to the learner in a felicitous sequence, such that all possible examples are
eventually presented. After each example the learner names a language. If there is a learning strategy
that guarantees that for any target language, the learner will eventually name the target language and
never again change its hypothesis, then the class of languages the learner is choosing among is identifiable
in the limit. It is possible to place strong bounds on what classes of languages are identifiable in the
 limit from positive examples alone [5], even assuming a preference ordering on languages like Chomsky’s
m function. Gold proved that many linguistically relevant classes of languages, such as the regular and
context-free languages, are identifiable from both positive and negative examples but not from positive
examples alone.

It is not surprising that powerful classes of languages are not identifiable from positive examples alone.
Any learning algorithm that guesses a language that is a superset of the target will never receive correct-
ing evidence; this is especially relevant when the possibility of noise (input outside of the target language)
is taken into account. But more fundamentally, for powerful classes of languages there are simply too
many languages consistent with any set of data. Nevertheless, many restricted classes of languages can
be identified from positive data alone. This is the case, for instance, if every language contains a sentence
that is unique to that language. Some have proposed that the class of grammars that children consider
is highly restricted, with particular properties that render it identifiable (see Berwick [16] and Wexler
and Culicover [148] for discussion). This possibility has generally been raised in the context of syntax.
Regardless of whether it holds, other parts of language, such as the lexicon, are not so limited. For this
reason, it is difficult to construct linguistically plausible classes of grammars that are unambiguous with
respect to natural input. As an example, most sentences are logically decomposable into words, but
there also exist idiomatic phrases that must be memorized. Given the two possibilities, it seems that a
child could account for any sentence as either following from parts or being a lengthy idiom. To rule out
the second possibility while still permitting rote-memorized passages is difficult, and leads to baroque
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and unwieldy theories of language. Any natural class of grammars must allow for both poseibilities, and
hence arbitrary ambiguity.

The fact that most powerful class=s of formal languages are not identifiable in the limit from positive
examples still leaves a variety of possible outs for human language acquisition. One is that the child
has access to a generous source of negative examples. Many have contested Brown and Hanlon (see
Sokolov and Snow [131] for review), and suggested that in fact implicit and explicit negative evidence
does appear in the input children receive. Unfortunately, evidence for significant amounts of feedback is
tenuous (it is not clear how much is present, or of what sort) and there is little evidence that children rely
on it; some cultures do not even direct speech at pre-linguistic infants [88]. For this reason, although it
ig possible that children make use of negative evidence, it appears more promising to look for alternative
explanations of learnability.

2.3.2 Side Information

Chomsky ailows that the learner may have access to structural descriptions as well as sentences. More
generally, it is possible that side information extracted from beyond the speech stream or derived in-
dependently from the speech stream could be used to disambiguate between grammars, if the side
information reflects properties of the derivation of input sentences under the target grammar. For ex-
ample, Gleitman [62) suggests that ryntactic parse trees can be reconstructed from prosodic information
alone. Perhaps more plausibly, the actions taking place around a child may suggest various possible
“meanings” for the sentences the child is hearing. This in turn could provide the child with information
about the words in the sentences it is hearing, as well aa the manner in which the words are composed.

Providing the learner with linguistically structured information like syntactic trees or semantic formulae
can trivialize the learning process, by making the grammar explicit in the input. Some recent papers
argue that there are powerful classes of languages identifiable from positive data alone {74, 118, 124];
these learnability proofs assume access to structural descriptions in the input. Sakakibara [118], for
example, haa shown that a significant subset of context-free languages (those generated by reversible
context-free grammars) are identifiable from positive data, if the example sentences come structured
into unlabeled derivation trees. Similarly, various algorithms have been constructed that use artificial
semantic representations to aid the acquisition of syntax [126, 128] and the phonological lexicon [47].
Indeed, much work on syntactic acquisition has assumed that the thematic roles of noun phrases are
known to the learner [61]. Finally, it has been shown that children do not learn much, if anything, from
sound patterns in isolation [117, 130]; some envircnmental clues are probably necessary for learning.

Despite the fact that it provides an easy way around troublesome learning problems, there are a number
of arguments against relying on side information to explain language learnability:

e There is only shaky evidence as to what side information is available to children, and no conclusive
evidence that children make use of it in learning (other than the uncontested fact that meaning is
not learned from sound alone).

e It may be that significant learning needs to have taken place before side information becomes
useful. For example, it seems unlikely that children pair sounds to extralinguistic events before
they are capable of at least rudimentary segmentation of the sound stream.
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e It is not clear how much extralinguistic information is necessary for learning language. Thus, there
is a substantial risk that we will incorrectly attribute all that we do not understand to magic in
extralinguistic processing mechanisms,

o The use of side information as an aid to language learning falls out naturally in some learning
frameworks, and need not receive a special role in the learning model. See section 4.4.3 for further
discussion,

o There are many engincering tasks that demand learning about language from speech or text alone,
such as the automated construction of automatic speech recognition systems.

'To summarige, it in possible and even likely that children use other information for learning than just the
teacher’s speech signal. Even in the speech stream, it is quite possible that occasional clues like pause
duration, accent and stress are used by the child in addition to the sentence-like properties of the signal.
However, given that we do not know the extent that children rely on such information, it is important to
make as few assumptions as possible and to determine lower bounds on the amount of side information

that is necessary for learning language

2.4 Conclusions

This chapter has curveyed the problem of language acquisition, describing the evidence available to the
learner and the obligations of the learning mechanism. In doing so, it has promoted certain conditions on
theories of acquisition, in particular testability. Two statements that have been made need reemphasis,
as they rnotivate the focus of the remainder of this document. The first, from section 2.2.3, is that a
theory of acquisition should be built up from the evidense available to the learner, because this guards
againat unjustified (and quite possibly incorrect) assumptions. The second, from section 2.3, is that the
only evidence that ia known to be available to the learning mechanism, at least during early stages of
acquisition, is the speech signal. As discussed below, these two facts determine the most natural starting
point for a theory of acquisition (the phonological lexicon) and the fundamental challenge to acquisition
(the unsupervised nature of the problem).

2.4.1 The Phonological Lexicon

The acquisition of the phonological lexicon is a natural starting point for a complete theory of acqui-
sition, This is the problem of mapping from continuous speech to a discrete lexicon of phonological
representations, perhapa for English including words like /83/ (the) and /kot/ (caught) and morphemes
like /in/ (-ing). A theory of this process must predict the acquisition of parameters that enable a new
speech signal to be segmented into a sequence of these representations. There are several justifications
for the primacy of this task:

e The lexicon is close to the speech signal, so it seeme likely that theories of lexical acquisition would
rely on fewer essumptions about the nature of the input, and data is readily available for testing
purposes,
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o The phonological lexicon is a natural foundation for other acquisition procesees. All the work
summarized in figure 2.1 assumes the existence of a mechanism that can map from an acoustic
signal to a sequence of morpheme identifiers, in particular identifiers that can be used as attachment
points for syntactic and semantic information.

® Given that the acquisition of syntax and semantica is likely to be dependent on at least a rudi-
mentary understanding of lexical parameters, it saeems probable that at least the early stages of
phonological acquisition occur without reference to extralinguistic information,® and consequently
fewer potentially incorrect assumptiona have to be made about extralinguistic processing mecha-
nisms.

e Even if assumptions must be made about the nature of acoustic processing, the use of (unseg-
mented) written text as a substitute input does not alter many of the fundamental aspects of the
learning problem.

e Although humane’ phonological lexicons are not directly observable, the plausibility of a learned
lexicon can be judged on the basis of its predictions about pause (or space) placement and whether
there is a natural correspondence between paramecters and what are considered roots and affixes
in standard dictionaries. Thus, theories of lexical acquisition can be objectively evaluated.

@ The lexicon accounts for a large portion of the total variability in language. Therefore any vi-
able theory of lexical acquisition is a significant contribution to a complete theory of language
acquisition.

@ Very few theories have been proposed that attempt to explain the acquisition of the lexicon from
speech-like input; it is a fundamental topic that remains mostly unexplored.

These facts motivate the emphasis of chapters 4 and 5, which formulate representations and algorithms
for the induction of the phonological lexicon.

2.4.2 Underdetermined Parameters and Unsupervised Learning

The fact that language (in the E-language sense) is a mapping between sound and meaning would seem
to imply that the learning problem is fundamentally one of choosing the grammar that best reproduces
the mapping of the target language. In such a case the actual parameter values that are hypothesized by
the learning mechanism are of little concern; only their collective performance matters. Unfortunately,
the principal challenge to theories of acquisition is that the choice of parameter values in extremely
important, but underdetermined by the evidence available to the learner.

There are two reasons why the choice of parameter values is a fundamental issue. First, different speakera
of the same language generalize consistently, which is explained only if they have similar parameter
settings; this similarity is not predicted from the evidence available to the learner, since this evidence
varies and any finite sample is consiatent with many grammars. Second, many underdetermined layers
of representation separate sound and meaning, 8o at least the early stages of learning must be performed
on the basis of the speech signal alone, which has been argued to contain few explicit clues about the

3Some have argucd that the acquisition of the phonological l-xicon is dependent an knowledge of stress and intonstional
patterns (46, 72, T3].
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source grammar. These stages must therefore produce parameter values that are consistent with the
mapping even though they have no access to it.

In arguing that the choice of parameters values is important, and that language is learned from sighals
that provide few explicit clues about the source grammar, we are concluding that language acquisition
involves unsupervised learning. The term unsupervised learning is generally applied to problems where
the goal is to identify structure that is not evident on the surface of the input. In the case of language
acquisition this structure can be thought of as the parameters. Scientints interested in formulating a
theory of child language acquisition are faced with a doubly-difficult task. Not only must they propose
an unsupervised learning mechanism that can acquire a grammar that accounts for the evidence and
generalizes to new sound-meaning pairs, but this mechanism must also acquire the same I-language that
a child would attain in the same circumstances. The nature of this I-language can be partially deduced
by experiments performed on adult speakers’ generation and interpretation mechanisms- this has been
the primary goal of modern linguistics.

The next chapter presents a particular framework for unsupervised iearning, and explains various con-
ditions that must be met for learning mechanisms based on the framework to acquire grammars that
accord with human performance.



Chapter 3

Stochastic Grammars, Model
Selection and Language Acquisition

In the previous chapter it was shown that during language acquinition a single grammar must be selected
from a set of many that are consistent with the input signal; the lack of any explicit evidence favoring
one over another is one of the fundamental reasons language acquisition is a difficult problem. Here it ia
shown that if grammars are given stochastic interpretations, those grammara under which the input is
typical can be favored over those under which it is unusual. This evaluation metric favors linguistically
plausible grammars, and can be justified by the statistical estimation technique of Bayesian inference.
Although Bayesian inference has a number of advantages over competing learning frameworks, there are
various subtleties involved in its application that largely determine whether it will produce the correct
target grammar. The most important of these are the manner in which stochastic interpretations are
tied to linguistic reality, and the manner in which generalisation takes place from a small amount of
cvidence to & grammar that explains unseen data. Discussions of these two topics form the bulk of this
chapter.

In the Bayesian inference framework, the language learning problem can be expressed as follows: through
some process hidden to the learner a target grammar G is chosen from a clase G. Various utterances
U = ul,u3,...,u" are generated in a manner that depends on the target grammar, and this evidence
is presented to the learner, who must select a single hypothesis grammar from among the possibilities,
presumably the one that was most likely to have generated the evidence. If the learner has access to
two fundamental pieces of information, the prior probability distribution p(G) of the grammar G being
selected, and the conditional probability distribution p(U|G) of the evidence U being generated given that
the grammar G was selected, then there is a principled way for the learner to choose a hypothesis. Bayes’
formula, a rewriting of the definition of conditional probability, is 2 mathematically sound expression of
the posterior probability of a grammar G given evidence U:
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p(GIU) = B@%- (3.1)

The value p(G|U) can be interpreted as the proper degree of belief in a grammar G after observing
evidence U, given an initial belief p(G). Jf at the conclusion of the presentation of evidence the learner
hypothesizes the grammar in which she has the highest belief, then the hypothesis grammar G is deter-
mined by

G = argmex p(U|G")p(G'). (3.2)
a'eg

Equation 3.2 includes most of the important components of a formal theory of language acquisition.
The hypothesis class G is the class of all grammars the learner is capable of representing. The sequence
U is the data available to the learner. The maximization over ¢ can be thought of 25 a search the
learning mechanism performs for the best grammar in @ given the input U. p(G) is the learner's default
preference for certain grammara over others. Finally, p(U|G) captures the relation between grammara
and evidence. In a complete theory of language acquisition, each of these components must be explicitly
defined. For expository convenience we will generally assume that utterances are produced relatively
independently of one another, so that the conditional probability p(U|G) can be expressed in a factored

form p(U|G) = [T,ep P(ulG).

3.1 Stochastic Language Models

With respect to language acquisition, the principal advantage of the Bayesian framework over those of
Chomsky (section 2.3) and Gold (section 2.3.1) is that it evaluates grammars with respect to a graded
judgment of the typicality of the evidence. A simple example illustrates this. Suppose a learner choos-
ing over the class of finite context-free grammars is given input aba, abba, abbbba, abbbbba. Consider
two grammars, both consistent with this evidence: § = aBa, B = Bb|b and S = a|b|SS. Which is the
prefered one? The intuitive answer is the first, because it explains better why the observed evidence con-
forms to the pattern ab*a. This fact can be captured naturally in the Bayesian framework, if grammars
are given a probabilistic interpretation. In particular, compare the following two stochastic context-free
grammars (SCFGs [8, 70]), where the choice of nonterminal expansion is governed by probabilities:

Grammar 1 Grammar 2
5 =aBa (1) § =55 (})
B = Bb (%) > a (§)
=b (3) =b  (3)

The probability of the sentence aba under Grammar 1 is 1. Under Grammar 2 there are two possible
derivations of the sentence, each with probability ﬁ, for a combined probability of ﬁ: aba is sub-
stantially more likely under Grammar 1, The particular evidence aba, abba, abbbba, abbbbba is of course
unlikely under both grammars, but it is much more probable under the first one: p(U|G1) > p(U|G,).
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So long as the prior probabilities of the two grammars are comparable, equation 3.1 gives us p(G:|U) >
p(Ga|U), exactly in line with the intuition that the first grammar is to be prefered. In learning frame-
works that do not allow for such graded judgments of “grammaticality”, heuristica (such as the Subset
Principle (5, 16]) must be introduced to favor Grammar 1 over Grammar 2.

Generative grammars with probabilistic interpretations (in other words, grammars that implicitly or
explicitly define p(U|G)) are commonly called atochastic language models. The discriminatory power
of stochastic language models comes at a steep price. Unless probabilities are computed arbitrarily,
grammars must include extra parameters (such as the expansion probabilities in the above example)
that define the exact probability of each utterance; the estimation of these extra parameters presumably
complicates the learning problem. More fundamentally, stochastic language models burden the grammar
with the task of specifying the probability of utterances, which is decidedly counterintuitive given that
the source of utterances lies outside of language altogether: the sentence please remove this egret from
my esophagus is undoubtedly rare in English, but not because of linguistic parameters; the frequency
that it occurs is principally determined by the circumstances of life. This issue is one of the reasons why
many researchers have denied the appropriateness of stochastic language models. But the fact that the
grammar is not the principal cause of frequency variation does not mean that stochastic extensions to
traditional grammars cannot be valuable aids to learning. In particular, because a stochastic grammar’s
ability to assign high probability to evidence can be tied to the quality of the (non-stochastic) fit
of the grammar to that evidence, statistical measures such as equation 3.1 can discriminate between
multiple consistent grammars without relying on extralinguistic evidence like utterance meanings. This
is important in the carly stages of learning when such information may not be available to the learner
(or the learner may not know enough to make use of the information).

3.1.1 Typicality and Linguistic Plausibility

Under equation 3.1, a stochastic English grammar that faithfully approximates the distribution of En-
glish sentences should be a better model for English input than a French grammar under which the
input is highly atypical. In this way statistical properties of the grammar serve as an alternative to
extralinguistic evidence (that would be in conflict with the French grammar for different reasons). For
equation 3.1 to be a successful evaluation metric, however, statistical properties of language models must
mirror psychological reality: were a French atochastic grammar to predict English-like output with high
probability (maybe by predicting frequent, pernicious misspellings) then the wrong grammar could be
favored. Thus, the important question is: given evidence U produced from a (non-stochastic, teacher’s)
grammar G, does the stochastic grammar that maximizes the likelihood of U have the same core (non-
stochastic) structure as G?' The anaswer, discussed at length in de Marcken (48], depends crucially on
the way that the stochastic properties of language models are tied to linguistic structure.

A natural way to estimate stochastic parameters for a language model is to find the parameters that
maximize the likelihood of the observed evidence; this puts each grammar in its best possible light
with respect to equation 3.1. Empirical tests (31, 48, 104] using various naive clasaes of stochastic
grammars indicate that the stochastic grammars that maximize the probability of linguistic evidence do
not in general have “linguistically plausible” structure. For example, although Grammar 3 is a closer

1Note that as more and more extralinguistic evidence that constrains derivations becomes nvailable to the leamer the
anawer tends towards yes, because regardless of its stochastic nature a grammar with the wrong underlying structurc will
be inconsistent with the input.
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approximation of how sentences are generated in English, both of the stochastic context-free grammars
below perfectly account for the distribution of evidence on the left:

The Evidence Grammar 3 Grammar 4
5 = Pron VP (1) 5 = Pron Verd ()
Pron Verb () | vP > Ve (3) = Pron NP (1)
Pron Verd Noun (3) = Verb NP (3) NP = VP Noun (1)
Pron Verb Det Noun (3) NP = Noun (%) VP = Verd (%)
= Det Noun (3) = Verb Det  (3)

These simple stochastic grammars, however, do not make significant use of the mechanisms of language
in their definition of the conditional probability p(U|G); for example, they do not take advantage of
the agreement relations that commonly exist between pairs of elements in a common phrase. In a more
linguistically sophisticated class of stochastic grammars, the agreement relation that exists between
determiners and nouns in English might be incorporated into Grammar 3. This extra constraint would
enable a better statistical fit between the stochastic grammar and English evidence. For example, if the
grammar contains the following co-occurrence information on determiner-noun agreement

NP = Det Noun

determiner type noun type probability

definite singular (.47)
indefinite singular (.20)
definite plural (.32)
indefinite plural (.01)

then it will assign higher probabi'ity to English evidence than one that naively waates probability on the
indefinite-determiner-plural-noun possibility. Since under Grammar 4 determiners and nouns are not in
the proper structural relation to be constrained by agreement, the extra stochastic machinery would not
aid that grammar. Of course, the Grammar 4 could use this sort of agreement model to account for any
statistical dependency between the verb and the determiner, but given the way English is produced, there
is no reason to believe that a atrong dependency exists there. This is one example of how, as stochastic
models are tied to linguistic mechanisms, they increasingly favor linguistically plausible grammars.

One could argue in this example that the stochastic agreement model is merely playing the same role
that a traditional, non-stochastic mechanism would. However this is a misinterpretation. It is true
that a mechanism that merely ruled out the possibility of indefinite/plural pairs would model English
almost as effectively as the stochastic agreement model (though noise and the occasional ungrammatical
sentence might pose a problem). But the real issue is whether agreement would be learned at all
without the stochastic interpretation. Since English evidence is “grammatical” whether or not an English
grammar incorporates the agreement restriction, there ia no obvious incentive to acqu’ - this information
(determiner-noun agreement is not a necessary component of a grammar). In cont _t, in the Bayesian
inference framework there is an incentive to understand agreement, because it enables the learner to
better predict the input U. In fact, the statistical nature of the learning problem gives the learner an
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incentive to acquire as much knowledge of the target language as poasible, since a stochastic grammar
that incorporates such knowledge is more likely to assign a high probability to U.?

All of these arguments rely on stochastic language models being defined in such a way that their statistical
modeling power is greatest when the linguistic stzucture of the learner’s grammar is naturally aligned with
the linguistic structure of the evidence. In the above example, for instance, the reason the linguistically
plauaible grammar is favored is because it brings the stochastic agreement model to bear on a regularity
(the determiner-noun co-occurrence pattern), wherean under the linguistically implausible gramrnar this
mechanism is wasted. Fortunately, language is not entirely uniform, so stochastic models tailored for
certain phenomena (say, explaining morphological agreement) are unlikely to function well when applied
to other phenomena (explaining phonetic assimilation). Thus, the more finely tuned stochastic models
are to their expected role, the more likely Bayesian inference is to converge: to desired grammars. Of
course, if a regularity exists in the data but no statistical mechanism is built into the cless of language
models to account for it, then there is a great risk that nome other (inappropriate) mechanism will be
coopted to explain it, confusing the estimation of whatever linguistic parameters that mechanism was
meant to be used for. This is8 a very important practical matter: language models that offer only a
single mechanism to explain statistical regularities (such as SCFGs) will necessarily end up using that
mechanism to account for all regularities. The greatest risk is that regularities that are not due to
language but to the surrounding environment that influences language will end up being modeled by
linguistic parameters; this is the subject of the next section.

3.1.2 Linguistic and Extralinguistic Sources of Regularity

In Bayesian inference, a stochastic grammar fares well if it assigns high probability to evidence produced
by the target grammar. This is accomplished by specifying a distribution that reproduces the regularities
of the target language— properties that are generally true of signals produced by the target grammar but
not of all possible signals. Regularity in the input arises from two sources. One is language; examples
of linguistic sources of regularity include words, agreement, syllable structure, syntax, and in general
any mechanism or parameter that reduces the space of possible utterances in a language or favors some
over others. These are the regularities that the learner is interested in modeling, since in doing 8o the
learner will hopefully acquire the correct linguistic parameters of the target language. Unfortunately,

3This can be argued more formally by assuming that the utterances the language icarner reccives are produced inde-
pendently, each in @ manner that depends not only on the source grammar but also on other hidden information such ns
the tcacher's thoughts. Thus, as far as the learner is concerned, U is produced piccemeal by a stochastic process with
approximate distribution pr(U) = l-[-eu pr(u). (This is not to imply that the teacher neceasarily uses a stochastic gram-
mar; here the uncertainty in pp(u) is principally due to the learner's ignorance of the input to the language mechanism,)
If the learner's stochastic language model is also factored over individual utterances (pr(U) = H-eu pr(u)), then it can
casily be shown that as the number of sample utterances grows, py,(I/) is maximieed when the learncr's grammar is chosen
to minimize the Kullback-Leibler distance D(p7 || pr) between the distributions pr and pp, where the Kullback-Leibler
distance is defined by

D = —pr(u)lo P—L(—‘ﬂ .
(pr Il P2) Z pr(u)log pr(a)
It is possible [16, 53] (and indeed effective) to construct stochastic language models by defining py, to be the least-commitial
(maximum-entropy) distribution consistent with known properties of the target language distribution pr. Using thia class
of models, as more properties of the target language are incorporated into py,, the Kullback-Leihler distance between pp
and p; decreazes. In this sense, the grammar with the greatest chance of being selected by equation 3.2, ignoring for now
the prior term, is the one that incorporates the most knowledge of the target language.
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there is another source of regularity in the evidence available to the learner, and that is the “control
signal” to language- the outside world and all of the rest of the teacher's brain. This both complicates
and simplifies the problem of language acquisition.

Patterns in the input that are caused by mechanisms external to language, but which appear similar to
those impoged by language, can obviously distract and mislead the learner. For instance, all learners
will hear certain phrases repeated often— examples include conversational cliches like beg your pardon,
prayers, legal idioms, and popular quotes- whose frequency will not fall out of their linguistic basis.
One possibility the learner must entertain is that each is merely a s.gle (long) word. As words, the
statistical regularity of the sounds within these phrases is explained, and thus there is a motivation in
the stochastic framework for placing all pessages which occur with unusual frequency in the lexicon,
regardless of whether they are linguistically interesting. These problems can be partially alleviated by
introducing extra parameters into language models that serve only to capture extralinguistic regularity;
this is a principal motivation for the class of language models introduced in chapter 4.

More problematic are cases where extralinguistic regularities cross linguistic boundaries. Consider the
potential consequences of evidence that can be bisected into a set of sentences involving John and Mary,
and anoiher set involving Alice and Bob. In the first case there might be many sentences of the form
John verb Mary and in the second of the form Alice verb Bob. To a learner with no access to sentence
meanings, there might appear to be an agreement phenomena between the first and last positions in
the sentence (that could have been imposed by the language faculty). Since languages do not generally
exhibit agreement between subject and object positions, the learner might be led to suppose a different
structure than subject-verb-object (perhaps treating Bob and Mary as main vetbs rather than direct
objects). Fortunately, given carefully constructed classes of stochastic grammars and sufficient evidence
such pernicious examples are rare. Furthermore, aa extralinguistic evidence becomes available it can be
used to separate regularities imposed by the language faculty from external regularities.

The John-Mary-Alice-Bob example above is unusual: because jdeas are generally mapped to language
in a compositional fashion, regularities due to extralinguistic causes often (indirectly) provide evidence
about linguistic structure. Take for example the phrases walked the mangy dog, bought a new car and
ate a red apple. Each is more likely to occur than arbitrary verb-determiner-adjective-noun sequences,
because each reflects natural associations of actions and modifiers with objects. The fact that all of these
associations take the same form (adjectives attached to the left of nouns and noun phrases attached to the
right of verbs) suggests that common syntactic mechanisms are being used to capture semantic relations.
Thus, even nonlinguistic regularities are good indicators of underlying linguistic atructure. Thia fact is
one of the primary reasons that unsupervised learning schemes can be successful at elucidating linguistic
structure,

Extralinguistic patterns have been the downfall of many computational theories of language acquisition,
that have modeled them at the expense of linguistic ones (see for example Olivier [102] and Cartwright
and Brent [32]). In chapter 4 a representation for language is presented that does not prevent extralin-
guistic patterns from making their way into the grammar, but does ensure that they do not preclude
desired parameters.
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3.2 Generalization, Model Selection and the Prior

It was argued informally that the grammar S = aBa, B = Bblb is a better hypothesis than S = a[b|SS
for the input aba, abba, abbbba, abbbbba, because under it the input is more typical. On this measure the
grammar S = aba|abba|abbbba|abbbbba is better yet. Nevertheless, our intuition is that this grammar is
an undesirable choice, because it merely encodes the observations and is unlikely to generalize to other
sentences from the target language. In language acquisition, where only a very small sample of the
target language is available to the learner, generalization from available evidence to a grammar that also
explains other data is a key issue, This is a problem of model selection: which of many models consistent
with the data is best? In Bayesian inference, this question is answered by equation 3.2, which depends
on the prior probability distribution p(G). Thus, the prior can be used to manipulate generalization
performance. However, Wolpert and others [119, 152] have shown that unless assumptions are made
about the learning problem, no generelization strategy (and hence no prior) performs better than any
other. In this section various properties of grammars and the language acquisition problem are used to
motivate a prior that favors simple grammars over complex ones, where simplicity is defined syntactically.

By evolutionary necessity different speakers, exposed to different small samples of a single target lan-
guage, must each with high probability converge to a language very close to the target language. With
guitable formalization it can be shown that for this to be possible, the class of hypothesis languages
must be heavily conatrained; for example, in the PAC learning framework [141] it can be shown that the
VC-dimension of the hypothesis class is bounded by the number of samples available to the learner [56),
up to a factor that depends on the allowable error rate.® This means that the complexity® of the class
of grammars that can be entertained by the learner is inherently constrained by the amount of data
available for parameter estimation. Perhaps surprisingly, given this result, there does not seem to be an
upper bound on the number or complexity of individual languages— new words can always be added to

an existing language, for example. One escape from this apparent paradox is for the learner to adjust
the hypothesis class of grammars to reflect the amount of evidence available for estimation.

3.2.1 Structural Risk Minimization

In the Bayesian inference framework, where the language learner attempts to optimize a stochastic
language model p(I/|G), generalization performance can be measured by the divergence of this conditional
distribution from the “true” teacher’s distribution over evidence, pr(U); this divergence is computed
as an expected value over all utterances, not just the sample the learner is exposed to. Conceptually,
generalization error arises from two sources. The first is the choice of the hypothesis class and the
fidelity of its members to the true distribution pr(U). If the hypothesis class is too restrictive even the
best possible grammar in it may be a poor approximation to the true distribution. The second is the
possibility that the learner will choose incorrectly from among the members of the hypothesia class; the
higher the ratio of the VC-dimension of the hypothesis class to the amount of evidence, the more likely
the learner is to select a grammar that generalizes more poorly than is necessary [142] (given sufficient
evidence for a given VC-dimension, any function consistent with the evidence will generalize well [76]).

3The VC-dimension of & set of functions is, roughly speaking, o measure of the cffective coverage of the sct [143]. For
& set of indicator functions F it is defined to be the aige of the largest set of elemcnts that can be labeled in all possible
ways by functions in F. This definition can be extended to measure the VC-dimension of functions with arbitrary ranges,
such as probability distributions like p(U|G).

4Here the word complezity is used with no special technical connotations.
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Vapnik [142] advocates the structural risk minimization framework in which the learner selects a hy-
pothesis class (from among a structural Aierarchy of classes) with VC-dimension that minimizes the sum
of these two contributions to the generalization error. In the case of language, given a small amount of
evidence the learner might restrict attention to a small class of grammars, none of which are likely to
approximate the true function well, and as more evidence becomnes available expand the search to include
a greater number of grammars, some of which will be better approximators. Niyogi [100] explores this
idea in more mathematical detail, also with respect to language acquisition; see also literature on the
bias-variance tradeoff {21, 60].

At face value structural risk minimization seems to be irrelevant to the language acquisition problem.
After all, the learner does not get to choose what the class of human grammars is; that is defined ex-
ternally to learning altogether. This contrasts with the function approximation tasks that motivated
Vapnik, where parameters play a secondary role to the quality of the approximation. In language ac-
quisition as we have defined it, the conditioral probability distribution p(U|G) is merely an algorithmic
tool. Approximating it is useful only insofar as the members of the hypothesis class serve to identify
human grammars, and this precludes artificially simplifying stochastic grammars to conform to a strue-
tural hierarchy. Fortunately, the nature of human language is such that stochastic language models can
be defined over partial parameter sets, in such a way that a structural hierarchy of stochastic grammar
classes of increasing complexity can be defined, each identifying a greater portion of the target grammar.
For example, one might imagine structuring grammars by the size of the lexicon. Asked to choose among
lexicons with only one word the learner might opt for the lexicon containing the word the. Given acceas
to more data, the learner might select between lexicons containing ten words each. Although there is
obviously some risk that the constraint of modeling with an artificially small parameter set will lead the
learner astray (perhaps, forced to choose the single “word” that best improves the model p(U|G), select-
ing howareyoutoday over the), the expectation is that as the amount of evidence is increased, and with it
the modeling power of the grammars, core parameters will remain constant and additional parameters
will be devoted to explaining ever less important phenomena.

3.2.2 The Minimum Description Length Principle

To implement structural risk minimization on top of a class of grammars two items must be defined:
a structural hierarchy over the grammars and a function that determines the appropriate class in the
hierarchy for a given amount of evidence. Unfortunately, this function is dependent on the VC-dimension
of each class, as well as the expected fit of each class of grammars to the target language. Both
of these quantities are extremely difficult if not impossible to compute in practice. For this reason,
heuristic approximations must be used in place of structural risk minimization. One effective heuristic
is Rissanen’s minimum description length (MDL) principle [111, 113, 114], in which description length
is used as a substitute for informational complexity measures like the VC-dimension. The minimum
description length principle, as applied to stochastic grammars, says that the best grammar G minimizes
the combined description length of the grammar and the evidence. More formally,

G = argmin |G|+ |U|a: (3.3)

G'eg

where |G'| is the length of the shortest encoding of G' and |Ulg: is the length of the shortest encod-
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ing of U given knowledge of the grammar G’. Using ncar-optimal coding schemes, Shannon’s source
coding theorem [122] implies that |U|g' can be made to closely approach —log p(U|G'), and therefore
equation 3.3 can be rewritten

G = argmin |G’'| - logp(U|G’), (3.4)
&’cg

a more intuitive formulation from the standpoint of stochastic grammars. The duality between descrip-
tion lengths and probabilities is convenient. It means, among other things, that any coding acheme for
utterances can be interpreted as a stochastic grammar, and vice versa (sec section 4.3 for further dis-
cussion). It also means that if the prior probability p(G) is defined by p{G) = 2-16l then equations 3.2
and 3.4 coincide. Thus, MDL can be interpreted as a Bayesian prior that is biased against grammars
with high syntactic complexity. Rather than try to argue for MDL from first principles,® we note that
it is merely a heuristic, but point out three important ways in which it mimics the philesophy of the
better-justified structural risk minimisation:

e In very many cases the VC-dimension of a parameteriged class of functions is linear or near-linear
in the number of free parameters in the class [10, 76, 142]. Given an efficient coding scheme, the
length of a description of a set of (independent) parameters is linear in the number of parameters.
Hence, in a structural hicrarchy where classes consist of functions with the same number of free
parameters, the description length of a grammar should be linearly related to the VC-dimension of
the class it is in. By penalizing grammars with high description length |G|, MDL therefore weighs
against classes that have too high VC-dimension for good generalization performance.

o With sufficient evidence, for a class of a given VC-dimersion good generalization performance can
be achieved by selecting the function that models the evidence best {143); for stochastic grammars,
this is the one that maximizes p(U/|G). Hence, the —log p(U|G) term biaaes toward grammars that
are likely to generalize well.

» Assuming a nearly stationary class of stochastic grammars, to a first approximation the probability
distribution p(U|G) can be factored over individual utterances: p(U|G) = [],¢r P(u|G), which
tends towards ™ where 5 is the (geometric) mean probability per utterance and n is the number
of utterances. Thus, the term — log p(U|G) = —nlogp grows linearly with the amount of evidence
available to the learner. As it grows, so does the incentive to increase p (by moving to a grammar
from a broader class with better approximation properties). In this way the choice of the VC-
dimension of the hypothesis class is made to depend on the amount of evidence available to the
learner.

Although MDL hee had succesaful applications in language inference, it depends on a syntactic definition
of complexity and therefore its effectiveness is tied to the encoding scheme used for stochastic grammars.
Despite its motivations, it does not trade VC-dimension against evidence in the theoretically optimal
way, and in no way guarantees that generalization performance is maximized: although results vary by
application [97], aa is to be expected, practical experience indicates (see [98, 116, 146] and section 6.1.3)
that MDL as commonly used tends to underestimate the number of parameters necessary for optimum

BSee [80, 86, 87, 111, 113, 114] for attzmpted justifications of MDL and the closely related Kolmogorov complexity.
Other relevant arguments for simplicity as mrasured by description length include (16, 20, 37, 66, 133].
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generalization. From a Bayesian perspective this is not surprising: the 2-I€! prior very heavily biases
towards grammars that are improbably simple from the linguistic perspective. Despite the fact that
MDL is oniy a heuristic approximation to miore desirable model-selection schemes such as structura) risk
minimization, it will be used in the learning schemes presented in the remainder of this thesis, because
description lengths can be conveniently computed and manipulated.

3.3 Example

At this point it is worth looking at a very simple example of how the minimum description length
principle (a8 embodied in equation 3.3) can be used for language acquisition. The example is chosen
to illustrate ideas that will be relevant in the following chapters. Let us suppose the learner receives
evidence in the form of a sequence of characters, such as iateicecream. The grammars the learner
entertains each consist of a set of words, where each word is a sequence of characters. Thus, one possible
grammar is { i, ate, ice, cream }.

In the Bayesian inference framework, two distributions must be defined. The first is a prior distribu-
tion over possible grammars, p(G), and the second is a conditional distribution over possible character
sequences p(u|G). The MDL principle is more simply expressed in terms of description length than prob-
abilities, so for the moment let us concentrate on coding schemes rather than distributions. Suppose
that every word in a grammar is assigned a prefix-free codeword. Then the evidence u is encoded by
writing down a sequence of codewords. For example, given the grammar

Word c a i a T m t ice
Codeword | 00 010 011 100 101 110 1110 1111

then the evidence iateicecream can be encoded in 30 bits as i-a-t-e-ice.c:r-e-a-m:

011-010-1110-100-1111-00-101-100-010- 110.

A coding scheme for grammars must also be specified. Suppose that all grammars include the 26 letters
of the alphabet, so they don’t need to be explicitly encoded into grammars. The words in a grammar
that are more than one character long are encoded by writing out the codewords of their component
characters. The word ice in the above grammar, for example, is encoded 011 -00- 100 (1-c-e). There are
many details being glossed over here, such as how codewords are assigned to words; for the time being
it is more important to focus on fundarnental issues.

Given this model of language, let us compare three grammars for the evidence themanonthemoon.



3.3. EXAMPLE 41

(A) Word o 1 t h ° m a
Codeword | 00 01 100 101 110 1110 1111

(B) Word o =n the m t h @ a
Codeword } 00 01 100 101 1100 1101 1110 1111

Word o 1 t h e a themanonthemoon

(€) Codeword | 00 01 100 101 1106 1101 1110 1111

Each of these grammars defines a total description length for themanonthemoon. For Grammar A, which
has no words other than single characters, this is simply the length of the best encoding of the evidence.
Grammars B and C must add to this the cost of representing extra words in the grammar.

(A) Evidence 100-101-110-1110-1111-01-00-01-100-101-110-1111-00-00-01
( t-h-e-m-a-n-o-n-t-h-e:m-0-0:n )
Length 42 bits.

(B) Evidenee 100-101-1110-01.00-01-100-1101-00-00-01 ( the-m-a-n-o-n-the-m-0-on )
Grammar 1100-1101-1110 ( t+h-e )
Length 40 bits.

(C) Evidence 1111 ( themanonthemoon )
Grammar 100-101-1100-1101-1116-01-00-01-100-101-1100-1101-00-00-01
( t-h-e-m-a-n-o-n-t-h-e-m-0-0-n)
Length 48 bita.

The minimum description length principle says that the best grammar is the one that results in the
shortest description length for the evidence and the grammar. That is Grammar B, at 40 bits. Gram-
mar C has a very short description of the evidence, but at the expense of an extremely long and overly
specific grammar. Grammar A has too general a grammar and fails to capture an important pattern in
the evidence. Grammar B, which moves the word the into the lexicon and thus saves bits every time it
is used (the codeword for the is considerably shorter than the combined length of the codewords for t,
h and e), strikes a happy medium. Thus, in this case the MDL principle favors the grammar with the
most linguistically appealing structure.

Notice that the coding scheme for utterances is equivalent to a stochastic language model p(u|G). In
particular, to stochastically generate an utterance u under a grammar G, first generate a random ge-
quence of bits by flipping a coin, and then use G to decode that sequence into an utterance . This is
why it doesn’t matter whether we think in terma of stochastic language models or in terms of probability
distributions.
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3.4 The Search Procedure

In section 2.2.4 it was argued that the learning mechanisin must be given a principled foundation. In
the Bayesian inference framework the function of the learning mechanism is to find the grammar with
the maximum posterior probability; at a conceptual level, therefore, it is entirely defined by the class of
grammars, the prior probability distribution, and the conditional probability distribution. In practice,
however, the class of grammars will be large, if not infinite, precluding maximization via enumeration
and necessitating heuristic searches that take advantage of the qualities of specific grammar classes.

3.5 Related Work

Bayesian inference and MDL each have rich histories, and have been routinely applied to problems of
larguage acquisition. Some of the earliest work on the inductive inference of language was performed by
Solomonoff [132, 133], who would later play a major role in defining the theory that motivates MDL [134].
In his language work the importance of penalizing complexity is already emphasized. Aa far back as
1955 Chomsky wrote in The Logical Structure of Linguistic Theory [38]

In applying this theory to actual linguistic material, we must construct a grammar of the
proper form... Among all grammars meeting this condition, we select the simplest. The
measure of simplicity must be defined in such a way that we will be able to evaluate directly
the simplicity of any proposed grammar. .. It is tempting, then, to consider the possibility of
devising a notational system which converts considerations of simplicity into considerations
of length.

Stochastic methods have also been applied from very early on. One of the first demonstrations of
Markov models [93] was an elucidation of the dependencies between adjacent characters in the text
of Pushkin's Eugene Onegin. Olivier [102] uses stochastic models in an early computational study of
language acquisition. However, very few in the natural language community have looked carefully at the
necessary relation between stochastic models and the problems they are applied to; as a consequence
most experiments in the unsupervised learning of language have tended to result in parameter values
that fare well on statistical criteria, but not on linguistic ones.

3.6 Conclusions

This chapter has survey=d the issues surrounding the application of Bayesian inference to the problem of
unsupervised language acquisition. This framework for statistical estimation evaluates grammars largely
on the basis of whether they explain the typicality of the evidence, and hence can discriminate between
grammara even in absence of binary grammaticality judgments and without reference to information
from beyond the speecb signal, such as sentence meanings, that may not always be available to the
learner. Various subtleties have been discussed at length, in particular the need for certain relations
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to hold between the structure of stochastic language models and the linguistic parameters that are the
desired output of the learning process. The difficult problem of ensuring good generalization from a small
amount of evidence was used to promote a bias in the learning algorithm towards simple grammars.

The main purpose of this chapter has been to provide an objective function {namely, the posterior
probability given & prior that is defined in terms of description length) by which a learning algorithm
can evaluate a grammar. Neither the form of grammars nor the learning algorithm has been specified;
these are the topics of the next two chapters. The choices there will determine whether the MDL-based
inference procedure is successful. In particular, they will determine whether the entire learning process
converges to linguistic parameters that agree with what is known about human language and human
petformance.

It ia important to note that stochastic grammars and the description-length prior are serving here as
tools to aid the learning algorithm. This chapter has not argued that language is best viewed az a
random process, or even that analogs of stochastic parameters are present in the grammars used by
adults for generation and interpretation. However, the discussion is equally relevant to human language
acquisition as it is to engineering applications in which it is necessary to estimate stochastic language
models for use in disambiguation and compression.



Chapter 4

A Representation for Lexical
Parameters

This chapter presents the principal innovation of this thesis, a framework for the representation of
linguiatic knowledge. In it, parameters like words are represented in the lexicon as a perturbation of
the composition of other lexical parameters.! This recursive decomposition of knowledge in the lexicon
18 similar in spirit to the hierarchical phrase structures commonly associated with sentence processing,
distinguished by the fact that at every level in the hierarchy perturbations introduce changes to default
compositional behaviors. As a theory at the computational level, the framework abstracts from details of
linguistic theory while highlighting issues of memory organisation that are central to language acquisition,
When used in conjunction with the inference framework presented in chapter 3, it neatly circumvents
many of the potential pitfalls of unsupervised learning raised there, such as the propensity for the learner
to model extralinguistic patterns in the signal. In this way it is a theory of language acquisition as well as
a theory of lexical organisation. The success of the theory is demonstrated through learning algorithms
and results presented in chapters 5 and 6.

The chapter begins with an introduction to the representational framework, culminating in a simple
example in which parameters are character sequences built by concatenating other character sequencen,
This example is used as background to present various motivations for the framework, principally from
the standpoint of unsupervised learning but also with respect to the nature of language. The issue
of coding is then explored in more depth. Finally, four instantiations of the framework are defined in
greater detail,

!In this theais the word fexicon refeors to the store of memoriged, irregular knowledge about language. As a matter
of convenience the word word will often be used to refer to any lexical paramecter, though a more proper term would bhe
listeme (defined by Di Sciullo and Williams [120) a8 an item that must be memeorised). Listemes include morphemes, many
syntactic words, idiomas, and perhaps syllables. Here even syntactic rules arc treated na part of the lexicon, if there is
reason to belicve that they are memoriged. Under these definitions the lexicon does not include objeets that can be derived
using completely regular processes, even if they are words in the traditional scnse; sce Spencer [136) for further diseussion.

44
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4.1 The Representational Framework

A central tenet of modern linguistic theory is that language makes “infinite use of finite meana” [40, 144],
or in plainer terms, that language combines a finite set of lexical parameters to produce an infinite
variety of sentences. This chapter argues that these lexical parameters, the primitive units of sentence
processing, are themaelves built by composing parts, inside the lexicon. Thus, each lexical parameter is
constructed very much like a sentence, with idioms built from words, words from morphemes, and so
on. What distinguishes the lexicon from the sentence processing mechanism is that the composition
occurs off-line, and more importantly, that parts combine to produce a whole that is greater (or at least
different) than the sum of the parts. This idea is captured here by a framework for lexical representation
in which each parameter w in the lexicon is represented as the perturbation of a composition of other
parameters wy ... w,,

w = (w; 0--+ 0 wy) + PERTURBATIONS.

Here the composition operator o is taken to represent the same process that combines words and other
elements from the lexicon during on-line processing. The intuition behind this representation is that w
inherits the linguistic properties of its components w; ...w,. At the same time the perturbations intro-
duce changes that give w a unique identity: a word that acts exactly as the composition of its parts could
be removed from the lexicon and reconstructed on-line during normal sentence processing. Conceptu-
ally, this framework is quite similar to the ¢lass hierarchy of a modern programming language, where
classes can modify default behaviors that are inherited from superclasses. The more of its properties a
parameter inherits from its components, the fewer need to be specified via perturbations.

Parameter Possible Representation

cat (c o aot)+ IS-A-NOUN + MEANING + FREQ

motor (mo o tor) + IS-A-NOUN + MEANING + FREQ

blueberry ({Noun = Adj Noun) o blue o berry) + MEANING + FREQ

wanna VP ({VP = Verb to VP) o want) + SOUND-CHANGE + FREQ

Verb Prep NP | ((VP = Verb PP) o (PP => Prep NP)) + FREQ

lake off NP ({VP = Verb Prep NP) o take o off) -+ MEANING + FREQ

kick the bucket | ((VP => Verb NP) o kick o (NP => Det Noun) o the o bucket) + MEANING + FREQ

Figure 4.1: Some informal examples of how different lexical parameters can be represented by perturbing
a composition of other parameters, ranging from phonemes and syllables to words and syntactic rules.
Here perturbations are represented with capital letters, with MEANING denoting a change in meaning
and FREQ & change in frequency.

Figure 4.1 presents several (very informal) examples that should help convey the intended use of this
abstract framework. In each case parameters are constructed by composing several parameters and per-
turbing the result. Perturbatione include sound changes (want to becomes wanna), changes to syntactic
properties (cat and motor are nouns), changes to meaning (a blueberry ia more than just a blue berry and
kick the bucket has nothing to do with kicking or buckets), and changes to frequency. Frequency infor-
mation is used to give a stochastic interpretation to the lexicon during unsupervised learning of the sort
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described in chapter 3. Its use and importance will be discussed in greater detail later. The parameters
that are composed in these examples range from phonemes and syllables to words and syntactic rules.
The definition of the composition operator dictates how parameters combine. ldeally, the composition
operator encodes most of a detailed theory of language, explaining how phonemes and syllables come
together in words like cat and motor, how syntactic rules combine, and even how semantic interpretations
are constructed by composing words under standard syntactic relations (as with blueberry). Note that in
most of these examples relatively little information needs to be added via perturbations. For example,
although blueberry does mean something different than blue berry, much of the meaning and all of the
eyntactic and phonological properties of the word are inherited at the mere price of references to one
syntactic rule and two other words. Without such a means of sharing structure, each parameter would
include an enormous amount of redundant information. For example, the irregular passive form taken
would need to be memorized twice, once for take and once for iake off. As is, the framework can neatly
explain how take off can have a meaning that is quite independent of take and off, but nevertheless share
properties with its components.

Many objects not traditionally considered “word-like” are included in these examples, such as syntactic
rules and ayllables. This is because the representational framework is relatively independent of details
of linguistic theory, and conveys its advantages at any level of the linguistic hierarchy. The fact that
a single symbol o is used to represent the composition operator in each of the examples in figure 4.1
18 not meant to imply that in realistic instantiations the same combinatory process would be applied
universally; presumably, for example, the mechanism that combines phonemes into syllables should
function differently than the one that composes syntactic rules. Because it is the abstract framework
that is studied here, rather than the details of linguistic theory, all instantiations of the framework that
will be discussed use only a single composition operator each, general enough to approximate processes
ranging from morphology to syntax.? Furthermore, no parameters beyond the lexicon are studied, and
therefore in the remainder of this thesis the lexicon effectively acts as a grammar. (The two words will
be used largely interchangeably below). In fact, since parameters are represented in almost the same
way as utterances, the lezicon is the grammar both for utterances and for itself.

As with any kind of grammar, lexicons can be given stochastic interpretations for the purposes of
Bayesian inference. As a simple example, one which will be discussed at much greater length below,
each word in the lexicon could be associated with a probability that determincs the relative frequency
of that word. In such a case, words serve both as points at which perturbations attach new information
and also as a means to refine a stochastic model. The word motor, for example, might allow a grammer
to explain why the components mo and tor occur together so much more often than would be expected
given their independent probabilities. The fact that parameters can be motivated from the standpoint
of Bayesian inference as well as on the basis of where perturbations need to occur is what allows the
framework to be used for unsupervised learning. The fact that the lexicon serves as a stochastic language
model both for the input and itself means that description lengths for utterances and parameters are
computed in the same way. This simplifies the statement of the MDL principle, allowing equation 3.3
to be rewritten as

?With a single composition operator, the framework offers no internal means of distinguishing between “words” and
other parameters- all are treated alike, and any test of “word-dom" must he applied externally, This agrees with the fact
that it is extremely difficult to find language-independent definitions that agree with our intuition of what a word is [136],
In contraat, if multiple composition operators are used, then paramecters can be classified according to the conmpositional
process that they are built with.,
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G = argmin |G'|+ |U|a
a'ey
&  argmin z jw|g: + Z |u)g:. (4.1)
G'ed weq’ welr

where |z|g: is the description length of z under the grammar (lexicon) G'. A concrete example of how
the representational framework can be instantiated and interpreted with respect to equation 4.1 is given
below. It will be used as the basis for further discussion of the framework.

4.1.1 Concatenative Example

Let us look at a linguistically naive instantiation of the above framework, that ignores all details of
phonology, syntax and semantics. Each word in the lexicon is simply a sequence of characters, linked to
a codeword that serves as a pointer. For example, one word might be

Character Codeword
badminton 0011

The composition operator i concatenation: each word is represented as the concatenation of the char-
acter sequences of other words, plus its codeword (the only perturbation). This process bottoms out
in words that are single characters. In this way, badminton can be represented as bad o min o ton +
0011. For realistically sized examples, clever coding schemes can nearly eliminate the cost of coding the
perturbation (0011) and the cost of terminating the encoding of the composition. Assuming a prefix-free
code, the representational cost of each word then reduces to the cost of writing down in sequence the
codewords of its components. For example, if bad is coded as 10, min as 011, and ton as 010, then
badminton can be encoded in 8 bits as 10011010,

Figure 4.2 presents a lexicon for the character sequence thecatinthehat (though not a good one). Rep-
resentations and their encodings are provided for the input and each (nopterminal) parameter in the
lexicon. The count of how many times parameters are referenced in the complete description of both
thecatinthehat and the lexicon determines the length of the codeword for each parameter (here a Huff-
man code [69) was used). The description length of each parameter is the sum of the lengths of its
components’ codewords (since the cost of perturbations and terminators is negligible).

The lexicon in figure 4.2 does not minimige the description length of the input; this small amount of
evidence is not sufficient to justify words like cat and hat. This example is meant only to demonstrate how
the abstract representational framework can be turned into a concrete coding scheme, that could be used
to search for a lexicon with minimum description length. Despite its naivete, this simple concatenative
model is quite powerful. Chapter 5 presents a search algorithm for the model that attempts to find
the lexicon that minimiszes the total description length of some input. Tests on large texts (presented
in chapter 6) indicate that this algorithm learns a lexicon that agrees closely with human judgments.
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code w representation encoding count |uw|

000 the tohoe 01001101011 2 11

001 at aot 1100010 2 7

010 ¢t 2

0110 h 2

0111 cat c o at 1101001 1 7

1000 hat h o at 0110001 1 7

1001 thecat the o cat 0000111 1 7

1010 thehat the o hat 0001000 1 7

1011 e 1

1100 a 1

1101 ¢ 1

1110 i 1

1111 n 1

u = thecatinthehat thecat oion o thehat 1001111011111010 16
MES MY

Figure 4.2: A 62-bit, suboptimal description of thecatinthehat. The complete deacription length of the
input is computed by adding the length of the representation of the input to the lengths of the repre-
gsentations of the parameters; this ignores several minor coding costs. Terminals have no representation.

For example, when tested on an unsegmented (spaceless) version of the Brown corpus [59], one of the
parameters learned is nationalfootballleague. The representation of this phrase is natianal o football o
league. A larger portion of the recursive decomposition of the phrase in the lexicon is presented in
figure 1.1. The reason that the optimal lexicon agrees closely with our intuitions, despite the fact that
the learning mechanism has no access to syntactic and semantic information, was given in chapter 3:
given appropriate representations, the learner is best able to model the statistical properties of the input
by reproducing, at least in part, the process that generated it,

Before presenting various motivations for the representational framework, it is worth looking a little closer
at the statistical properties of this concatenative model. Assuming codewords are chosen to minimize
the total description length, codeword lengths I(w) will be related to word frequencies p(w) according to
the standard relation I(w) = — log p(w), where frequencies are defined over the represgentations of both
the input and the lexicon. Thinking in terms of probabilities rather than codewords, it is clear that
this coding system defines a atochastic language mode! under which both the input and the parameters
are generated by concatenating parameters chosen by an independent and identically distributed (i.i.d.)
process. Thus, the probability of the character sequence u under this language is

p(u) =2 p(n) > p(wi)---p(w),

Wity 4.0 U=w,; 00w,

where p(n) is effectively defined by the manner in which compositional encodings are terminated. This
stochastic language model has been called a multigram (61] and used for a variety of language modeling
applications. Multigrama account for statistical dependencies by assigning probabilities p(w) to lengthy
character sequences: they are essentially variable-length block codes. For example, the fact that p(the) »
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p(t)p(h)p(e) is captured in figure 4.2 by the word the, which is assigned a codeword much shorter
than the combined length of the codewords for ¢, & and e. Since multigrams do make independence
assumptions at parameter boundaries, they have difficulty reproducing complex distributions. Their
modeling power can be increased by increasing the length of parameters (thereby reducing the number
of independence assumptions), but this increases the number of parameters exponentially, and also makes
it difficult to assign linguistic interpretations to the parameters. One of the fundamental advantages
the hierarchical framework conveys upon the multigram model is that, since each parameter is itself
decomposed, statistical modeling power need not be at the expense of linguistic structure. For instance, in
figure 1.1 the parameter nationalfootballleague captures a statistical dependence that spans 22 characters,
while its internal representation provides information abiout linguistic structure at finer scoles,

4.2 Motivations

The preceding discussion gives some hints as to the advantages the composition and perturbation frame-
work offers with respect to language acquisition, and in particular language acquisition in the Bayesian
framework presented in chapter 3. The framework can in fact be motivated from many standpoints,
among them that it leads to simple incremental learning algorithms, explains how the learner can avoid
being confused by extralinguistic patterns, and accords with what is known about language and language
change.

4.2.1 Learning

In order to understand how the representational framework aids learning, it is first necessary to un-
derstand how the representation interacts with the minimum description length evaluation function
(equation 4.1). To simplify discussion, two assumptions will be made: first, that the composition opera~
tor is associative {(ao (boc) = (aob)oc), and second that the perturbation operator commutes with the
composition cperator ((aob) +P = (6 +P)ob =ao(b+P)). These assumptions hold for concatenation
and the meaning perturbation operator presented below in section 4.4.3. More complex operators will
usually violate these assumptions to varying extents, but most intuitions remain the same. Given the
assumptions, any representation wy o+« -owy +Py+- - -+Pr, i8 equivalent to the same representation with
Wy 0---0Wj_y + Py ++++Pg_) removed and replaced with a parameter W, 8o long as W is equivalent
to the removed portions of the representation:

wyor--owq +P1+-:-+Pm =
W) 0+ +OW_|OW0 - OW,_10W;0 - 0Wy+Py+---Pa_1+Pg+ - -+Pm=
w10"'0w|‘—l°(w|‘°"'°wj-1+P1+"'+Ph-1)°wj°"‘°wn+Ph+"'+|’m:
1.D10"'O‘I.U"_.1DWOWjO"'Own+Pj¢+"'+Pm.

W = wjo---owj_1+Pp+---+P_).
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This means that it does not matter whether information is written explicitly into a representation or
referenced indirectly via another parameter, at least as far as linguistic interpretation is concerned. Cne
consequence of this is that the internal representation of o parameter does not affect its use. In fact, if
perturbations could occur at the utterance level during on-line processing, then the simplest grammar,
consisting only of primitive terminals, could account for as much input as any other grammar.® In
general then, under this framework grammars cannot be favored on the basis of whether or not they
account for the input. Instead, in accordance with the inference framework of chapter 3, grammars are
judged on the basis of description length, a measure that trades the typicality of the input against the
complexity of the grammar.

The Statistical Interpretation of a Parameter

The important question becomes: when does a parameter reduce the total deacription length? To answer
this, it helps to imagine each parameter as having two parts. The first is linguistic in nature (and the
desired output of the learning mechanism) and the second is statistical. The linguistic portion of a
parameter can be thought of as a predicate (a test) that is either true of part of an utterance or is not.
For example, the word the is true of the first three letters in the ca? but not of the first three letters
in a dog. Similarly, a phonological rule like “voice the plural marker -5 after voiced consonants” could
be expressed by the predicate “voiced plural marker or unvoiced preceding consonant”. The second
half of each parameter, the statistical portion, is information that, very roughly speaking, determines
the proportion of time the predicate is true of utterances generated by the stochastic grammar. In
the concatenative model presented in section 4.1.1 this information took the form of a codeword, or
equivalently, a probability. More sophisticated models might represent statistical properties differently,
perhaps in a manner better suited for combining multiple pieces of information (see, for example, the
maximum-entropy language modeling scheme described by Della Pietra et al. (15, 53]). The more
parameters are in a lexicon, the more control points the stochastic model has, and the better it will be able
to mode] the target language. Hence, any lexical parameter should reduce (or at least not increase) the
description length of the input and existing parameters. However, aa discussed in section 3.2, to ensure
good generalization performance it is necessary to penalize parameters by their own description length.
Hence, to be included in the lexicon, a parameter must not only reduce the description length of the
input and the remainder of the lexicon, but reduce it by more than the length of it own representation.

In order to answer the question of when a parameter reduces the total description length, it is therefore
first necessary to ask when a parameter leads to significant savings in the representations of the input
and other parameters. Imagine a parameter w = wjo...ow, +P1+---+Ppn. Leaving the issue of the per-
turbations aside, this parameter is a means of defining the statistical properties of a linguistic predicate
whose behavior is already governed by the parameters v, ... w,. Therefore, w improves the stochastic
language model only in 80 much as the predicate it represents has different statistical behavior than
expected given the behavior of its parts. For example, in figure 1.1 nationalfootballleague improved the
lexicon because national, football and league occur together far more often than the multigram language
model predicts given their individual probabilities. But in contrast, a grammar that includes a param-
eter NP = Det Noun that predicts that determiners and nouns co-occur frequently, and a parameter
the that is a determiner and a parameter dog that is a noun, would not be expected to gain significant
statistical advantage from a parameter the dog. The parameter would vield substantial reduction only if

3 Although the representational framework specifically disallows perturbations at the utterance level, it will turn out
te be useful to allow for such periurbations during learning; this will ensure that all input can be analyged, even in the
carliest stages of incremental learning when only the most rudimentary of grammars is available.
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it was extremely important to model the statistical behavior of the word dog in fine detail, which would
only be the case if dog were very frequent. This reflects an important point. Parameters that are only
infrequently true must introduce substantial savings to be worth including in a lexicon; parameters with
widespread usage are beneficial even if they introduce only incremental improvements to the statistical
model.

The Compaositional Prior

The second half of the answer to the question of when a parameter reduces the total description length
relates to its description length, since parameters are penalized by their description length in an attempt
to bias against over-fitting to the training data.* The length of a representation is independent of
the number of times a parameter is used, so given enough evidence the benefits of any parameter will
outweigh its costs. The description length of a parameter is mostly a function of the lengih of its
linguistic representation, since the cost of the statistical information associated with each parameter
tends to be relatively small under efficient coding schemes. This has several implications:

o Since perturbations increase the representation coet, parameters are favored if they behave as
expected given their parts; it requires more evidence to justify a parameter that introduces new
linguistic behavior than one that does not.

e Parameters are favored if they look like other parameters. Thie follows from the fact that the learner
is under an incentive to explain patterns in parameters as well as in the input. If a parameter has
a long description leugth, it indicates that the parameter doesn’t fit into any discernible pattern
found within other parameters.

o Parameters are favored if they share information common to other parameters. This can be viewed
as a means to ensure that there is sufficient evidence to estimate the information in a parameter.
Less evidence is required to justify a parameter built from common parts because most of its
properties are inherited from well-established parameters.

With this background in place, it is possible to look at several ways in which the representational
framework aids learning, and in particular unsupervised learning. These include the manner in which

4]t in an interesting question whether the description length prior can be interpreted as a confidence test. One way to
view the learning problem is that for each possible parameterw = wj 0...0wn + Py + - - + Pm the learner is faced with
the problem of determining whether the finite evidence indicates at some confidence level that the true probability of w ia
greater than the probability defined by the parameters wy ...wy; if so, w is justified. In certain situations this condition
can be formaliged. Imagine in the multigram model the problem of deciding whether to add a parameter 13 = z; 023, and
suppose it will be added if at the 86% confidence level p(z12) > p(z1 )p(za). Given the number of words N, probabilitiea
p(z1) end p(zx;), and counts c(=,) and c(=12), define f(x13) = c(z13)/N and p(=3)=1) = c(=12)/c(=1). Then (see an
introductory statistics textbook such as Keeping [77]) various assumptions and approximations lead to the condition to
add 219 if

ﬁ(tlg) - p(z1 )p(zz) > 1'96\/}?(311\)/(%_ f’(ljlzl )) -

This condition says that 2y3 is justified if its empirical probability exceeda the model's prediction by more than a certain
threshold that depends inversely on the amount of evidence, If the representational prior could be justified as a confi-
dence test, the numerator 1.96\/p(=u)(1 — f(zz|21)) would be & monotonic function of the description length of z,3,
—log p(z1 )p(z2), but it does not seem to be. Thus, the representational prior is better viewed as combining a statistical
test with a bias toward parameters with certain linguistic propertics.
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it allowe for incremental learning, explains how linguistic structure emerges from within extralinguistic
patterns, and separates on-line and off-line processing issues.

Incremental Learning

Section 3.2.2 argued that for language to be learnable from small amounts of data, it must be the case
that the learner chooses from among a restricted get of grammars, the complexity of the set determined
in part by the amount of evidence available to the learner. In such a situation learning is incremental,
with the size of the grammar increasing as more evidence becomes available. Incremental learning falla
out naturally from the compesitional representation, since parameters do not introduce new behavior so
much as they group behaviors that are already present.

Representation of the Input Lexicen
(tohoeomooooon)+ MOON | 4, &, e m, o, n

(the o moon) t,hemon
the = (to ho e),
moon = (mo 00 00 n) + MOON

Figure 4.3: Two lexicons for the input the moon with “meaning” MOON, where meanings are captured
via perturbations, The top lexicon, the simplest possible, consists only of terminals and must capture
the meaning as an utterance-level perturbation. The more mature lexicon on the bottom has grouped
various terminals and moved the perturbation into the lexicon.

In fact, this is not quite accurate given the framework as stated above. This is because perturbationa do
not occur during on-line sentence processing. Hence, the simplest lexicons, containing only terminals,
can not be composed to explain an utterance that requires perturbations. The reason that perturbations
are not permitted at the utterance level is that it is not clear what interpretation would be given to
them: the sorts of perturbations in the lexicon that allow a phrase like kick the bucket to mean “to
die” do not occur on an utterance by utterance basis. When someone says a sentence it does not mean
different things at different times randomly in waya that cannot be explained by the grammar and the
situation. However, if the learning mechanism pretends that perturbations occur at the utterance level,
treating themn as a sort of unpredictable noise, and represents each utlerance in exactly the same way
that parameters are represented, then (under the associative and distributive assumptions) any utterance
can be explained by any grammar. Under such a scheme at the earliest stages of learning the grammar
is the simplest possible- a lexicon that contains only terminals. Each utterance is analyzed as an
essentially random sequence of terminals that undergo random perturbations. This randomness leads to
long description lengths, and as evidence is presented the learner is motivated to group terminals and
move perturbations into the lexicon to reduce the description length. If learning were ever complete,
the only use for perturbations at the utterance level would be to explain random sound variations and
other noise-like behavior that is beyond the ability of any grammar to account for. Figure 4.3 contains
an example showing how perturbations can be moved into the lexicon during learning.
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Extralinguistic Patterns

In section 3.1.2 it was argued that one of the fundamental difficulties of unsupervised language acquisition
is that learning systems model patterns in the input signal regardless of whether their root cause is
linguistic in nature. As a simple example, in the Brown corpus of English text [59]), the phrase kicking
the bucket is used five times. That is surprisingly high, given the relative infrequency of the words kicking
and bucket. A learner might (correctly) take this frequency as a sign that kicking the bucket has a special
linguistic role, and include it in the lexicon; given an encoding scheme as in the example in section 4.1.1,
its inclusion will reduce the description length of the input. But the phrase scraiching her nose also occurs
in the Brown corpus five times. This phrase has no special linguistic role, and its unusual frequency
follows from causes external to language.® A language learner, faced with discriminating between these
two phrases on the basis of purely statistical information, has a nearly impossible task. Without access to
meaning, both are extremely similar- relatively infrequent infinitive action verbs followed by determiners
and equally infrequent nouns referring to physical objects.

This implies that the language l=arner, at least in the early stages of learning, can not identify all the
linguistic parameters without also identifying many false positives. Here the compositional representa-
tion offers a particularly pretty solution, by reducing if not eliminating the undesirable consequences of
including “extralinguistic parameters” in the lexicon. It was argued in section 3.1.2 that most extralin-
guistic patterns are built from linguistic units. This is certainly true of scraiching her nese. Given a
reasonable grammar (lexicon), almost certainly the optimal (shortest-length, most probable) represen-
tation will decompose such parameters into linguistically meaningful units. In the lexicon, therefore,
we would expect to find kicking the bucket represented as sormnething like kicking o the o bucketl, and
scralching her nose represented as something like scraiching o her o nose. In both of these cases the
interpretation implied by the representational framework is that the parameters inherit their properties
from their parts. To understand the advantage this conveys, it is important to recall the role of unsu-
pervised learning, or in this case, learning in absence of clues about word meanings. It is to provide a
base linguistic structure for further learning. In this case, if at a latter stage of learning the learner is
presented with the input Methuselah’ll be kicking the bucket soon and hints that it means something like
Methuselah’ll be dying soon, then kicking the duckel provides the perfect point for the death meaning
to be attached, via perturbations. In the case of scraiching her nose the learner will never have cause
to introduce additional perturbations (beyond the statistical information that caused the phrase to be
included in the lexicon in the firat place), beceuse the phrase behaves exactly as the composition of its
parts would imply. The phrase will by default inherit the correct interpretation, and act as if it were
not in the lexicon at all.

It is worth returning to a point made at the end of section 4.1.1. Because the compositional framework
eliminates most of the undesirable consequences of having extralinguistic parameters like scraiching
her nose in the lexicon, the learner is essentially free to include them in the lexicon. In fact, because
parameters have compact representations in terms of other parameters, from the minimum description
length standpoint parameters are extremely cheap. This allows the lexicon to model detailed statistical

5Indeed, from this bizarre but appropriate pasaage in the Brown corpua:

He could not make out, but he kmew that again che was scratching her nose. Mollie the Mutton was scratching
her nose. The words ran cragily in his head: Mollie the Mutton in scratching her nose in the rain. Then the
words fell into a pattern: "Mollie the Mutton is scratching her nose, Scratching her nose in the rain. Mollie
the Mutton is scratching her nose in the rain”. The pattern would not stop.
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properties of the input even if its underlying model of language is poor, by multiplying the number of
parameters in the lexicon. This makes the framework an excellent choice for language modeling and
compression applications, and, as discussed in chapter 3, helps ensure that the learner does not devote
linguistic mechanisms to the explanation of extralinguistic patterns.

The Lexicon as Linguistic Evidence

An important point made in section 3.1.2 is that because the majority of extralinguistic patterns are
built upon linguistic structure, they serve as evidence for linguistic parameters. The representational
framework captures this intuition by forcing each parameter to be represented in the same way as
utterances from the input. Common word sequences like

kicking the bucket
scratching her nose
walk the dog

wazed the car
eaught a cold

are all likely to make their way into the lexicon, because with suitable interpretation in a stochastic
language model, they can be made to reduce the description length of English input. In the lexiccn each
must be represented, and these representations contribute to the total description length of the input.
A naive coding scheme that encodes each component word independently (as with kicking the bucket =
kicking o the o bucket in the concatenative model) faile to capture an important pattern, namely that
each of these parameters is a sequence of a verb followed by a noun phrase. Because of this, under such
a acheme the description length of these parameters is longer than is necegsary. A better model (see
section 4.4.2 below) that can represent kicking the bucket as something like (VP = verb NP) o kicking
o (NP => det noun) o the o bucket can reduce the description length of these parameters by taking into
account the conditional dependency between the three parts of speech, captured here by the rules (VP =
verb NP) and (NP => det noun). In this way, the existence of these word patterns justifies the inference
of these rules,

It might be argued that there will be plenty of verd det noun sequences in normal input to justify
the creation of these syntactic rules, independently of the need to represent the lexicon. This is not
necessarily the case, for two reasons. First, given enough evidence learning mechanisms of the sort
discussed here will incorporate every particular instance of this general pattern into the lexicon, in an
effort to model the statistical properties of the input as closely as possible.® More importantly, there
are many linguistically important parameters that manifest thernselves only within other parameters.
Common examples include morphemes like szb- and -ed, and syllables that are not also words. As
an extreme example, consider a case in which the learner’s evidence U is a sequence of utterances U’

®Many other statistical induction schemes used for language inference have suffered from this problem; for cxamples sce
the results of Olivier [102] ond Cartwright and Brent (32]. Their schemes, like the one presented in section 4.1.1, increase
the number and length of the psramctezs learned as the size of the input incresscs, in an effort to model the statistics of
the input as closely as possible (wih & block code, in effect). But since their parameters are not repreacnted meaningfully
in the lexicon, the ever lengthening pa. ~meters become ever more devoid of linguistic relevance.
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Figure 4.4: The representation of a parameter is conceptually separated from its content; the processing
mechanism depends only on the content. Therefore the representation is free to restructure go long as
its content remains the same.

repeated twice: U = U'U’. The learner, by placing U’ in the lexicon (in the same way that the learner
might memorize a long pattern like a song or a prayer), can quickly halve the representation cost of the
input. After such a move, the only way for linguistically interesting learning to take place from U’ is if
it occurs in the lexicon.

The Relation Between On-Line and Off-Line Processing

It is important to understand the implications of representing parameters in a certain way. So far
only two have been discussed. The first is that representations are the basis for codes, which define
description lengths and hence the prior for Bayesian inference. Thus, the representation of parameters
in part determines the fitness of grammars. The other implication that has been mentioned, peculiar
to the compositional framework, is that in absence of conflicting evidence properties of parameters
are inherited; this has not been formalized in any sense. The compositional framework has two other
important implications for the learning mechanism that are worth mentioning briefly; beth will be
explored in greater depth in the next chapter.

As discussed above, one way to allow for incremental learning is for the learning mechanism to represent
utterances in ezactly the same way as parameters, as perturbations of compositions. This means that
the same processing mechanisms can be used for both the lexicon and on-line processing. While this
may seem like a small point, it leads to very simple learning methods that treat the parameter acqui-
sition process as that of memorizing common actions taken by the processing mechanism. In fact, the
computation of the expected change in description length from adding or deleting a parameter is often
quite simple, because the process of adding or deleting can be thought of as merely moving parts of
representations back and forth between the lexicon and the processing mechanism.

A much more important implication of the framework is that, as mentioned at the start of this section,
the internal representation of a parameter does not affect its use. There are several ways to interpret
this. One is that the representation of a parameter is strictly separated from the processing mechanism.
One might imagine (as in figure 4.4) that each parameter has a special buffer that holds its content
(the end result of composing and perturbing) in whatever form is best suited for use by the processing
mechanism; this is convenient for computer implementation but the extra storage requirements belie
the compression properties of the compositional representation. In some ways a more attractive un-

derstanding of the separation between the representation and use of parameters is that the processing
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mechaniam can directly interpret the representation of parameters, but that the lexicon is free to write
the content of a parameter to a buffer and then reparse it, potentially restructuring the parameter. This
separation between representation and processing mechanism is supremely desirable. To a large extent
it separates the recognition of patterns from the representation of patterns. One way to build param-
eters is to move common representational substructure into the lexicon. But alternatively, patterns in
the input can be stored as parameters without regard to representation. For example, a child hearing
a word like Aypothermia could memorize the sound pattern, storing it as something like ho yo.--0
. Later when the child has learned the roots hypo and therm the parameter can be reanalyzed. This
reanalysis can take place without worry that a change in representation will affect the representations
of other parameters and utterances.” In contrast, many other representational framewourks that merge
the representation of patterns with on-line processing, such as neural networks, have difficulty changing
Internal representations, because in intermediate stages their performance is degraded (the pervasive
local-minima problem; see for example de Marcken [48]).

4.2.2 Language

All of the above arguments in favor of the representational framework center around learning issues and
are independent of “linguistics”. It remains important that the compositional prior favor linguistically
plausible parameters. Here several linguistic arguments in favor of the representational framework are
presented.

Language as a Hierarchy

The hierarchical nature of the representational framework mirrors the hierarchical nature of language.
An utterance exists at many levels of representation (see the example at the start of section 2.1.1):
linguistic constraints are defined on sequences of phonetic features; on sequences of syllables; on trees
of morphemes and words; etc. Although there is evidence that these different levels of representation
are at least partially orthogonal,® to a first approximation they are structured as trees, with constraints
at one level exerting themselves within boundaries imposed at other levels. For example, in English
syllabification generally occurs within word boundaries. For this reason, words in English can usually be
decomposed into a sequence of syllables. There is nothing implausible in English about a word like lublick,
but ludbnick would not be expected, because bnick violates syllabicity constraints. By forcing parameters
to be represented in terms of parts, the framework captures this intuition. A word like ludbnick will
have a comparatively long description because it can not be tepresented in terms of knowledge about
syllables. As a consequence, more evidence will be required to justify the inclusion of the word in the
lexicon. In the same way, kicking the bucket ia prefered over icking the bucke as an English parameter,
another fact that follows from the compositional representation.

T This is not absolutely true. To take full advantage of the inheritance framcwork, the learning mechanism must allow
information to propagate up from components to peramectiers. Changing the representation changes the information that
propagates up. This is not an issue if the parent parameter requirce the information, since then the representation ia
constrained. But if the parameter has the equivalent of “don’t carea” then some extra complexities are introduced.

8For example, in langueges like Spenish syllables can cross word boundaries [88]. See the literature on bracketing
paradozes (78, 135).
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Irregular Forms and Compilation

One of the great mysteries of language is how the processing mechanism rapidly recorstructs word
sequences from speech. During language production the underlying forms of words are transformed
by various corrupting and distorting morphological, phonological and phonetic processes. Standard
computational models of recognition attempt to invert these processes 3, 81, 79] during recognition; since
the forward processes are many-to-one, inversion seems to require (expensive) search. And yet speech
recognition is quick and easy for people. The representational framework offers a partial explanation.
Many of the corrupting processes are non-determiniatic, but not entirely random. This is especially true
for phonological and phonetic alterations that occur during fast speech. For example, want to is often
(though not always) pronounced wanna, and grandpa is often pronounced grampa. In both of these
cases the sound changes are naturally accounted for by certain phonological assimilation and deletion
mechanisms that can be treated as perturbations. These perturbations are not entirely random, and
therefore in terms of statistical language modeling it behooves the learner to move them into the lexicon,
building parameters like

wanna VP = ({VP = Verb to VP) o want) + SOUND-CHANGE + FREQ
grampa = (grandpa) + SOUND-CHANGE + FREQ

where in the first case the sound change is captured by an assimilation of nasality from the /n/ to the
/t/ and a reduction of the vowel in to, and in the second case also an assimilation of the nasality of
the /n/ to the /d/ (see de Marcken [49] for a more detailed definition of a phonological perturbation
scheme that can account for such phenomena). ‘These parameters inherit their syntax and meaning from
underlying (uncorrupted) words, and yet contain statistical information that indicates that the sound
changes are to be expected. Given the proper implementation of the framework, this information can
either be used to direct and constrain search during word recognition, or render it unnecessary (because
changes have been compiled into underlying forms).

In fact, the framework’s ability to compile out common patterns of usage extends well beyond phenology.
Another example from figure 4.1 is

take off NP = ((VP = Verb Prep NP) o take o off) + MEANING + FREQ.

Here a verb-particle pair is explained in terms of standard syntactic rules. This representation has many
advantages: it explains why the case of the noun phrase is determined by the particle (this can be tested
in languages other than English}, explains why particles are chosen from among the class of prepositions,
ete. At the same time, the fact that this parameter compiles out a sequence of syntactic compositions
into the surface pattern take off NP explains why take off is recognized so easily as a single linguistic
entity.

The idea that common changes are compiled out in the lexicon receives internal support in the repre-
sentational framework. Many frequent words incorporate unusual sound changes:? at the top of the list

%It is no surprise that perturbations are concentrated on frequent words. In this leamning framework it takes substantisl
cvidence to justify perturbations, evidence available for frequent words but not for rare ones that are learned from small
numbers of examples.
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in English are suppletive alternations such as be-am-is-was-were-are-being and gone-went. Slightly less
common examples include want to-wanna, going to-gonna and irregular alternations like think-thought
and catch-caught. If these sound changes are not compiled into the lexicon but handled on-line by the
processing mechanism, then they should be predicted with frequency proportional to the frequency of
the words in which they occur. But Baayen and Sproat 7] have determined that the best indicator of
the frequency of such phenomenw in new or unknown words is the frequency of the phenomenon in the
lexicon, unweighted by word frequency. This is exactly as would be expected if the changes are compiled
into the lexicon.

Diachronic Arguments

A final argument for the composition and perturbation framework arises from the historical evolution of
language. Most irregular forms and idioms are not completely devoid of internal structure. Even the to
be paradigm-— be, am, is, are, was, were, being— has some regularities, that reflect the historical derivation
of the paradigm. Over time irregularities are introduced into commonly used parameters, and are slowly
weeded out of rarer ones (enabling them to be learned from smaller amounts of data). In this way
Wednesday has acquired a meaning and pronunciation distinet from its Scandinavian root Wodnesdaeg,
while the spelling of night tends towards the more intuitive nite. Similarly, kicking the bucket has attained
a meaning that no longer has any obvious relation to its original usage. If perturbations are viewed as
a means of capturing changes that occur over time, then the representational framework can be seen
as a means for ontogeny to recapitulate phylogeny: the learner acquires words by representing them in
a manner that reflects their historical derivation, This is of course not because the learner has access
to true history of the target language. Instead, the manner in which language evolves leads to shared
patterns among parameters, that the compositional framework can use to shorten descriptions. In this
way, parameters are favored if they can be explained in terms of expected historical processes.

4.3 Coding

As hzs been mentioned many times, codes and probabilities are fundamentally and simply related by
Shannon’s source coding theorem [122], which says that a code can be designed for a distribution such
that the expected description length under the code is almost exactly the entropy of the distribution;
as a practical matter this implies that a code can be designed such that the length of a description
of u almost exactly equals —log p(u), and that on average no code can do better. Hence, thinking of
minimizing code lengths is almost always equivalent to thinking of maximizing probabilities, and vice
versa. Nevertheless, it is often the case that one view is more intuitive than another in a given situation.
For exaniple, the probability of an utterance u under the multigram model was expressed as

p(u) =) p(n) b p(w1) - - p{wy).

W0y 4.8 u=wyoiow,

Here probabilities are summed over multiple possible derivations of the utterance u, or thinking in terms
of codes, multiple representations of u. Thus, the fact that there are multiple representations for an
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utterance should mean that it can be coded in fewer bits than if there were only one; yet it is not obvious
how to design a coding scheme that fulfilla this requirement. In fact it is possible,!® although usually
impractical. For most language modeling applications this is not an important issue: a small number
of derivations tend to be much more probable than others, and the difference in probability between
. the sum over all derivations (the complete probability) and the single best derivation (the mazimum-
likelihood, or Viterbi, probability) is usually insignificant (even a factor of two is only a single bit, a
small amount relative to the total cost of encoding a parameter). This example illustrates one reason
why it is often more convenient to think in terms of probabilities than codes. Another reason concerns
roundoff in codeword length. In the example in figure 4.2 integral-length codewords are used. But in the
ideal situations codewords are chosen according to the the equation {{w) = — logp(w), which does not
in general imply integral length codewords. In fact codes can be designed that circurnvent this problem
(arithmetic codes [103, 110] are a practical solution). But again, since the principal purpose of codes
here ia to compute description lengths for use in the already heuristic MDL criterion, it is much more
convenient to simply ignore details of code construction and use — log p(tw) directly in description length
computations. Of course, for compression applications it §s necessary to design concrete and practical
coding schemes, but the inefficiencies introduced are usually small relative to the “fundamental” cost

— log p(w).

Just as it can be more convenient to think in terms of probabilities than cades, the converse i8 also true,
For example, in the above equation there is a probability p(n) that determines how many parameters are
output in the generation of an utterance. Rather than worry about the estimation and representation
of this distribution, it is more convenient to realize that in practice most parameters are built from a
small number of others (less than four). Thus, two bits is probably an upper bound on the mean cost
of encoding the length of a parameter; as this is small relative to the cost of specifying the components,
it can be safely ignored. In fact this will lead to much more efficient learning algorithms, and in those
applications (such as text compression) where it is important to completely specify the code, most any
simple code can be used to encode the length of each parameter.

4.4 Examples

The representational framework abstracts from details of coding and the composition and perturbation
operators. Thue far only one instantiation of the framework has been discussed in any detail, the con-
catenative model of section 4.1.1. Below, it is expanded upon and three variations are presented. The
first extends the composition operaior by grouping parameters into classes. These classes act as the
nonterminals of traditional context-free grammars, and the composition operator is nonterminal expau-
sion. This model can encode linguistically important statistical dependencies that can not be captured
succinctly in the concatenative model. The second instantiation varies along a different dimension: it
introduces a perturbation operator that can be used to learn artificial representations of meaning, and
gerves as an example of how the learning framework can be used to solve the “complete” language
learning problem. The final variation, discussed only briefly, is a perturbation operator that encodes
significant phonological knowledge, and that can be used with other extensions to learn directly from
raw speech signals.

190ne wny to see this is to imagine the choice between two cqual-length representations as a “frec bit” of information
that is conveyed to the decoder. This bit can be applied to other parts of the encoding.
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4.4.1 Composition by Concatenation

Section 4.1.1 introduced a multigram model in which the composition operator o is concatenation,
terminals are characters, and a stochastic interpretation is defined by associating with each parameter
a probability. Tlte complete probability of an utterance (or a parameter) u is therefore

p(u) =" p(n) 3 pwy) - plwn).

Vi...Wy 4,4 4=wW,0--0t,

Relation to Other Finite-State Models s

The multigram model is finite-state, in that it has only a finite memory of previous events. This memory
extends at most the length of the longest parameter. As a finite-state model, it has obvious similarities to
other finite-state models such as Markov models (MMs) and hidden Markov models (HMMs) [13, 107].
Both Markov models and hidden Markov models define a stochastic model on top of a finite state
machine, where the state g; of the systemn at time i is drawn from a finite set Q. At each time step a
symbol (a character) o; is generated in accordance with a distribution that depends only on the state g;.
This state is a stochastic function of the state at the previous time step, ¢;_;. In hidden Markov models
the stochastic transition matrix 6k = p(¢; = k|gi—, = j) is arbitrary. In Markov models the state g is
defined by recent outputs, ¢; = 0;—n ...0;_1, where m is the order of the Markov model (more general
contezt models [13, 112] select the context o;_,y ...0;_; from among a set of variable-length suffixes).
In the multigram model the generating parameter w acts as a hidden otate, though the fact that the
output function is deterministic gives the model the feel of an ordinary Markov model.

The fact that parameters are generated independently in the multigram model means that there are
distributions for which no multigram model performs as well as a more general MM or HMM. For
example, a simple first order Markov model that can not be simulated by any multigram is one in
which characters are divided into consonants and vowels, and generated in a anner that ensures that
consonants and vowels alternate. However, by expanding the parameter set to include ever longer
strings, a multigram can be made to approach the entropy of any MM or HMM arbitrarily closely. As
a consequence, in practical language modeling applications multigrams can be competitive with more
general finite-state models.

Multigrams have several advantages for learning over other types of finite-state models. Most impor-
tantly, they are easy to assign linguistic interpretations to, because parameters can be associated with
words. In Markov models and hidden Markov models each state is given equal status; potential linguistic
boundaries can only be defined by ad-hoc functions applied to transition probabilities. Furthermore,
for language modeling applications multigrams often have much smaller representations than equivalent
MMs and HMMs. For example, Ristad and Thomas [116] use the MDL criterion to learn a context
model. The equivalent information found in the single multigram parameter Mississippi is in their
context model captured by many parameters:
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p(M]) =...

p(i|M) = ...

plo|Ms) = ...
p(siMis) = ...

p(i| Miss) = ...
p(s|Misss) = ...

p(o| Missis) = ... -
p(i| Mississ) = . ..
p(p| Mississs) = . ..
p(p| Miasiseip) = . ..
p(i| Mississipp) = . ..

The cost of representing these (redundant) context atrings is high. This unnecessarily multiplies the cast
of parameters, adversely affecting the performance of the context model.

Coding

Although section 4.3 has argued that details of coding schemes are not an important issue with respect
to learning, a coding scheme for the concatenative model is presented in enough detail here to illustrate
how an efficient coding scheme can be created for the purposes of text compression. In chapter 6 this
scheme is in fact used to prove that the concatenative model makes for an extremely good compression
algorithm.

In the concatenative representation, the input and each parameter are deacribed by the composition of a
sequence of parameters.!! The coding scheme described here references cech parameter by a codeword.
Codewords are determined by a Huffman code (69] that is constructed in accordance with parameter
frequencies. In practice, Huffman codes very ciosely approach the theoretical optimum efficiency that
would result from non-integral length codewords; this is true both because the number of parameters
is usually large and because parameter frequencies follow a smooth inverse-frequency distribution [154].
The number of parameters in each parameter representation ias aleo codzd via a Huffman code. The two
Huffman codes must themselves be specified; fortunately Huffman codes can be specified quite efficiently
so long as the objects they reference arc ordered by frequency. In particular, since the length of codewords
is monotonically decreasing function of frequency, codes can be assigned in increasing lexicographic order
to parameters of decreasing frequency. Then, a Huffman code is completely defined by specifying the
number of codewerds of each length. For codes over large numbers of objects this is a very compact
representation. Finally, each terminal codeword must be identified and associated with its denotation,
namely its character.

Figure 4.5 summarizes the coding scheme, which assumes an inventory of 128 terminals. In practice
lines (B) and (C) account for the overwhelming majority of the total description length, dwarfing the
only other factor that grows super-logarithmically with the size of the lexicon, line (A). This motivates
and justifies the following derivation:

171y fact, there are meny different representations for the input and each parameter. For coding purposes, only a single
representation is considered, the most probable representation.
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Specification of Huffman code for parameter codewords:
Write the Elias-coded length I of the longest parameter codeword.
For each length n in the range 1...1,
Write an n-bit integer specifying the number of codewords of length n.
Specification of Huffman code for representation length codewords:
Write the Elias-coded length ! of the longest representation length codeword,
For cach length n in the range 1...1,
Write an n-bit integer specifying the number of codewords of length n.
For each representation length with codeword of length n,
Write an Elias-coded integer specifying the representation length.
Association of terminals with parameter codewords:
Write 128 bits that epecify whether terminals 1...128 are uged in the code.
In predetermined order, for each terminal used in code,
Write the codeword for that terminal,
Representations of nonterminal parameters:
In order of decreasing parameter frequency, for each nonterminal parameter,

Write the codeword for its representation length. (A)
For each component parameter in its representation,
Write the codeword for that parameter. (B)

Representation of input:
Write the Elias-coded number of parameters in the representation of the input.
For each parameter in the representation,
Write the codeword for that parameter. (C)

Figure 4.5: A complete and compact coding scheme for any reagonably sized input and lexicon. In
practice lines (B) and (C) account for the overwhelming majority of the total description length.

— log p(u) — logZp(n) Z p({w1) - - -p(w,) (4.2)
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The first step uses Jensen's inequality to substitute a cloze upper bound for the true description length.
The approximation in the second step, which assumes that — log p(r) is insignificant in comparison with
the cost of writing down parameter codewords, dramatically simplifies the computation of thia upper
bound, for reasons that will become clear in the next chapter. The learning algorithma presented there
minimize 4.3 rather than the true description length of equation 4.2.
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Deficiencies

As chapter 6 will show, the simple concatenative mode! has surprising statistical modeling power, and
is remarkably effective at learning linguistic parameters. Nevertheless, it does suffer from a number
of fundamental deficiencies. Abstracting from its obvious linguistic shortcomings, two issues stand out
above all others. First, it can not describe statistical dependencies except by referring to individual
parameters. This prevents it from describing relationships that are true of broad classes of objects. For
example, it can not express the simple syntactic rule NP = Det Noun. As a consequence, in practice it
builds up multitudes of highly redundant parameters

the car ¢ car some people a dog
the fliers any one an apple some apples
many peeple no one  few apples the dogs

that still can’t explain why new nouns and determinera should fall into the same pattern. Similarly
simple phonological constraints between phonological classes can not be described, and there is no way
to describe the fact that a phrase like red apples behaves very much like apples. This problem will be
partially addressed by the next instantiation of the representational framework, in which the grammar
can describe and make reference to classes of objects.

The second fundamental deficiency, one that remains true of the other instantiations discussed in this
thesis, is that the chained stochastic model'? provides no way to combine orthogonal knowledge sources
to improve coding efficiency, without introducing redundant parameters. Consider a model in which
one parameter captures the fact that the determiner an usually precedes vowels, and another parameter
captures the fact that it usually modifies singular nouns. The parameters can not be combined to
explain the double improbability of a sequence like an cows without creating a third parameter (that
can inherit from only one of the first two) that explicitly refers to the class of singular nouns that start
with vowels. Language models that can combine multiple knowledge sources are described by Della
Pietra et al. [15, 53], but result in complex and computationally burdensome learning algorithms.

4.4.2 Composition by Substitution

One of the most significant deficiencies with the concatenative model is that it can not capture relations
that hold of broad classes of objects without multiplying the number of parameters in the grammar.
This section briefly explains how this can be partially remedied by basing the composition operator on
stochastic context-free grammars (SCFGs [8, 70]). Although we have performed successful experiments
with the type of model deacribed here, a number of fundamental deficiencies remain, and it is presented
only as an illustration.

The parameters of the concatenative model all fall under a single class, in the sense that their probabilities
are all defined with respect to one another. Suppose that the number of classes is increased, and

12 A chained model like & Markov model, hidden Markov model, or context-free grammar is one in which the prohability of
a derivation is computed by successively multiplying conditional probebilitics that reflect subcomponents of the derivation.
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parameters include information specifying the class they are in. Possible classes include nouns, verbs,
consonants, vowels, days of the week, etc. Write w = X => A to mean a parameter w with class X and
pattern A. Furthermore, suppose that each parameter now captures a pattern over both terminals and

classes. For example, a (partial) grammar might look something like

Parameter Prob. Parameter Prob.
NP = Det Noun (1)  Noun = caterpillar  (3)
VP = Verbto VP (3) Noun = hat (3)
VP = take off NP (l) Det = the (i)
Verb = want (i) Det = my (i)
Verd = ask (g) Del = a (;)

where classes are written with an upper-case letter. Notice that the probabilities of all parameters with
a common class sum to one. The probability of an utterance u under a grammar G is defined by a
rewriting process that starts from a single distinguished class R. In particular, R is used to initialize a
sequence ¥: ¥ = R. Generation proceeds as follows:

1. If ¥ consists only of terminals, let u = ¥. Stop.

2. Otherwise, let ¥ = o X where « is the longest class-free prefix of ¥ and X is a class. Choose
with probability pe(w) any parameter w = X = ) and let ¥ = aA8. Go to step 1.

This process generates a sequence of terminals u through successive substitution. Each step can be
thought of as the application of a (non-associative) composition operator. For example, if the distin-
guished class is VP then the utterance want to take off my hat can be represented as the composition of
six of the above parameters:

Representation Derivation So Far (¥) Probability
(VP = Verbto VP)o | Verbio VP 2

(Verb = want) o want to VP %% =1

(VP = take off NP) o | want to take off NP ?i% = %
(NP = Det Noun) o want to teke off Det Noun ?;1’-?1 =
(Det = my) o want Lo take off my Noun ?—;HI% =L
(Noun = hat) want to take off my hat 55513% =i

As defined so far, this model of language is simply an SCFG. To give it the power of the compositional
framework it is necessary to find a way to represent parameters in terms of other parameters. Several
examples were given at the start of this chapter, for example

(VP = Verb Prep NP) = (VP => Verb PP) o (PP = Prep NP).

Given the generation process defined above this is not actually a valid representation, since it has not
exhaustively expanded the classes. To handle such cases, introduce for every class X a special “stop”
parameter X = o. Expanding a class with the stop parameter marks the class to remain in the final
sequence. Thus,
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(VP = Verb Prep NP) =
(VP = Verb PP)o(Verb = o)o
(PP = Prep NP) o (Prep = o) o (NP = o).

There are many more details that need to be filled in. For example, how is the class of a parameter
specified, and is it somehow determined by the rlasses of the paramecters used in the representation?
How are parameters represented that do not have obvious tree structure, such as Noun = caterpillar?
Rather than provide answers to these questions here (there are many possible answers), we step back
and look at what extensions of this sort offer, and what their shortcomings are.

The principal advantage of this substitution model is that it allows patterns over broad classes of objects
to be captured. This makes for more succinct grammars with better generalization properties. For
example, in tests we have performed with this type of model patterns that are learned include number
sequences like $D,DDD.DD and (DOD) DDD-DDDD, where D is a class that has been learned and includes
the digits 0,..., 9.® Such patterns substantially improve grammars’ ability to predict the behavior
of digits. To achieve the equivalent in the concatenative model would required a parameter for every
possible telephone number!

Implementing the substitution model on top of the compositional framework means that dependencies
between successive class expansions can be modeled without sacrificing linguistic structure. For example,
want to take off my het may occur in eome document with surprising frequency. A learner using a SCFG
in an ordinary way could account for this fact by adding a long, flat rule VP = want to take off my ha;
in doing so all of the linguistic atructure within the phrase will be lost. In the compositional framework
the phrase will be represented in the grammar in terms of other parameters, implicitly defining a tree
structure over the words. There are many similarities between this type of model and tree-grammars {71].

However, the substitution model as defined above i8 not pursued further in this thesis, because it has
significant linguistic and statistical shortcomings, and is not a sufficient improvement over the concate-
native model to warrent extensive investigation. In particular, it has the fundament flaw that it assigns
every linguistic object to a single class. But in fact every linguistic object falls into many “classes”. For
example, a phrase like red apples is a noun phrase, and also a plural noun phrase, and a phrase about
apples, and a phrase about red apples, and so on. Another parameter should be able to refer to any
subset of these properties when defining a pattern.

4.4.3 Learning from Multiple Input Streams

This section extends the concatenative model with a perturbation operator that endows parameters with
artificial representations of meaning.!* This extended model can be applied to the complete language
acquisition task of learning to map between sound and meaning.

13The telephone-numher pattern (DOD) DDD-DDDD is specialized to include a 0 in the area code, since all U.S. aren codes
contain either & 0 or a 1 in second position.
14The extensions apply identically to the substitution model, but the concatenative model makes for a simpler exponition.
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Recall that in the MDL framework learning is equivalent to signal compression. Up until now the only
signal that has been considered is U, the sequence of utterances. In the real language acquisition problem
the audio signal is paired with other input. Let us assume for simplicity’s sake that this other input
can be distilled in a sequence of utterance “meanings” V. The language learner’s goal is to learn the
relation between U and V. One way to capture this goal without leaving the MDL framework is for the
learner to compress the pair U and V simultaneously. Ignoring for the moment the cost of parameters,
this is accomplished by minimizing the entropy H(U,V) of the learner’s joint model of U and V.!® This
entropy can be rewritten

H(U,V)= H(U) + H(V) - I(U, V). (4.4)

where H(U) and H(V') are the marginal entropies of the two signals and I(U, V') is the mutual information
between them. The learning framework as discussed so far devotes its efforts to minimizing H(U ), which
(a8 is apparent from equation 4.4) is one part of minimizing H(U, V). Similar strategies could be applied
to H(V'), compressing the two signals independently. But if there is mutual information I(U,V) between
the two signals, as would be expected in the language acquisition problem, the learner can do better yet
by compressing both signals simultaneously. Here, this will be accomplished by attaching both meaning
and sound information to parameters. A single sequence of parameters then suffices to represent both
U and V, as in figure 4.3) Thus (allowing for perturbations at the utterance level),

(wr)=wio - own +Py 4 +Pm.

The goal here is to explore the induction of word meanings in as abstract a manner as possible, This
motivates a simple and obviously toy representation for meanings: the meaning of an utterance is merely
a et of arbitrary symbols (call them sememes for convenience). For example, a possible meaning for the
sentence john walked is {john walk}. Here the sememes john and walk have no inherent denotation-
they are gensyms. In examples and tests, utterance meanings will be constructed in such a way that
sememes can be associated in an intuitive fashion with meaning-bearing linguistic units. Sememe sets
are unordered, and therefore the most natural extension of the concatcnative composition operator is
one in which the meaning of the composition of two parameters is the union of the meanings of each
parameter. Writing a parameter with character sequence z and sememe set s as (=, 8), composition
ig therefore defined (z,s) o (y,t) = (zy,s Ut). Perturbations add or delete sememes from the default
meaning of a composition. Terminals are defined to have empty sememe sets. Figure 4.6 presents various
examples of the use of this composition and perturbation acheme.

The naivete of the meanings-as-sets representation does not imply that it is without value. It capturen
the fundamental aspect of semantic acquisition, the apportionment of primitives in utterance meanings to
smaller linguistic units. It is generally compositional (as with most theories of semantic representation)
yet acknowledges the possibility that the meaning of a structure might not follow from its parts, which
many more complicated theories do not. Siskind [128] argues that once semantic symbols have been
apportioned, it is a relatively trivial matter to learn the relational structures found in more complicated
semantic representations based on tree-like functional composition.

131n reality, the minimizetion is of the croas-entropy between the learner’s model and the true distribution, but it is
convenient to drop the distracting cross- terminology.
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Parameter Representation
cat {cat} ce{}oa{}ot{}+ cat
cats {cat} cat {cat} o s {}

bluederry {blue berry soft} blue {blue} o berry {berry} + soft
strawberry {red berry sweet}  siraw {straw} o berry {berry} + red + sweet - straw

cranberry {red berry tart} c{}or{}oa{}on{}o derry {berry} + red + tart
bank {} b{}oa{}on{}ok{)

bank {tilt} bank {} + tilt

bank {river-edge} bank {} + river-edge

bank {financial-institution} bank {} + financial-institution

Figure 4.6: Some examples of the use of the concatenative model extended with the meaning perturbation
operator. Notice how the inheritance mechanism lets many words inherit meaning from a common root
(as from cat and berry), and also how the ability to perturb meanings at any level of the lexical hierarchy
can explain how a cranberry can be a specific kind of berry even though there is no such thing as a cran.

Ambiguity

One significant simplification that has been made here is that the learner can reliably extract the unique
“meaning” of every utterance from the extralinguistic environment. More realistically, the extralinguistic
environment will often provide few or no clues about the meaning of an utterance, and in other cases the
learner will be more sure but still not certain. In fact, it is not difficult to extend the learning framework
to accommodate these possibilities. Suppose that for each utterance the learner receives as input u and,
instead of a meaning v, some extralinguistic information z (the combination of a visual signal and the
internal state of the learner, perhaps). Assume that from the contextual information z, the learner can
compute a function that expresses a prior expectation over possible meanings v. One way to interpret
such a function is as a conditional probability p(z|v).1® Then the joint probability of u and z under the
learner’s language model is p(u, z) = Y, p(zjv)p(u, v), and compressing u and z simultaneously amounts
to weighting meanings according to a prior expectation of their naturalness in a given extralinguistic
context. The posterior probability of a meaning v can be computed as

p(z|v)p(u, v) .

p(v|u, z) = p(u, z)

Notice that this is a function of both how linguistically natural the relation is between u and v (the
p(u,v) term) and the learner’s prior expectations (the p(z|v) term). Thus, prior expectations can be
overwhelmed by linguistic evidence, yet can still contribute to learning in cases where linguistic evidence
is underconstraining.

180f course, this is not meant to iinply that language learners actually estimate probabilities of extralinguistic evidence
given utterance meanings (it is difficult to imagine how they could). Again, the statistical interpretation is merely a
convenience that leads to learning algorithms with known properties. p{z|v) is simply & term that weights different
meanings by their contextuel likelihood. Only its relative meagnitude is important.
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Coding

There is no need to define a careful coding scheme for parameter meanings, as in this case description
length matters only in as much as it serves as a fitness function. There are only two sigrificant changes
from the simple concatenative framework. The first is the perturbations that occur both at the parameter
and the utterance level. In each case a list of sememes is appended to the liat of component parameters
(whether a sememe is added or deleted from the sememe set follows automatically from the prior content
of the set). If a special “stop” sememe is used to terminate the list, then the description length of a list
of sememes is a small constant plus the cost of representing each sememe. Assuming a fixed-length code
for sememes, each sememe contributes a fixed cost log |S| where S is the complete set of sememes. Thus
the description length of a representation wy o-- 0w, + Py + -« + P,n is approximately

mlog S|+ ) " - log p(w).

i=1

This is essentially equivalent to defining p{u, v) by

p(u,v) = Z 2-|5HveY| Z f_[p(w.-) (4.5)

V.. Wad bt (#,5'j=w, 00wy i=1

where v ® v’ i the set of sememes that occur in one but not both of v and 1v'. In conjunction with the
conditional probability term p(z|v), equation 4.5 defines the joint description length of u and z,

|1, 2| = —log Zp(z|'u)p(u, v).

It will turn out to be very convenient when building learning algorithms to move the cost of repre-
senting perturbations into the p(z|v) term; this eliminates much of the need to think explicitly about
perturbations during utterance processing. Define

P(z|v) = Y p(zfv)2IsHer, (4.6)

Then

|u, 2] = —log ¥ F'(]v") b I p(ws). (4.7)

W .. wa .t (u,v)=w, 0. -0wa =1
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Thus, by slightly altering p(z|v) to produce p/(zjv') the computation of the joint description length has
been simplified, and made into a form that more closely reflects the calculation in the concatenative
model without the meaning perturbation operator.

4.4.4 Phonology and Speech

For the most part this thesis has been vague about the nature of the zsignal available to the learner. Given
that children acquire language from raw speech, one might ask the question whether the terminals of
the compositional representation must be air-pressure measurements. The answer is no. We have been
implicitly assuming that language is produced and interpreted in stages. At some point at the border
between “linguistic” processing and the physical act of speech production the compositional framework
ceases to play a role. The mechanisms beyond that point behave very differently than those that motivate
the framework.

Suppose that la.iguage production is modeled as a three-stage process. The first stage encompasses
most of the mechanisms commonly associated with higher-level linguistic processing and terminates in
a sequence of phonemes. A phoneme is a primitive object used to represent sound in the lexicon [67].
Each one defines a set uf desired positions for various vocal articulators. For example, the /m/ phoneme
specifies that the lips should be closed, that the velum should be lowered so that air flows through
the nose, that the vocal cords should be vibrating, and so on. During the actual act of speaking
articulators do not always attain the positiona specified by the phoneme sequence. For example, when
pronouncing want you the tongue may anticipate the /y/ sound during the production of the immediately
preceding /t/. As a consequence, /t/ may be pronounced /&/, turning want you into wenchys (a
common phenomenon in fast speech). Thus, the second stage of our model encompasses the phonetic
processes that transform commands into muscular behavior. The final stage of the model accounts for
the remainder of the language production process, from muscular motion all the way to the pressure
variations that register on the learner’s ear.

We have constructed a stochastic model of language production with this structure. The first stage is
the concatenative model as described in this chapter, with phonemes as terminala. The second stage
is actually an extension to the first stage, a phonological perturbation operator that can capture sound
changes that are expected given the physical nature of the production process. To understand how
this operator functions, realize that each word in the lexicorn is a sequence of phonemes. The compo-
gsition operator, as before, concatenates words in the lexicon to produce longer sequences of phonemes.
The phonological perturbation operator stochastically transforms these phoneme sequences by inserting,
deleting, and mutating phonemes. For example, the word (grandpa) /gr 2mpa/ mizht be represented ae
grand [greend/ o pa /pa/ + SOUND-CBANGE. The description length of a sound change from a sequence
& to a sequence O is determined by a stochastic model p(©|®). p(O|$) is constructed to reflect a simple
theory of phonetics. This is described in more detail in de Marcken [49]). Figure 4.7 gives a flavor for
how this model works.

The final output of the first two atages of our model is still a sequence of phonemes. The third and final
stage of the stochastic production process maps from phoneme sequence to acoustic signals. We model
this using linguistically uninteresting techniques that are standard to the automatic speech recognition
community. They are detailed in section 6.3, where an experiment is described in which words are
learned directly from speech. For various computational reasons the experiment described there does
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phoneme g r o) n d p 8
consonantal con
articulator lab || dors
voicing L]
nasality -
clock 5 6
phone P e

Figure 4.7: A depiction of how /graendps/ might surface as /gr&mpa/. Each phoneme is a bundle of
articulatory features (4 as depicted here, more in the real model). Each feature is copied from the input
to the output, but this process is (stochastically) affected by clock skew and copying errors. For example,
the nasalization of the /=/ and /d/ and the place-of-articulation assimilation of the /d/ are explained
by clock skew. No surface phoneme is output for the underlying phoneme /n/.

not utilize the phonological perturbation operator described above.

4.5 Related Work

There are really two fundamental ideas in the representational framework described in this chapter. The
first idea is that the same composition operators traditionally used during sentence processing can also
be used to construct parameters in the grammar and lexicon. The second idea is that parameters in the
grammar and lexicon receive their identity through perturbations that alter their behavior. Curiously,
neither of these ideas has received concentrated attention before, In the linguistics community it is
commonly assumed that there is internal structure in the lexicon, but the relationship between this
atructure and on-line processing is not generally made explicit. Similarly, while the lexicon is commonly
viewed as the source of behavior that does not otherwise fall out of the grammar, we are not aware
of any work that attempts to make explicit how such behavior is specified and related to the normal
functioning of the grammar.

As mentioned in section 3.5, computational studies of language acquisition have routinely made use of
the ideas of Bayesian inference, stochastic language models and MDL. Despite this fact, little emphasis
has been put on the importance of efficient coding for grammars. Very often the complexity of grammars
is measured using coding schemes that treat the grammar aa a sequence of symbols to be written out
on a piece of paper for viewing. Exceptions include the work of Ellison [67, 58] (where linguistically
interesting representations for grammars are explored) and Stolcke (137) (where statistically principled
means are used to estimate description length).
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The data compression community has put more emphasis on efficient coding of parameters, and has
produced several representations for parameters that are similar to ours; these are described in more
detail in section 5.4.4. However, in the data compression community little emphasis has been put on the
interpretation of parameters, and as a consequence no consideration is given to complex or linguistically-
meaningful composition operators.



Chapter 5

Learning Algorithms

Chapter 4 defines a representation for utterances and grammars (lexicons). Various arguments are made
in chapters 3 and 4 that the learner can acquire language by choosing the grammar that minimizes the
combined description length of the grammar and the evidence available to the learner. This leaves open
the question of the learning mechanism: how in practice does the learner find a grammar that results in
a short description length? As argued in section 2.2.4, this is a fundamental question, since the space
of grammars is far too large for simple enumeration strategies to be practical, and algorithmic issues
of efficiency, convergence and robustness all reflect back on the appropriateness of the abstract learning
framework. This chapter presents concrete, efficient learning algorithms for two of the instantiations
of the compositional framework presented in the previous chapter, the concatenative model and the
concatenative model extended with the meaning perturbation operator. In doing 8o it demonstrates the
feasibility of the learning framework that has been built up over the preceding chapters.

The algorithms that are presented here are not meant to reflect paychological reality. They are phrased in
terms of classical computation, not biological mechanisms, and have somne properties that are in conflict
with what we know about human performance. For example, the algorithma make multiple passes over
the entire body of evidence available to the learner. The principal purpose in presenting the algorithms
is, in line with the goals set out in chapter 2, to demonstrate that language can be learned from real
data using the representations and techniques that have been discussed so far. Although additional
constraints must indeed be imposed on theories that attempt to explain human cognitive processing,
these constraints are not enforced here, and as a natural consequence, the algorithms no doubt deviate in
many important ways from the mechanisms people use for language acquisition. Experience has shown
that once abstract issues are understood, it is often a relatively simple matter to restate and otherwise
transform algorithms to conform with what is known about human processing mechaniasms.

The chapter begins by presenting 4 general architecture for learning algorithms that evaluate composi-
tional representations with respect to the minimum description length principle. Algorithmic details are
dependent on the choice of the composition and perturbation operators, and various other decisions. Spe-
cific algorithms are presented for two instartiations of the compositional framework, the concatenative
model and the concatenative mode! extended with the meaning perturbation operator. These imple-
mentations are among the simplest possible, but only small changes are necessary to handle significantly

72
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more complex operators (such as in the substitution model).

5.1 General Architecture

Under the inference scheme presented in chapter 3, learning as expressed at the computational level
is the search for the grammar that minimizes the combined description length of the input and the
grammar. The MDL principle imposes & trivial upper bound on the length of a plausible grammar,
namely the length of the input, but even so grammars can be extremely large (millions of bits long
in the examples in chapter 6). The space of possible grammars is therefore enormous, and precludes
learning by brute-force enumeration. At the same time, parameters can not be evaluated independently,
but only with respect to a complete grammar, This and the desire for incremental learning strategies
(see section 3.2.2) motivates the use of heuristic algorithms that attempt to minimize the description
length by iteratively updating and improving a grammar (in this case a lexicon), by adding, deleting
and otherwise manipulating parameters. The algorithms that will be presented all follow this general
strategy:

Start with the simplest lexicon.
Iterate until convergence:
Refine the parameters of the lexicon to reduce the description length.

Since the change in description length that a new parameter (or a change to an existing parameter)
causes is determined mostly by any improvement in statistical modeling performance that it brings,
an important part of the learning process is the continual collection of information that describes the
performance of the current lexicon in predicting the evidence. Such information can be used by the
learner to estimate the eflect on the description length of some change to the lexicon. Of course, it
is impossible for the learner to know exactly what effect a change will have on the description length.
This is because changes have complex repercussions- they alter parameter usage patterns, which in turn
motivates further changes in the lexicon, ad infinitum. Thus a better statement of the last line of the
learning strategy would be “refine the parameters of the lexicon in any way that is predicied to reduce
the description length”.

As discussed in section 4.2.1, each parameter can be thought of as pairing a linguistic predicate with
some information that determines the stochastic properties of the language model. Assuming that the
description length of this stochastic information is relatively independent of its content (% e., assuming
a uniform prior on the stochastic information), it follows that for any fixed set of linguistic parameters
the description length is minimized by the stochastic language model that best models the evidence and
the parameters. Thus, the learning process can be separated into a stage where stochastic properties
are optimized assuming a fixed linguistic structure in the lexicon, and a stage where the linguistic
structure of the lexicon is altered assuming relatively fixed stochastic properties. This general procedure
of alternating between structural and parametric (in the traditional sense) updates to Bayesian models is
a popular strategy for structural induction problems; see for example the stochastic grammar induction
schemes of Stolcke [137) and Chen [35], and the extended literature on structural induction of neural
networks and Bayes’ nets,
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Let G be the simplest lexicon.
Iterate until convergence:
Let U' =U +G.
Optimize stochastic properties of G over U".
Collect statistics describing performance of G over U".
Refine linguistic properties of G to improve expected performance over U’.

Figure 5.1: The general architecture of the learning algorithms that will be considered in this chapter.

In the representational framework of chapter 4, parameters from the lexicon are represented in exactly the
same way as utterances from the input. Furthermore, under the minimum description length principle
(as expressed in equation 4.1, echoed below),

G = argmin Z lwle + 2 |uler,

G'eg weG' uelr

the representation cost of parameters is weighted equally with the representation cost of utterances.
At the algorithmic level, this impliea that the learner should treat any parameter in the lexicon as just
another utterance in the input. The combined set of utterances and parameters is denoted in subsequent
discussion by U’ = U + G, with elements still called utterances for want of a better term.

Summarizing the preceding paragraphs, figure 5.1 presents the architecture of the learning algorithms
described in this chapter. As mentioned, there are two major subroutines in each learning algorithm:
a routine that performs stochastic optimization and a routine that performs structural optimization.
Each of these is surveyed immediately below, and then expanded upon in the presentations of the
specific algorithms for the two instantiations of the representational framework.

5.1.1 Stochastic Optimization

The problem of stochastic optimization is to find the stochastic settings that minimize the description
length of the parameters and evidence U' = U +G, assuming the linguistic structure of the lexicon remains
fixed. Thias is equivalent to maximizing the probability of U’. In the specific case of the concatenative
model of section 4.1.1 it is the problem of finding codelengths that minimize the total description length.
In that example, if the counts of parameters are known it is a simple matter to derive the optimal
parameter probabilities (by normalizing), and from that the codelengths. Unfortunately, parameter
counts are determined by utterance and parameter representations, which are hidden (underdetermined
by the evidence). There are many representations of any character sequence, each with a description
length determined by parameter probabilities. Hence, the optimization procedure seems cyclic: the
optimal stochastic model is a function of representations, which are in turn a function of the stochastic
model.

The expectation-maximization (EM) procedure of Dempster e al. (12, 45, 54] is a standard method for
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solving optimization problems involving hidden representations. It alternates an E-step (expectation-
step) in which the posterior probability of representations are computed under the current stochastic
model with an M-step (maximization-step) in which the stochastic model is adjusted to maximize the
expected log-likelihood of the representations, where the expectation is under the posterior probabilities
defined by the E-step. This is equivalent to minimizing the expected description length of the repre-
sentations. Each iteration of the EM algorithm is guaranteed to monotonically decrease the complete
description length, asymptotically approaching a local optimum. Expressed somewhat more formally,
the E-step consists of determining for every u € U’ the posterior probability of the representation r (a
sequence of compositions and perturbations)

rlu) = pG(ulr) _ pG(ul r)
pe(rlu) = pe(v) Y., pe(u,r)

Since a representation completely determines an utterance, pg(u,r) = pe(r) if r is a valid representation
for u, and 0 otherwise. The M-step then produces an improved grammar G* defined by

G* = argmin E [Z —logpau(u,r)]

G'e9 wel!

= argmin E E —pg(r|u)logpe: (u, ). (5.1)

G'eg ueU' r

Here G* has the same linguistic structure as G, but different stochastic properties. For the types of
language models considered here, the E-step is simple but not trivial, whereas the M-step is simply
a normalization. For other types of models both steps can be complex, and it is often not possible
to perform the optimization involved in the M-step exactly. In such cases it may still be possible to
choose (@ 8o as to decrease the right hand side of equation 5.1. In such cases the EM algorithm is
still guaranteed to monotonically reduce the complete description length, though often the procedure
converges aubstantially more slowly.

The EM procedure is only guaranteed to approach a local optimum, not a global one. The effectiveness
of the procedure at finding a global optimum is a function of the complexities of the search space as well
as the starting point for the algorithm; in many cases the procedure is woefully incapable of finding a
global opti.num, and this can have significant effects on learning strategies based on the EM algorithm
alone (see 48] for discussion). In the context of the algorithms discussed here, the other optimization
step, which modifies the linguistic structure of the lexicon, often provides a means of escaping from
local optima. This is an advantage of algorithms that manipulate the structure of the grammar over
algorithms that start with complete structures (for example, all possible grammatical rules) and attempt
to learn solely by manipulating stochastic properties [25, 104].

Only rarely will the EM-algorithm converge to the exact (local) optimum in a finite number of iterations.
However, for the implementations considered below, after two or three iterations iinprovements to the
description length tend to be so small as to be irrelevant. This is because the learning algorithms (see
figure 5.1) start the stochastic optimization procedure from a lexicon that has undergone only incremental
changes since the previous optimization step.
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5.1.2 Structural Refinement

During each iterction of the learning algorithm the linguistic structure of the lexicon is refined in an
effort to reduce the description length of the evidence and lexicon. This ig an incremental learning
strategy: the learning Procedure starts with a minimal lexicon, just sufficient to explain any utterance,
and expands this lexicon over time through local changes. Local changes are those whose effects are
confined to small portions of the lexicon (such as single parameters), ao that it is reasonable to assume
that the usage properties of the remainder of the lexicon stay relatively fixed under the change. By

Hypothesize a set of changes to the lexicon.
For each change, estimate the effect on the total description length.
Implement each change that is estimated to reduce the description length,

calculated under an assumption of independence, but as this agsumption s often incorrect, it results in
many undesirable changes (such as two Parameters being added when one wil] do). However, the unde-
sirable consequences of the independence assumption can be mostly eliminated by considering changes
that “undo” previous modifications to the lexicon, such as by deleting parameters that were previously
Created, or creating parameters that were previously deleted. In this way, many changes are made during
each iteration, and thoge that are not justified are compensated for during the next iteration.

parameters ate considered only if they appear as a subpart of the most probable representation of gome
utterance or parameter. In fact, the algorithms described below only consider parameters that can be
built by composing two other parameters or by perturbing a single parameter: parameters are built up by
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the pairwise combination of existing objects that are composed in existing representations. A parameter
is deleted if it appears that the coet of substituting its representation for it is less than the cost of its
description length. There are many other types of changes that could be considered.! For example,
new parameter candidates could be hypothesized by looking for long repeated sequences in the evidence
(as opposed to considering only candidates that are the pairwise combination of existing parameters).
This would enable the learning algorithm to create some parameters that the algorithms below will not,
because they have too limited a view. On the other hand, such a strategy would complicate the collection
of usage statistics necessary to evaluate such candidates.

In many cases it can be important to consider various second order effects. For example, the creation of
one parameter may justify the deletion of another. This deletion will reduce the description length, and
should be taken into account when computing the benefit of the first parameter. Of course, there are
limits to the effects that can be considered. A guiding principle used here is that no effect is considered
if it would require reanalysis of the evidence.

5.2 Concatenative Model

The concatenative model of section 4.4.1 allows for a particularly simple and eflicient learning algorithm,
presented in this section. Stochastic optimization via EM is accomplished by the Baum-Welch proce-
dure [11], and fairly simple estimation procedures are used to predict the effects of adding and deleting
parameters.

To simplify and shorten the exposition, it will be assumed that the evidence U available to the learner
is a sequence of characters drawn from some alphabet (letters, phonemes, etc.), possibly presegmented
into utterances u € U. In some applications it is necessary to allow for less certain input; in many
of these cases the input is logically viewed as a stochastic lattice over characters, where transition
probabilities reflect the source of uncertainty. This would be true of the extended model presented in
section 4.4.4 where a phoneme sequence serves as an intermediate representation that generates the
speech signal. In that case the transition probabilities would refiect the probability of the speech signal
given the phonemes. Using a stochastic lattice as an input rather than a sequence slightly complicates
the stochastic and structural optimization procedures, but not in any fundamental way.? For this reason,
the learning algorithm for the concatenative model is presented in a form that only handles the simple
case of a single, “noiseleas” character sequence. It is not difficult to extend this basic algorithm to handle
more interesting cases.

Two methods for refining the linguistic structure of the lexicon will be considered. First, new parameters
can be created. Although this is by no means a necessity, the algorithm will consider as new parameters
only parameters that can be formed by composing two or more existing parameters. Second, parameters
can be deleted from the lexicon. All parameters except the terminal characters are considered for deletion
during every iteration. The learning algorithm alternates between creating and deleting parametera.
Figure 5.2 summarizes the learning algorithm, which will be explained in more detail below.

Y The types of changes to the lexicon that should be considered depend heavily on the nature of the composition and
perturbation operators.
31f the lattice ia extremely dense, performance may be reduced substantially.
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Let G be the set of terminals with uniform probabilities.
Iterate until convergence:
Let U'=U +G.
Optimize stochastic properties of G over U’.
Perform optimization via 2 steps of the forward-backward algorithm.
During second step record parameter co-occurrence counts and Viterbi representations.
Refine linguistic propertics of (7 to improve ezpected performance over U’.
Add new parameters to G that are the composition of existing ones.
Set U'=U + @G.
Optimize stochastic properties of G over U'.
Perform optimization via 3 steps of the forward-backward algorithm.
Refine linguistic properties of G 1o improve ezpected performanee over U'.
Delete parameters from G.

Figure 5.2: The learning algorithm for the concatenative model.

Section 4.2.1 mentions that the representation of each parameters does not affect its use. The algorithm
presented here takes advantage of this fact, internally storing each parameter as a sequence uj...u; of
characters, just like an utterance. Of course, there are many possible representations for each parameter,
and these determine its description length. But only rarely does the algorithm need to have access to
parameter representations, It is therefore not necessary to explicitly maintain representations for each
parameter throughout the learning process. In circumstances where representations become important
(in particular, during structural refinement of the lexicon) representations for a parameter are extracted
by parsing ite character sequence. Among the advantages this conveys is that there is no need to update
representations as parameters are added and deleted from the lexicon. Other advantages will be discussed
in section 5.4.

5.2.1 Optimization of Stochastic Parameters

As discussed in gection 4.4.1, multigrams are a special form of hidden Markov models. The EM procedure
for HMMs is known as the Baum-Welch algorithm [11), and is rederived below in a simpler form more
appropriate for multigrams. As with all EM procedures, the Baum-Welch procedure alternates E-steps
and M-steps. This procedure rapidly converges. Although it is generally possible to test for convergence
by setting thresholds on changes to the total description length, in this case it is as effective to simply
execute a fixed number of iterations (as described in figure 5.2).

The Maximization Step

Recall that a representation r is a sequence of parameters w; . . .wy, and (following from equation 4.3)
that the joint probability of a sequence and a representation p(u, r) can be expressed p(u,r) = [[, p(w;)
ifu=w;0-- 0wy (p(u,r) = 0 otherwise). Following equation 5.1, define for the multigram model the
expected description length L:
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L= Z Z —pa(w1...wﬂlu)logﬂpc(w,-).

ueu'lﬂl...lﬂ“ j:l

Then the optimal lexicon is one in which dL/dp(w) = 0 for each parameter w. As this is a constrained
optimization problem (the total probability of all parameters must sum to one), a Lagrange multiplier
term is introduced (L' = L + A Y}, pa(w)), giving

WYY polun. )y ) Ore ()
i=1

ch- (w) welU w)...ws PG-(wj)

1l

Z z “PG(W1...w“|u)c(wEwl"'wn)+A

welU'w...9pa pPG- (w)
= 0,

where ¢(w € w; - ..awy) is the number of times the parameter w appears in the representation w; ... ws.
Thus,

PG* (w) - EueU' 2\5,...1.0. pc(wy A .wnIu)c(w cw.. .w,,)-

The Lagrange multiplier A merely acts as a normalization constant. Therefore the optimal probability
for each parameter w is given by

pa-(w) = f""(—"’)—, (5.2)

o' cg(w')

where ¢g(w) is the expected number of times that the parameter w is used in the complete description
of U’ under the lexicon G:

cg(w) = Z Z pe(wy .. waju)c(w € wy ... wy). (5.3)

uEU‘ W)... Wy

As might be expected, the maximization step optimizes probabilities by normalizing the expected counts
of parameters under the lexicon G.
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The Expectation Step

The E-step for the multigram model conaists of computing the posterior counts cg(w) used in equa-
tion 5.2. This would appear from equation 5.3 to involve a sum over all possible representations for each
utterance. Since the number of representations can be exponential in the length of an utterance, this
might appear intractable. However, a dynamic programming? technique known as the forward-backward
algorithm {11] enables this computation to be performed efficiently. Here the forward-backward algo-
rithm is preacnted in a somewhat simplified form appropriate for the multigram model. The algorithm
consists of two stepa for each utterance. First, forward and backward probabilities are computed for each
location (character index) in the utterance. Then these probabilities are used to compute for each pa-
rameter w and each starting location a and each ending location b the posterior probability pg(a = b|u)
of w generating u,...u, in a derivation of u = u1...4. Thus, in the course of computing posterior
counts the forward-backward algorithm cssentially parses each utterance into tepresentations,

For an utterance (a character sequence) u = u; ... let the forward probability or;(u) be the probability of
the stochastic model generating any complete parameter sequence w, . . ~WolWp ... Wy, such that uy ... u; =
Wy 0 --- 0w, Then ag(u) =1 and

ai(u) = Zﬂj(“) ) pa(w)

V=uj4y ..U €EG

Further let the backward probability Bi{u) be the probability of the stochaatic model generating any
complete parameter sequence W1...Wotp ... w;, Buch that u = wy 0 --- 0 w,, given that uy...u; =
wyo0---ow, Then B(u) =1 and *

Bi(u) = Zﬂ:‘(u) Y. po(w).

W=ty U EC

Notice that pg(u) = ao(u) = Bi(u). It follows from the independence of parameter generation in the
multigram model that the conditional probability pc(a > blu) of a parameter w spanning a region
Yat1...up during the generation of an utterance u, ...y, is given by

aa(u)pe (w)Fs(u) (5.4)

pPala = ) = =)

fw#ugyr. .. up. rcla = blu) = 0 otherwise.

3Here dynamic programming is used in the algorithmie sense, though the backward portion of the forward-backward
algorithm is also a dynamic programming algorithm in the optimization sensc [14]

4 The fact that B1(u) = 1 follows from the simplification made in cquation 4.3, thet ignores in the stochastic model the
number of parameters in a representation. The use of a special terminating parameter would climinate the need for this
approximation.
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Conveniently, the distributive properties of the expectation operator imply that the calculation of the
expected count of a parameter w over an utterance u can be reexpressed as a sum over all subsequences
of the utterance of the expected probability of that parameter spanning that subsequence. Hence,
equation 5.3 can be rewritten as

to
cg(w) = Z zZpg(a:blul...u;). (6.5)

uy.. . eV a=0b=a

For each utterance the calculation of the forward and backward probabilities is linear in the length of
the utterance and linear in the length of the longest parameter. The calculation of expected parameter
counts has the same complexity. Given the expected counts, the maximization step i a simple matter
of normalization. Hence the computational complexity of each astep of the EM-algorithm ia essentially
linear in the total length of the evidence and the parameters (as measured by the number of characters)
and linear in the length of the longest parameter. By representing the lexicon as a character tree, this
cost can be further reduced.

Maintaining a Logically Consistent Lexicon

Although there are advantages to representing parameters as character sequences during the execution
of the learning algorithm, it does introduce a significant complication. Because each parameter is stored
by its “content” rather than its representation, there is no guarantee that the representation of the
lexicon is internally consiastent, such that the internal hierarchy (as in figure 1.1) is a directed acyclic
graph. For example, with the forward and backward probabilities defined as they are each parameter
will be represented by a single component- itself! While a remarkably efficient representation, this
obviously defeats the purpose of the compositional framework. One way to ensure that the lexicon
remains internally consistent is to impose a complete ordering on parameters that depends only on
parameter content. Then so long as each parameter w is represented in terms of other parameters
w; ... w, such that Vi,w; < w, the lexicon is consistent. This constraint can be imposed by slightly
altering the definitions of the forward and backward probabilities:

aifu) = 3 ej(v) > P (w).

W=u;4y... 4 €EG W<y

{
Bi(u) = Zﬂj(") > pe(w).

WU WU EG W

For the concatenative model it suffices to define the ordering over parameters in terms of parameter
length: 1y ...u; < vy...vm if | < m. This prevents a parameter from being used as ite own represen-
tation. In models where perturbations play a bigger role, such as the meaning model presented further
below, the ordering constraint must be more complex if it is to prevent various cyclic representations.
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Recording Parameter Cooccurrence Statistics

In order to refine the linguistic structure of the lexicon by adding and deleting parameters, it is necessary
for the learning algorithm to first record statistics about the usage patterns of parameters. The methods
for refining the lexicon described in the following section require that two kinds of information be
recorded: the optimal (most probable) representation of the evidence and each parameter, and expected
counts of how often two parameters are composed. This information can be extracted as part of the
forward-backward algorithm.

The most probable (Viterbi) representation R(u) for an utterance u = u, ... 1 can be computed by the
following procedure that mirrors the calculation of the forward probabilities:

Set Ro(u) = 0, af(u) = 1.

Fori=1tol,
Set Ri(u) =0, a?(u) = 0.
For 3 =0 to 1,

ForweG,w=1u41...u,
Let o = o} (u)pa(w).
If a® > af(u) then
Set. Ri(u) = (Rj(u), u), o} (u) = a.
Then R(u) = Ry(u).

The counts cg(w), w;) of the expected number of times two parameters w; and w; are composed under
the grammar G can be computed in a similar fashion to the counts ce(w). Following equation 5.5,

co(wn,wa) = Y NN pala T buy .. w) (5.6)

U .. €U0 a=0p=a

where the probability of the composition w; o wy spanning the subsequence gy, ...up during the gen-
eration of u is given by (following equation 5.4 and assuming that w,w; = Uapy ... Up)

pala " bju) = aa(u)pa(t;;)ar;(wﬂﬂ"("), (5.7)

5.2.2 Refinement of Model Structure

As figure 5.2 makes explicit, the linguistic structure of the lexicon is refined in two separate stages, first
by creating new parameters and then by deleting existing paramectera. In each case a set of candidate
changes is considered, each one evaluated under the assumption that it is the only change. The evaluation
process consists of estimating the approximate counts cg-(w) of each parameter after the change. By
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comparing with the rounts cg(w) before the change, an estimate of the approximate change A in
description length can be made:

Awm Y —cg-(w)logpa-(w) = D —ca(w)logpa(w), (5.8)

welG* welR

where pg-(w) = cg+(w)/ ¥ cg-(w).* So long as only a small number of parameter counts change (the
premise of local updates to the lexicon), equation 5.8 can be evaluated efficiently. This is because it can
be rewritten in an even more convenient form:

Az(ca— ) Ca(w)) 10692220~ S con(w)logpar(w)+ 3 ca(w)logpa(u),

wEG-H we@*-H weEG-—-H

where H is the set of all parameters w whose counts do not change from G to G*, Cg = ¥ ca(w) is
the total count under G, and AC = Y g._j ca-(w) — Y 5_pce(w) is the total change in parameter
counts. In this way, so long as the total count Cg is known, the calculation of A does not involve terms
for every parameter, but only those that are added or deleted or that change counts.

If A < 0, then the change from G to G* ia estimated to reduce the combined description length of the
evidence and the lexicon. For convenience, changes are hypothesized and evaluated in parallel. Then all
changes for which A < 0 are implemented simultaneously.

Adding Parameters

The set of new parameter candidates is constructed from pairs of parameters that are composed in
the representation of the evidence and lexicon. For example, if under the grammar G a representation

8Equation 6.8 is only an approximation, but one that is generally quite accurate. The complete description length
(before changes) is, cchoing equation 4.3,

wi=3" -1 Y plwn)- - plwa).
e’ Wi Wn 0.8 BSWL 0 0Wa

In contrast, equation 5.8 is derived by moving the logarithm ingide the summation,

NN > ~ logp{w; ) - - - p(wn).

wE€U' wy...wy 4.t WS W O OWa

= E —cg(w)logpg(W).

wed

This approximation is valid because the Viterbi represcntation tends to contribute the vest majority of the probability
of an utterance. For example, if there are two represcntations for an utterance, onc of length 10 bits, and enother
of length 16 bits, then the correct description length is — log(2~1% + 2-1%) = 9.95 bits, whereas the approximation

—10 -
gives 10 - :_ﬂ,_::_" + 15 - ;-lzo_,_l:-u = 10.16 bits, a differcnce of only 2%. Even in the case where there are twa

representations of equal length, the difference amounts to only one bit. Furthermore, when used in equation 5.8 even thene
smail approximation errors tend to cancel out.
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for thecat is t o h o e o cat then the parameters th, he, and ecat are all candidates. Since for any
utterance there may be many representations, most of which are fantastically unlikely (they have much
longer description lengths than the best representation), only parameter pairs that occur in the best
(Viterbi) representation are considered; this substantially reduces the total set under consideration.
Viterbi representations are computed during the stochastic optimization process (see figure 5.2) by the
method described at the end of section 5.2.1, and used to construct the set of candidate parameters. In
the r :ncatenative model no parameter will be added to the model if it only occurs once {this is not true
of more complicated instantiations like the substitution model); therefore the set of candidates can be
pruned by eliminating all parameters that occur fewer than two times in Viterbi representations.

For each candidate parameter W with Viterbi representation w; 0 wy, the expected count cg(w),w;)
of the composition wy o w; is computed as described in section 5.2.1. This produces counts that differ
only slightly from those that would result from simply adding the number of times the pair occurred in
Viterbi representations. The count cg(wy, wy) is used to estimate the changes in parameter counts that
would result from adding W to the lexicon.

To eatimate the expected changes in parameter counts from adding W to the lexicon, various assumptions
must be made. The fundamental assumption will be that representations change only in so much as W
replaces, in whole or in part, its representation. For example, if the parameter th is added to the lexicon,
then the representation th o e o cat will compete with to h o e o cat, presumably substantially reducing
the counts of ¢t and A. Other parameter counts wiil remain the same. Imagine that the count cg-(W) of
W under the updated lexicon is known. Further define the count of a parameter w in the representation
of an utterance u = u,...w by

1 !
cg{weu)= ZZpG(a = bluy...uy).

a=0b=qa

Then each occurrence of W will reduce the count of the members of its representation by their count in
its representation; on the other hand, W must be represented, and this will increase the counts of the
members of ita representation by cg. (w € W). Thus,

cg+ (W) = cg(w) + ce- (w € W) — cg+(W)ce(w € W), (5.9)

To compute with equation 5.8 the expecied change in description length then, estimates are needed of
cg+(W) and cg-(w € W). It is possible to get accurate estimates through various iterative methods and
these can very slightly improve performance, but in practice it is more than adequate to use quite simple
approximations: for concreteness, let cg- (W) 2 ce(w), wa) and cg-(w € W) = cc(w € W). Note that
the computation of equation 5.9 therefore requires a pass of the forward-backward algorithm over W to
estimate cg{w € W).

It is sometimes necessary to consider the secondary effects of adding a parameter. A particularly common
case is when adding a parameter eliminates the motivation for one or more of the parameters 1n its
representation. For example, if banana = bana o na is added to the lexicon, then banana will largely
or entirely replace bana and it is quite likely that the only use of bana will be in the representation of
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banana. In such a case bana would be deleted from the lexicon in the next stage of the learning algorithm
for a pet reduction in description length. However, the increased length at the intermediate stage where
both berena and bana exist might prevent banana from being added in the first place. The next section
describes an estimation procedure that determines the expected savings from deleting a parameter. This
procedure is used to calculate the expected secondary changes in description length A; and A; from
deleting the words w; and w; after W has been added. The revised condition ia to add W if

A + min(A,, 0) + min(Aj, 0) < 0.

This lookahead does mean that it is common after the parameter creation stage for there to be an
increase in description length. After the deletion stage there is almost always a net reduction.

Deleting Parameters

In each iteration, all parameters except the terminals are candidates to he deleted from the lexicon.
Parameters are generally deleted because other parameters have rendered them superfluous. To estimate
the changes in parameter counts that result from deleting a parameter W, the assumption is made that
each occurrence of W is replaced by its representation. Of course, the parameters in the representation
of W under G also have their count reduced in G* because W no longer needs to be represented. Then
cg+-(W) = 0 and (compare with equation 5.9)

cg-(w) = cg(w) — ce(w € W) + ca(W)ecg(w € W).

In some cases the independence assumption considerably slows the convergence of the learning algorithm.
In particular, it can be the case that exactly one of a set of parameters is necessary (any one), but that the
entire set is deleted because the algorithm computes changes in description length under the assumption
that only one parameter is deleted at a time. This problem can be mostly eliminated by deleting
parameters sequentially and checking whether the Viterbi representation for a parameter has changed
before deleting it. If it has changed, it is an indication various assumptions made in the deacripticn
length calculations have been violated, and the parameter should be retained: it can always be deleted
during the next iteration of the learning algorithm.

5.2.3 Convergence

The algorithm given above, as outlined in figure 5.2, does not necessarily converge. Parameters are added
and deleted if it is estimated that this will reduce the description length of the evidence and lexicon.
Although these estimates are remarkably accurate, in some cases when parameters are only marginally
justified they may be added and deleted in an endless cycle because of mismatches in the errors of the
creation and deletion estimation procedures. This phenomena has almost no effect on either linguistic
structure or description length, and generally occurs only after the vast majority of the lexicon has been
fixed.
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Various tests can be imposed to stop the algorithm. For example, the algorithm could stop after any
iteration that increases the net description length, or when the number of parametera added or deleted
drops below some threshold. On the data sets that the algorithm has been tested on, the algorithm
has always ceased any significant learning after 15 iterations, and it is as convenient to simply run the
algorithm for 15 iterations regardless.

5.2.4 Computational Complexity

Let i be the number of iterations of the learning algorithm, { be the length of the evidence (in characters),
g be the length of the largest lexicon attained during training (in characters), p be the length of the
longest parameter in the lexicon during training (in characters), and ¢ be the size of the largest set of
candidate changes to the lexicon. Then the time complexity of the stochastic optimization steps in each
iteration of the learning algorithm is O((I + g)p).

The process of adding and deleting parameters involves two steps, the recording of statistice and the
estimation of A's. For each candidate change the estimation of A involves one pass of the forward-
backward algorithm with cost O(p?) and then some simplc ~'gebra that can be performed in essentially
constant time. Thus, the time complexity of that portion of the algorithm is O(cp?).

The statistica that must be recorded are the counts cg(wy, wa) for every parameter pair w;, w, that are
composed in the Viterbi representation of some utterance. The calculation of the Viterbi repregentations
adds only a constant factor to the existing cost of the forward-backward algorithm. The calculation of
the numbers p¢(a hele blu) is linear in the total length of the evidence and parameters and quadratic
in the length of the longest parameter, O((1 + g)p*). The total time complexity of the structural
optimization step is therefore O(cp® + (I + g)p?) = O(p3{c + 1)). But in the implementations that have
been experimented with, the real cost of computing the cg(w), w3) statistics is the space complexity
of their storage, O(c). The number of parameter pairs that co-occur in Viterbi representations can
number in the millions for a large corpus. It is the expense of storing these pairs (before the pruning
of all pairs that only occur together once) that dominates the cost of the algorithm. Experiments have
been performed in which triples w) o w; 0 w3 ate considered as candidates for new parameters, and it
is imperative under such schemes to prune triples for which ca(wy, wa) < 2 or eg(wy, wa) < 2, or the
number of triples quickly exceeds reasonable storage requirements on even moderately sized data sets.

The total time complexity of the algorithm is O(ip? (c+{)), essentially linear in the length of the evidence.
This is as efficient as could reasonably be expected and turns out to be quite practical (total execution
times on million-character inputs tend to be in the tens of minutes on standard 1995 workstations). It
is the ¢ term that is the limiting factor, and ¢ grows with {. For natural-language evidence of the type
described in chapter 6, the algorithm can be run on input tens of millions of characters long (on standard
1995 workstations) without memory storage requirements becoming prohibitive. For longer input, more
complex strategies may be necessary to reduce the effects of the ¢ term.
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u v p(z|v)
john walked {john walk} 5

{john walk slow}

{mary ses john}

{john Bee mary}

— - b

Figure 5.3: A sample u, z pair. A sequence of such pairs is the input to the learning algorithm.

5.3 Extensions for Meaning

The addition of the meaning perturbation operator described in section 4.4.3 does not alter the learning
algorithm in any fundamental way, though it does complicate aome parts of it. The “parsing” process
in the E-step of the stochastic optimization subroutine must be extended to simultaneously analyze the
character sequence and the meaning of an utterance. The parameter creation and deletion procedures
must be slightly altered to take into account perturbations. But roughly speaking, the same architecture
suffices for both models. Only those aspects of the meaning induction algorithm that differ from the
previous algorithm are discussed here; all else ia agsumed to be identical.

The input to the learning algorithm under the extended model is a sequence of pairs u, z, where u =
u; ...u io a character sequence and z is some summary of the extralinguistic environment. It is assumed
that from z the learner can compute the function p(z|v) over v, where v is a possible “meaning” for
the utterance u, a set of sememes. In the tests that will be made of the learning algorithm, p(z|v) is
provided explicitly for each v that assigns z a positive probability. Thus, for each utterance the input to
the learning algorithm looks like the example given in figute 5.3, where the interpretation is that john
walked must mean one of four things, with the meaning {john walk} slightly favored on the basis of
extralinguistic information alone.

Each parameter in the lexicon is stored as a character sequence and a set of sememes. The meaning of
a parameter w will be written m(w). Parameters do not have ambiguous meanings, unlike utterances.
To use the same mechanisms for dealing with both, p(z|v) is simply defined for parameters to be 1 if
v = m(w), and 0 otherwise. The algorithm starts with a lexicon that consists only of the terminals, each
assigned the empty meaning.

5.3.1 Optimization of Stochastic Parameters

Stochastic optimization is again accomplished via the EM algorithm and the maximization step (equa-
tion 5.2) remains as stated, but the computation of parameter counts cc(w) is complicated by the fact
that each utterance is now a two-tiered object. In particular, the calculation of the posterior probability
pc(a > bju) of an utterance spanning the region v, ... u,_), as expressed in equation 5.4 must be revised
to take into account the influence of utteranice meanings.

It is necessary to make the forward and backward probabilities a function of meanings. Let a;(u,q) be
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the probability of the stochastic model generating any complete representation Wi... Wollly .. wy such
that (u,.. %, q) =wyo---0w,. In other werds, a;(u, g) is the probability that after some number of
parameters have been composed the stochastic model will have generated the prefix u, .. .4 and the
sememe set g. Then ag(u,8) = 1 and

@i(u,9) =Y 3" aj(u,q’) > Pa(w)6(q' Um(w), q).

1=0¢'Cq W=U541..8€6G,0<Cu

Further let the backward probability 8;(u, z|g) be the probability of the utterance-extralinguiatic pair
u,z given that the ‘stochastic model generated the partial parameter sequence wy...w, such that
(u1...%,9) =wy0-- 0 w,. Then, following equation 4.7, Bi(u, z|g) = p’(z[q), and

[}
Bi(u, z|g) = Z Z pG(w)ﬁj(u,zqum(w)).

i=s WSuig .U EG,wCu
Notice that pg(u,z) = Bo(u, z|0). The revised form of equation 5.4 is

2g 2a{u, q)pc(w)Bs(x, - g Um(w))
pc(u,z) )

pe{a > bju, z)= (5.10)

(Equation 5.6 can be similarly transformed.) The final calculation of parameter counts remains as
in equation 5.5: cg(w) = Z(u")eu, 2a2sPc(a = blu,z). 1t will turn out to be useful to be able
to compute for each parameter and utterance the posterior probability pc(s|u, z) that the representa-
tion includes a perturbation that adds or deletes the sememe s. This is analogous to the probability
pc(a > bju, z), and can be computed (following equation 4.6) by

o a(u,v)2715Ip(2)v' @ {s})
pg(u, 2) . (5.11)

P (slu, z) =

The total expected count of a perturbation cc(3) is then Z(u.x)eU' pc(s|u, z). Calculations involved in
the parameter building process also require the expected count ca(w, 3) of how many times the parameter
w is used in a representation that also involves a perturbation that adds ot deletes the sememe 5. This js
analogous to the count cg(w, w3) and can be computed by c¢(w, 8) = Z(u,:)eu' Yaspc(a Db, sju, z)

where pg(a 5 b, s|u, z) is computed by

w _ 20 27 8lp(zv' ® {3}) 3= aa(u, g)per(w) e, v'|g Um(w))
rc(a — b, alu,z) = )

pa(s) (5.12)
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A Factorial Representation of Probabilities

Unfortunately, although these changes to the forward-backward algorithm are conceptually simple, they
turn it from a polynomial-time algorithm into one that is exponential in the number of sememes. This
ia because various summations are made over the entire space of sememe sets. Intuitively, what has
happened is that amount of information necessary to summarize the state of the generation process
has been expanded. In the concatenative model, given knowledge of u all that is necessary to describe
the state of the generation process is an utterance location. As a consequence, the calculation of the
forward and backward probabilities involves a sum over utterance locations, and the number of forward
and backward probabilities that must be stcred is equal to tne length of the utterance. In the meaning
model, given knowledge of u and z the siate of the generative process is summarized by both the utterance
location and the sememes that have been generated. Thus, the calculations of forward and backward
probabilities involves a double sum, and prohabilities must be stored for every combination of location
and possible sermneme set.

There are several escapes from what seems to be a computational overload. First realize that for any
finite lexicon, only some of the forward probabilities ai(u, ¢) will be non-zero. If only these are atored,
and backward probabilities for which forward probabilities are zero are ignored, then the algorithm as it
stands may be practical; this depends heavily on the ambiguity of the lexicon. It is also possible to use
a beam-search strategy, storing for each location only those forward probabilities that are within some
factor of the highest forward probability for that location. This risks introducing errors, but is likely
to be a viable strategy. Another possibility, diacussed at further length here, is to store forward and
backward probabilities using a factorial representation. This introduces various approximation errors,
but can substantially reduce computation in cases where the size of the lexicon precludes using the other
strategies.

The idea is to assume that the probability of a sememe being in the sememe set of an utterance is
independent of other sememes. In other words, if pe(u,v) is the probability of the language model G
generating an utterance u with meaning v, then

pa(u,v) = pa(uw) [[ pe(slv) T] Ppe(elu),

€Y 1ES—-v

where 9 is a sememe drawn from the total set of sememes S. This is of course not true in general.
For example, the probability of kicking the bucket meaning {kick bucket} is not the product of two
independent probabilities: either the phrase means “to die”, in which case neither sememe is in the
meaning, or it means “kicking the bucket”, in which case both are. However, the approximation can be
surprisingly effective, and has the advantage that the number of probabilities that need to be computed
stored is a linear function of |S|.

Let o;(u, q) = ai(u)Ai(g|u) where (1) is as defined in section 5.2.1 and A;(g|u) is the probability that
the representation w; ...w, has collective meaning ¢ given that it generates u,...uw Vot G:(u, v|g) =
Bi(u)Bi(v|u, q) where §;(u) is aa defined in section 5.2.1 and B;(vju,q) is the proi ...y “hat wy . . wy,
has collective meaning v given that wyo:«-ow, = (g, 4, ...u). Bi(u, z|q) is defined 1.« yerma of H;(u, v|g)
by
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Bi(u,zlg) = Y 7(zIv') Bi(u, ']q).

Write (g)* to mean 1if s € g and 0 if s € q. Then the factorial approximation proceeds by assuming
that

Aiqlu) ~ [Les 4i((9)*u) and Bi(vlu,q) = [],es BI((+)" [(a)*, u),

where A}({q)*|u) and B{((v)*|(g)*, u) are marginal probabilities that can be computed by

AW = o Sa) Y po(u)(m(u) + R A1)

oy
'( 7=0 w=u ... u,EGwcu

B0 = g s X polu)(m)’ + G B(10,1)

WUy 4, €0, wu

where Ag(1lu) =0, Af(0fu) = Af(1[u), B{(1]0,u) =0, B{(1|1,u) = 1 and B!(0]z,u) = Bf(1|z,u). The
calculation of these marginal forward and backward probabilities does not involve summations over all
possible meanings, and is hence linear in the size of the sememe set. This still leaves a summation over all
possible meanings in the calculation of parameter counts, in equations 5.10, 5.11 and 5.12. Fortunately,
under the factorial assumption these summations are equivalent to a more efficient product. In the case
of equation 5.10,

pc(a > blu, z)
Zq aa(ua ‘I)PG(w)ﬂb(un zlq U m(‘l.U))

PG(u)z)
_ Zgxa{u) I, 45((9)Iu)pe(w) X, p/(2[v')Bo(u) 1, B ((v')*|u, (g U m(w))*)
- PG(“:Z)
_ xa(u)pe(w)Be(u) 3o, T1, 42(0) lu) 2, 7 (21v') T1, B((v')*|u, (g U m(w))*)
h PG(ul z)
_ X P(z]v)ea(u)pe (w)Bs(u) 3, 1, AL((a) 1u) BL((v')*|u, (q U m(w))*)
- PG("”‘)

Lo P (219" )aa(u)pc (w)Bo(u) [1, (A4 (0]u) By ((v')* |u, (m(w))*) + AL(1ju)(r")*)
ar(u) 3o P(zIv') T1, A7 ((v')* |u) '

This last form is much more efficient to compute, but still involves a sum over the giant space of all
utterance meanings v'. There are many different approximationa that can be used to eliminate or
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simplify this sum. A surprisingly effective one, adopted here, is to first partition the set of meanings into
n disjoint subsets Vy...V, (where n is small). Then assume that p'(z}v' € Vi) =[], f2({v'}*) where

fi(2) = X preva (o1 =2 P'(2[t'). This allows pg(a = b|u, z) to be computed efficiently by

PG(a = blu, z) =
aa(u)pg(w)fy (1) 32, T1, (f2(0)A5(01u) By (Ou, (m(w))*) + fi(1)As(1]u)) (5.13)
ar(u) 32, I1, (££(0) A7 (Olu) + fE(1) A} (1]u) ' '

Assuming input as in figure 5.3 (or in a variety of other natural forms), equation 4.6 can be rewritten
in a manner that allows f§(1) and f{(0) to be computed efficiently.

So long as the partition of utterance meanings into V...V, is done in such a way as to maximize
the effectiveness of the factorial representation, equation 5.13 results in an efficient and fairly accurate
method of approximating parameter counts. Equations 5.7, 5.11 and 5.12 can be similarly transformed
to efficiently approximate pg(w), w3), pe(s|u, z) and pg(a — b, s|u, z). For example,

po(olu, 2) = 2t Za(Af (L) fi(0) + AF(OL) F (1) [T, (AF (L) ' (0) + A (Olw) i’ (1))
o S IL(f (0047 (OFw) + £ (1) 47" (1]w) |

Maintaining a Logically Consistent Lexicon

It was possible in the base concaterative model to ensure consistency in the lexicon by imposing on
each component w; of a parameter w the requirement that w; < w, where < is defined in terms of the
length of the character sequences. The meaning perturbation operator complicates things. The existing
constraint is undesirable, becausge it prevents representations as in figure 4.6 where different forma inherit
from a common base:

bank {}

bank {tilt}

bank {river-edge}

bank {financial-institution}

b{}ea{}on{}ok{}

bank {} + tilt

bank {} + river-edge

bank {} + financial-institution

A solution that seems plausible at firat glance is to redefine the < operator to be true of parameters of
equal length if they have different meanings. But this still allows for cyclic representations like

bank {tilt}
bank {river-edge}

bank {river-edge} + tilt - river-edge
bank {tilt} + river-edge - tilt

where the learning algorithm never actually represents the characters of bank. Although this is an
interesting problem that becomes even more complicated when phonological perturbations are allowed,
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a fairly unintereating solution is adopted here. The < predicate orders parameters first by length of
character sequence, and then by number of sememes. Thus, bank {tilt} can not be represented in
terms of bank {river-edge} because the component parameter has an equal number of characters and
an equal or greater number of sememes.

5.3.2 Refinement of Model Structure

The procedures for adding and deleting parameters are not altered much when the concatenative model is
extended with the meaning perturbation operator. The procedure for creating new parameters from the
composition of two existing ones is retained in ezactly the same form. The calculation of the change in
description length from deleting a parameter is only very slightly altered by the fact that the parameter
may include meaning perturbations. One additional type of change to the lexicon is considered, the
creation of a new parameter by combining an existing parameter with a meaning perturbation.

It is necessary to extend equation 5.8 to take into account changes in the number of perturbations in
the complete representation.

Ax Y —cg-(w)logpgs(w) - Y —cg(w)logpe(w) + (log |S1) D “(ca-(8) — cg(s)).

weG* weG €5

Adding Parameters

In addition to the method of building a new parameter from two existing ones, a new type of change
to the lexicon is considered: a new paramecter can be created by adding or removing a sememe from
an existing parameter’s sememe set (leaving the original parameter intact). The set of new parameter
candidates is constructed from parameter-perturbation pairs that cooccur in the representation of the
evidence and lexicon. For example, if under the grammar G a representation for thecat {cat} is the {}
o cat {} + cat then the parameters the {cat} and cat {cat} are both candidates. Again, only pairs
that occur in the Viterbi representation are considered, and again the set of candidates can be pruned
by eliminating all pairs that occur fewer than two times in Viterbi representations.

For each candidate parameter W with Viterbi representation w + s, the expected count cg(w,s) is
computed. Then estimates of new counte are made under the same assumptions used for the two-
parameter case, resulting in

cg-(w) = cg(w)+ce(weW)-— cge(W)eg{w e W).
cg-(s) = cg(s)+po-(slu,z) - cg-(W)ps(slu, z).

The computation of A thus requires estimates of cg. (W), cg-(w € W) and pg-(s|W). Here, we simply
let cg-(W) = cg(w, 3), cg-(w € W) = cg(w € W) and pg: (w|W) = pg(w|W). Thus, the parameter W
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is parsed to find its representation under the existing grammar, and this representation is assumed to
be the one it will have after the change also. The effect of a subsequent deletion of the parameter w is
added in to the computation of A.

This estimation procedure is not very faithful to the compositional framework, because it does not take
inte account the inheritance properties as well as it might. Consider the case where three parameters
exist, cat, a cat and and the caf, with tie last two parameters represented in terms of the first. If only a
cat and the cat occur at the top level, then they may be considered for the addition of the cat sememe,
but not cat. cat will only acquire it later, in an effort to reduce the description length of a cat and the cat.
Although the algorithm may eventually converge to the “right” grammar, it does so in an unneceasarily
circuitous fashion.

Deleting Parameters

Consider the question of how much the total description length changes when a parameter W with
representation w;0...0Wa+ 81 +. ..+ 3k — 8k 41 — ... — 8y 18 deleted. The assumption made previously
was that when a parameter is deleted, its representation takes its place; this assumption is generally
valid because a parameter’s representation is the shortest deacription of its content (at least before the
deletion in turn causes various other changes to the lexicon), and hence the best substitute for the
parameter, This remains true when the meaning perturbation operator is introduced. Therefore, the
only change to the deletion procedure is a formula for estimating the changes in perturbation counts
that mirrors the original formula for estimating changes in parameter counts.

2

cg{w) — ce(w € W) + cg(W)ceg(w € W).
ca(s) — pa(s|W) + ca(W)pc(s|W).

ce-(w)
cg-(s)

{2

5.4 Related Work

The learning algorithms that have been presented in this chapter are similar in many respects to algo-
rithms presented by others who have explored grammar induction and related fields. These similarities
arise because of the domain (language), the specific task (the acquisition of a lexicon), the nature of
the underlying stochastic models (finite-state machines), and the particular learning methods employed
(alternating stochastic and structural refinement). Several bodies of research that seem particularly
relevant are discussed below, and compared to the approach taken here.
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5.4.1 Grammatical Inference and Language Acquisition

There have been many attempts to build computer programs that learn the underlying structure of
sequences; a common name for this line of research is grammatical inference.® Much of this effort has been
directed at human language, though DNA sequences, music scores, computer traces and cryptographic
codes are other common subjects of interest. Grammatical inference is distinguished from language
modeling, text compression and many other tasks that may benefit from a predictive model of the data in
that the grammar is the objective, rather than merely a tool. Thus, researchers in grammatical inference
often directly evaluate grammars (or grammatical derivations) rather than the languages generated by
a grammar or a grammar’s predictive ability,

This line of research has lead to many approaches that are similar to ours. For example, Olivier [102],
Wolff (149, 150, 151), Brent et al. [24], and Cartwright and Brent (23, 32] all present algorithms for
the induction of word-like linguistic units from character and phoneme sequences; these algorithms all
rely on dictionary-based representations similar to our multigram model (though usually no stochastic
interpretation is assigned). With the exception of Olivier, all of this work has relied on metrics similar
to MDL to evaluate dictionaries. Nevertheless this work has not achieved impressive results, in the sense
that the resulting dictionaries and segmentations of the input have not agreed particularly well with
linguistic intuitions; this in part motivated this thesis. The reasons behind the failures harken back to
the discussions of chapter 3: extralinguistic patterns are learned at the expense of linguistic ones and
words are made long in an effort to improve stochastic models.

Much recent work has focused on the induction of context-free grammars or variations thereof (8, 25,
31, 30, 35, 36, 43, 83, 104, 137). The hierarchical nature of these grammars would seem on the surface
to be quite similar to our hierarchical, concatenative representation. However, algorithms designed for
the induction of context-free grammars have not performed well in practice. Pereira and Schabes [104]
attempt to learn an English grammar by applying the inside-outside algorithm [8] (the EM-algorithm for
stochastic context-free grammars) to a grammar that contains all possible binary rules over a fixed set of
nonterminals and terminal parts-of-speech. Although the end grammars model the input moderately well
from a predictive viewpoint, the derivations assigned to sentences do not agree with human judgments.
Follow up work by Carroll and Charniak [30, 31] achieves similar results. Stolcke (137] and Chen (35, 36),
by emphasizing structural induction to a greater extent, achieve better results on artificial languages
but again are unable to learn natural-language grammars that reflect human judgments from real data.
Some of the reasons for these failures are given in de Marcken (48], and motivate the compositional
representation we use. They can be divided into two categories. First, search in the space of context-free
grammars is fraught with local optima. This is discussed at greater length below. Second, grammats that
contain many long rules are favored over linguistically plausible grammars containing smaller number
of simpler rules, because such grammars involve fewer expansions, and therefore fewer independence
assumptions. Again, because these researchers have not adopted 7 compositional representation for
their grarnmars, they can not have the best of both worlds.

At the algorithmic level, there are three major differences between our approach and the range of
algorithms explored by the above researchers. First and most fundamentally, our algorithm lumps

®Historically {in line with Gold's view of (E-)language [83]) the term grammatical inference has referred to the learning
of a classification procedure from positive and negative examples that can predict whether a sentence is or is not in &
language; sce Biermann and Feldman (18] for a review. More recently, researchers intereated in building mechanisms that
acquire the specific generative grammar believed to underly some input have alao adopted the term to refer to their work;
it is this (I-language) scnse of grammatical inference that is used here.
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the parameters in with the input, giving them internal representations and forcing the grammar to
explain regularities within parameters. Second, all of these algorithms search by directly manipulating
a single representation of the grammar and the input. In contrast, our algorithm does commit to one
representation, but stores parameters in terms of their surface content, leaving the reconstruction of
a Tepresentation as a parsing problem. Finally, while many of the above algorithms are motivated by
MDL, they dc not in general invoke it explicitly. Instead, ad hoc estimates of description length are
often used, usually based on symbol counts rather than adaptive generative models. The last two issues
and their implications are taken up further below.

5.4.2 Induction of Finite-State Automata

Stochastic finite-state automata, exemplified by Markov modeis and hidden Markov models, are tra-
ditional modeling tools for sequences. The literature on the induction of finite-state automata has
traditionally been divided. On the one hand there has been a great deal of study put into the induction
of non-stochastic finite-state automata from exampies; see Pitt [106] for a survey. Because this problem
taken at fice value is trivial (merely encode the positive examples directly into the model), various
optimization criteria have been imposed; for example, Angluin [4] and Gold [64] show that identification
of the minimum-size autornaton consistent with a finite set of examples is NP-complete. This litera-
ture has not generally considered linguistic applications (though see Berwick and Pilato [17], who use
Angluin’s [6) notion of k-reversibility to acquire automata for the English auxiliary system). Since the
classes of automata that are generally used allow for arbitrary states and arbitrary transitions, it is often
difficult to imagine how these automata could be given linguistic interpretations.

The other half of the literature on finite-state induction comes from the stochastic modeling community,
which has generally assumed fixed finite-state backbones (often fully-connected) and concentrated on the
estimation of transition probabilities. The classical solution to the problem of estimating the transition
probabilities of a hidden Markov model is the Baum-Welch algorithm [11]. Again there is no obvious
way to assign a linguistic interpretation to either the resulting transition probabilities or to the sequence
of state transitions that occurs during the generation of a sequence.

5.4.3 Language Modeling

The language engineering community has studied the problem of creating stochastic models of word
and characters sequences in depth, usually with an eye to using such models as the prior probability
in speech and handwriting recognition applications.” Markov models have generally been the tool of
choice, because there are no hidden aspects to the derivation of a sequence, and therefore the stochastic
optimization process is trivial (see Kupiec [82] for a notable exception). The most impressive stochastic

7Speech or handwriting production is modeled as 8 two stage process: an underlying sequence z (a word or character
scquence) is generated and then an observable signal y (speech or handwriting) is generated from #. The recognition
problem is to find the most likely underlying scquence z given the observable y. Then

z= nrngmx p(z'ly) = nrgxfmx p(ylzp(z’).

Thus, an important part of a recognition system is a prior probability over word or character sequences, p(z'). Thia same
noisy-channel methodology hes been applied to problems of languege translation [27].
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language model reported to date, with an entropy rate of 1.75 bits per character over the Brown corpus,
wasg achicved by the IBM Language Modeling Group (28] using a Markov model over words with a
two-word context (a trigram); as with most work in language modeling, their algorithms had access
te a predefined lexicon. Almost all successful language models have relied on techniques like Markov
and hidden Markov models that do not assign linguistic interpretations to the generated sequences.
Nevertheless, there have been some experiments in language modeling that used underlying structures
with natural linguistic interpretations, such as the long-range trigram model of Della Pietra et al. [52],
based loosely on the link grammars of Sleator and Temperley [129]. The only cases that have met with
significant success {on language modeling grounds) have not demonstrated that they actually produce
derivations that agree with linguistic intuitions. The most pointed example of this is the multigram
model, discussed in the context of language modeling by Deligne and Bimbot [51]. Although this is the
same model that is used here (and that has been studied by others; see below), the model is used by
them in a different way (without the compositional representation) and does not produce linguistically
plausible segmentations of the input. In fact, Deligne and Bimbot do not seriously address the induction
problem, starting with all possible words and merely adjusting word probabilities. As a consequerce,
implausible words remain in the lexicon, though they may be assigned low probabilities.

Thus, little of the considerable language modeling literature bears directly on the language acquisition
problem. It is quite possible, and in fact common practice, to model the stochastic properties of language
without using techniques that reflect linguistic reality. It is an interesting question, answered in chapter 6,
whether the linguistically motivated algorithms presented here perform better than traditional language
modeling techniques on the stochastic modeling task.

5.4.4 Text Compression

The data compression community has also studied finite-state models in depth. Text compression
techniques are in general more relevant to language acquisition than language modeling techniques,
because little prior knowledge tends to be encoded into compression algorithms, and thus they usually
incorporate structural induction mechanisms. Bell et al, [13] provide an exccllent introduction to the
problems and methods of compression, and in particular, text compression. Popular text compression
schemes can be divided into four classes: those based on adaptive frequency techniques like Huffman
codes; those based on context models [112] (such as the PPM algorithm [42, 86, 139], probably the most
effective widely-used method for text compression); those based on hidden Markov models [13] (these
are less common); and those based on dictionary methods. Only the dictionary methods, exemplified by
the LZ78 [156] and LZW [147) algorithms, have underlying models that can easily be assigned linguistic
interpretations.

Dictionary-based text compression techniques are variable-length block coding schemes, very similar to
the multigram model. They compress text by building a dictionary of words, each word a character string.
Words are referenced via codewords. The difference between dictionary-based compression techniques
and our methods stems from the manner in which dictionaries are constructed. In our algorithm, the
dictionary is iteratively refined. Compression algorithms are generally designed for speed, and make
a single pass over the input incrementally building the dictionary (often this improves compression by
allowing the algorithm to adapt to nonstationary input). As a consequence, deterministic (and usually
greedy) strategies are used to build the dictionary. For example, given some remaining input u, the LZW
coder proceeds by writing the codeword of the longest prefix w of u that is in the dictionary, and then a
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fixed code for the following character, c. Both the encoder and the decoder then add the new word we to
their dictionary. Thus, for every codeword that is written a new word is also created. This compression
technique has been proven to asymptotically approach the entropy of any Markov source [156].

Through the derivational history of words, algorithms like LZW implicitly define a hierarchical structure
in the lexicon (in the case of LZW, a left-branching tree). The LZMW algorithm (95], which is like LZW
except that the dictionary is built by concatenating two words rather than one word and a character,
constructs a hierarchy that is very similar in spirit to our compositional representation. However,
because these algorithms do not iteratively restructure the dictionary and rely on greedy on-lice parsing
strategies, the lexical hierarchies they generate do not agree very well with linguistic intuitions. In fact,
in one of the earliest empirical works in natural language grammar induction, Olivier {102} built an
algorithm very similar to LZMW, and its failings were a principal motivaiion for this thesis.

Nevill-Manning’s Sequitur

Recently Nevill-Manning [99] has described Sequitur, a text compression algorithm with remarkable
similarities to our concatenative algorithm, also motivated in part by arguments related to language
acquisition. Sequitur constructs a deterministic context-free grammar that generates the input. The
grammar obeys the following constraints: no symbol sequence in the grammar is repeated (S = abcdbc
violates this constraint, whereas S => aBdB, B = bc does not), and every rule in the grammar is used
at least twice. Figure 5.4 presents a trace of Sequitur’s execution on the input abcdbcabed, taken from
Nevill-Manning [99]. As should be clear, the end result is a grammar that is similar to the representations
our algorithm would produce.

There are several key differences between Sequitur and our algorithm. First, Sequitur is in one sense
incremental- it proceeds in a single pass over the input from left to right, adding characters to the top-
level rule. It avoids many of the drawbacks of the greedy schemes of LZW and LZMW by restructuring
the grammar whenever it violates one of the two constraints, by adding and deleting rules and changing
rule representations.® Unlike our algorithm, these updates do not involve completely reparsing the input
and grammar, but only local modifications. Second, although Sequitur is motivated with description-
length arguments, there is no evaluation function for the grammar- the grammar is only restructured to
ensure that every rey ated sequence is represented by a rule and that every rule is used at least twice
(this is why Sequitur does not need to reparse). Although this makes for an efficient algorithm, it
means that there are many possible valid grammars. Nevill-Manning acknowledges this, and also that
grammars often do not conform to linguistic intuitions. He proposes that these problems be solved by
using domain-specific heuristics to decide how to modify the grammar. He does consider our solution,
the reparsing of the grammar under a global evaluation function, but rejects it for several reasons:

1. It is not clear how difierent grammars can be compared.
2. Local changes to the grammar propagate, forcing other changes.

3. Changes are difficult to undo.

®In this sense, it is not incremental: it raust store the entire input in the current grammar so that it can make changes
arbitrarily far back.
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Input So Far Resulting Grammar Violated Constraints

a S=>a

ab S=>ab

abe S = abe

abed S = abed

abedb S = abedb

abedbc S = abedbe be occurs twice
t S=>adAdA, A= ke

abcdbea S = aAdAa, A = ke

abedbeab S = aAdAab, A= b

abedbeabe S = addAabc, A = v be occurs twice
1t S =>aAdAaA, A= be aA occurs twice
t S= BdAB,A=>bc,B =>aA

abcdbeabed S = BdABd, A= be, B = a4 Bd occurs twice

t §=CAC,A=bc,B=>aA,C = Bd B used only once
I S=>CAC, A= bc,C = add

Figure 5.4: A trace of Sequitur’s execution on the input abcdbcabed. Lines marked t depict rule creation
operations very similar to our create-parameter-from-two-parameters operation, and lines marked i
depict rule-deletion operationa very similar to our parameter deletion operation.

Note that our algorithm solves all of these problems. First, since the notion of description length is
taken seriously and stochastic grammars are used, representations can be compared according to the
MDL principle. Second, since the use of parameters (rules) is independent of their representation,
parameters can be restructured without worry that this will force other changes. And finally, since
parameters are represented in the algorithm by their content rather than their representation, there is
never a worry that changes to representations can not be undonc.

Comparisons of the compression performance of the two algorithms is given in chapter 6. Nevill-Manning
discusses the problem of text segmentation and presents some hierarchies (similar to figure 1.1) for sample
sentences, but does not present segmentation results in a form suitable for comparison.

5.4.5 Orthographic Segmentation

Languages such as Chinese do not separate words in their orthography, just as in English writing no
explicit divisions are made between eub-word units like syllables. Since Chinese words are of variable
length, most sentences are ambiguous with respect to word boundaries, even given knowledge of a
dictionary. As a consequence, even the most rudimentary language processing tasks require a complex
segmentation process (see for review Wu and Tseng [153]). Most researchera attacking the segmentation
problem have assumed access to a dictionary. The standard approach is to build a stochastic finite-
state model of sentences based on words (perhaps a multigram) and then find t}e maximum-likelihood
segmentation of a sentence using the forward-backward algorithm. The greatest challenge to this problem
comes from unknown words and proper names that are not in dictionaries [136, 145]. Thus, an important
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problem in processing text in languages like Chinese is the discovery of words in an environment where
word boundaries are uncertain. The only difference between this problem and ours is that we start with
no prior knowledge of the lexicon.

However, most of the techniques commonly used to discover new words for segmentation tasks are either
application specific (Sproat et al. [136] and Chang et al. [33] discuss methods for learning Chinese names
that are based on their idiosyncratic properties, and Chang et al. [34] judge new Chinese words by their
similarity to existing words) or very similar to the more general lexical induction schemes of Otivier [102],
Cartwright and Brent [32], etc. Thus, if applied to the task of learning words from scratch, most of these
algorithms would either be inappropriate or suffer from many of the same problems as the algorithms
already discussed in the section on grammatical inference. One potential exception to this is Luo and
Roukos [89], who learn words in Chinese starting from scratch and use a cross-validation technique to
keep from building too-large words.

5.4.6 Search Procedures

The search procedures used for grammatical inference and language modeling generally fall into one of
two classes. Members of t.e first class, found here and in the work of Olivier [102], Cook et al. [43]
Wolff [150, 151], Ellison [57, 58], Nevill-Manning [99], Cartwright and Brent [32], Chen (35, 36], Stol-
cke [137} and others, iteratively update the underlying structure of the grammar. (Some, like our
algorithms, start with the most general grammar possible while others, like Stolcke’s, start with the
most specific grammar possible.) Membera of the second class, exemplified by the work of Pereira and
Schabes [104], Deligne and Bimbot [51], Briscoe and Waegner [25] and Lari and Young [83], pick an
extremely general structural backbone for a stochastic model, and proceed by optimizing its stochastic
properties, usually through the EM procedure. For example, Pereira and Schabes train a giant stochastic
context-free grammar containing all possible rules of a certain form. The language-specific propetties
of their grammar emerge through the rule probabilities. It is difficult to evaluate the linguistic prop-
erties of grammars produced by the second class directly, but they can be judged on the basis of the
(maximum-likelihood) derivations they assign to utterances.

In general, the second class of learning algorithma has fared more poorly than the first. The reason,
as discussed by Pereira and Schabes [104] and de Marcken [48], is that the hill-climbing inside-outside
algorithm is incapable of making the complex moves in grammar-space necessary to escape local optima.
As a consequence, these learning algorithms quickly get stuck near their starting point, with little
learning having taken place. The first class of learning algorithms has a potential escape from this
problem. These algorithms (including ours) incorporate mechanisms for altering the linguistic structure
(and stochastic properties) of the grammar that can be designed to perform essentially arbitrary moves,
including those that would stump the EM algorithm. Of course some of these algorithms (like ours) also
use the EM algorithm to optimize stochastic properties along the way.

Almost all algorithms of the first type define a set of candidate changes, and an evaluation function.
Some, like Ellison’s [57], use a simulated-annealing approach where a change may bz accepted even if
it results in a poorer score from the evaluation function. Stolcke [137] uses incremental count-change
techniques very similar to ours to estimate changes in description length. Others define a simpler
evaluation function and do not need to utilize formulas like equation 5.8. However, all of the algorithms
mentioned still suffer from local minima problems, though admittedly to a lesser extent than the purely



100 CHAPTER 5. LEARNING ALGORITHMS

stochastic methods of the second type. This is because these algorithms maintain a single grammar,
stored and manipulated in terms of its representation. As pointed out in de Marcken (48], moves
that are relatively simple to express at a conceptual level may involve quite substantial changes to the
representation of a grammar. For example, imagine a context-free grammar that generates the structure
on the left:

s S
| |

cP crP

N N
AP C BP C
TN TN
A BP AP B
I |
B A

To capture the idea that A adjoins to B, rather than the other way around (the sort of change one might
well imagine a learning algorithm wanting to make), the learning algorithm must change the grammar
to produce the structure on the right. This involves changes to three nonterminals!

AP=> ABP — AP= A
BP = B — BP= APB
CP=>APC -— CP= BPC

These sort of big changes are in general too complex to code into the hypothesis-generating mechanisms,
and as a consequence the stochastic context-free grammar induction algorithms based on structural
updates fare only slightly better than those based on stochastic changes alone.

The learning algorithms presented in this thesis are fundamentally different than those just mentioned.
The grammar is not stored in terms of a single representation. Instead, the parameters (words) of the
grammar are stored in terms of their content. This is a character sequence in the concate..ative model and
a character sequence and a set of sememes in the meaning model. In an instantiation of the framework
based on context-free grammars, the above trees would be stored § = ABC. As a corsequence, the
algorithm implicitly stores many different possible representations, and can reconstruct them at any time
by parsing the input and parameters. Thus, there is no idea of incrementally changing the representation
of a word or a rule. Every iteration of the learning algorithm recreates representations from acratch.
For this reason, very substantial changes can occur (or be undone) in one step. For example, it is quite
common for the following sort of change to happen (here to the most likely representation of the word
watermelnn)

wa o term o el o on

.

waler o melon

Such a change in representation might be triggered by an increase in probability of the word water, and
would not involve multiple steps as it would in Nevill-Manning’s Sequitur or other algorithms based on
the standard technique of directly manipulating representations.
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5.4.7 The Use of MDL

Much of the related work that has been presented relies on evaluation functions that are based on
notions of description length. However, our methodology is unique in that the evaluation function used
(based on equation 5.8) ie a very close approximation of the description length actually achieved by
versions of our algorithms that generate a complete description (for text compression). In contrast,
Brent et al. [24], Cartwright and Brent (32], Chen (35, 36], Ristad and Thomas [116] and others that
invoke the MDL principle all compute ad hoc estimatea of description length (often based on symbol
counts) that do not closely reflect the best possible encodings of their grammars (Stolcke [137] ia more
careful). Although it is not clear exactly kow much this affects performance, it is worth noting that
by assuming naive, nonadaptive encoding schemes for parameters, these researchers are unnecessarily
penalizing parameters. Ristad and Thomas, for example, demonatrate that by accepting parameters
that their evaluation function estimates to increase total description length, generalization performance
is improved.

5.4.8 Learning Meanings

There have been many efforts to build computer programs that learn word “meanings” from paired
sequences of text and semantic representations. This work includes studies of language acquisition (see
Selfridge [121], Siklossy [125] and Siskind [126, 127, 128]); parameter estimation schemes for machine
translation, where sentences in a second language substitute for semantic input (see Brown et al. 26} and
Berger et al. [15]); and parameter estimation schemes for systems that classify utterances (see Tishby
and Gorin [140]).

The learning algorithm presented in this chapter for the concatenative model extended with the meaning
perturbation operator advances previous work in many ways. First, unlike all of the other work cited,
it does not assume presegmented input. This is a very substantial difference. Most other work haa
relied on knowing exactly what words are in each sentence; many do not cope well with homonomy.
Our algorithm functions despite the possibility of massive ambiguity in both the utterance meaning
and in the segmentation of the text stream. Second, to our knowledge ours is the only algorithm that
learns a representation that shares structure. Other algorithms, treating words of the input as arbitrary
aymbols, must learn the meanings of walk and walked independently. In contrast, our algorithm allows
walked to be represented in terms of walk, and to share its sememes. Third, to our knowledge ours is
the only algorithm that allows meanings toc be mapped to lexical units that are not presented in the
input. For example, walk can receive meaning even if it never appears in the input (if walks and walking
do). Furthermore, kicking the buckel can be assigned a meaning even though it is a 3-word sequence.
Finally, our algorithm is the only one that offers an alternative to purely compositional behavior. All
other methods, like ours, assume that when two words are combined, their meanings compose in some
natural way. This allows them to explain the meaning of unremarkable phrases like red ball, but not
idiomatic ones like random variable. To handle random variable, it must be marked in the input as a
single word, and then its meaning will be learned independently of random and variable. In contrast,
our algorithm can explain how the word can inherit meaning from its components while still introducing
idiosyncratic properties.



Chapter 6

Results

This chapter presents the results of various tests of the two learning algorithme presented in chapter 5.
The testz explore both the linguistic and the statistical properties of the lexicons produced by the
algorithms. Given the compositional framework underlying the algorithms, it is hoped that they will
produce lexicons that conform to our linguistic intuitions and at the same time accurately reproduce the
statistical properties of the input.

Several different types of tests are presented. First, the basic concatenative algorithm is applied to the
Brown and Calgary text corpora. Both are standard benchmarking suites for language modeling and
compression, and the statistical performance of our algorithm is evaluated and compared to well-known
compression algorithms and language modeling techniques. Then, to test the linguistic propertiea of the
same algorithm, it is applied to the Brown corpus again (this time with punctuation and segmentation
information removed) and also to a large corpus of (unsegmented) Chinese. The resulting hierarchical
segmentations are compared to the “true” segmentations of the input. The algorithm is also applied to
phoneme sequences derived automatically from continuous speech. This demonstrates the algorithm’'s
ability to learn words from input that is in many ways more complex than that children are exposed to.
Finally, the extended algorithm is applied to unsegmented text paired with artificial representations of
sentence meanings. Performance is measured by the algorithm’s ability to reconstruct meanings of new
sentences given access only to their text.

6.1 Compression and Language Modeling

Although the primary focus of this thesis is language acquisition, it is important to explore the purely
statistical performance of learning algorithms independently of the linguistic representations they pro-
duce. Such tests provide the simplest introduction to the algorithms. Furthermore, language modeling
and compression are important applications in their own right.

102
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vuutheyinlton, county,grand, jury, said, friday an investigation,of atlanta’s recent, primary electi
on,produced,,''noyevidence' that any irregulerities took place.

vuuutheyjury, further said, in term-end presentments,that the  city,exacutive committee, which hnd
uover-all,chargs of the election,,''deserver the praise  and thanks of  ihe, city, of atlanta" for,t
he manner,in ,which, the_ election was condrcted.

uucutheyseptembar—october, term, jury he been charged by, fulton suparicr, court,judgo,durwood, pye
utopinvest isnt o Teports, of porzible “:rregularitiesa" in,the hard-fought, primary, shich, ,was, won, b
yumayor-nominate ivan,allen,.i-..

wuuuonly a relative handfal of such reports zas received"”, the,jury,said,,"considering, tho wid
espread, interast, in the e .action, the number of,votars,and the size,of this city".
vuuuthe, jury said it did, £ind, that_ wany, ot georgia’s registration .and election laws,"are outmod
od oryinadequate and, oft ,n ambigusus".

Figure 6.1: The first five sentences of the Brown corpus as used for statistical tests.

6.1.1 Input

The concatenative algorithm of chapter 5 was run on two bodies of text, the Brown corpus [59} and the
Calgary corpus [13]. The Brown corpus is a diverse million-word (approximately 40,000 sentence) corpus
of English text, divided into 15 sections by document type and further into 500 documents of about 2000
words each. The text ranges from romance novels to political commentary to music reviews, and dates
from 1961. The Calgary corpus is a standard collection of documents used to test compression schemes;
the text portions consists of a fiction and nonfiction book, a bibliography, USENET articles, a console
transcript and some computer programs.

6.1.2 Method

The text of the Brown corpus was broken into sentences' and converted to lower case; the resulting
alphabet is 64 characters. A small sample of the corpus as seen by the algorithm is given in figure 6.1.
The Calgary corpus was broken into units at 1024 character intervals, but not otherwise altered. The
only consequence of the pre-segmentation of the input into smaller units is that words can not cross
these boundaries. The segmentations are introduced for implementational convenience, so that the
forward-backward algorithm does not need analyze the entire input in one step. The Brown corpus
was converted to lower case so that the learning algorithm does not introduce additional parameters to
model capitalized words at the start of sentences; Brown et al. [28] demonstrate that case distinctions
contribute at most 0.04 bits per character to the entropy rate of the Brown corpus.

For compresaion teats, the learning algorithm is run for 15 iterations, each iteration (as per figure 5.2)
a two-step process where first new words are added to the lexicon, and then existing words are deleted.
The version of the algorithm tested here is a slight variation of that presented in chapter 5: it builds
new parameters w by considering both two parameter sequences (w = w) o w3) and three parameter
sequences (w = w; o w; o w3), Because the number of new parameters that can be added to the lexicon
in a single iteration i8 sometimes computationally burdensome, the algorithm is arbitrarily limited to
adding no more than 20,000 words in each iteration.

! Where o sentence is a character sequence ended by a period, exclamation point or question merk. Word-internal
punctuation (aa the period in "Mr.”) is denoted with arnpersands in the Brown corpus).
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Figure 6.2: Learning curves for the algorithm on the Brown corpus. The top graph plots model perfor-
mance. The upper line is the compression rate— the complete description length divided by length of the
input. The lower line discounts the cost of parameters: it is the cross-entropy rate of the model with
the input. The bottom graph plota the number of words in the lexicon.

The coding scheme of figure 4.5 is used to compute the final description length of the input: a special
pass of the stochastic optimization routine is made over the input and parameters in which only the most
likely (Viterbi) representations are considered. This produces the counts and representations needed for
the coding scheme.

6.1.3 Brown Corpus Compression Results

When run on the Brown corpus, our algorithm compresses the input from 48,032,256 bits (each character
stored as an 8-bit byte} to 12,530,415 bits, a ratio of 3.83:1 and a compression rate of 2.09 bits/char.?
Compare to 3.40 bits/char (2.35:1) for the LZ78-based [147, 156] UNIX compress program and 3.02
bits/char (2.65:1) for the LZ77-based [155] UNIX gzip program. Figure 6.2 presents learning curves
for the algorithm acroas the 15 iterations. Each iteration receives two data points, the first depicting

2During the learning process, when probabilities are computed over all representutions, and details of practical coding
schemes are not considered, the estimsated rate is 2.08 bits/char, Actually writing out all hits necessary to reproduce the

input waing the coding scheme in figure 4.5 gives the 2.09 figure.
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performance after new words have been added to the lexicon, and the second point depicting performance
after existing parameters have been deleted (the 0 point is performance with the 64 terminals alone). As
would be hoped, the complete description length monotonically decreasea. Rowever, as is visible from the
lower line on the top graph, the description length of the input does not monotonically decrease: when
words are deleted the description length of the input increases, though this is more than compensated
for by the savings in the lexicon. The number of words in the lexicon increases non-monotonically from
64 to 33,569. During some iterations (iteration 5, for instance) the number of words decreases, though
the model improves. Near the end of the learning process changes are still taking place but they have
almost no effect on modeling performance.

Figure 6.3 presents some selections from the final lexicon. Words are ranked by their probability, and
listed along with the length of their codeword —logpg(w), the length of their description |w|g, their
count cg(w), and their Viterbi representations. Notice that lengthe and counts are non-integral; this
is because these are as computed over all possible representations during the execution of the learning
algorithm, not as produced by the compression coding scheme that uses only Viterbi representations.
The information in figure 6.3 makes plain why the lexicon compresses the input. The 15,000th parameter
(Lupakistan), for example, has a representation that is about 47 bits long. In contrast, the length of
its codeword is about 17 bits. Thus, each of the 10 occurrences of the word saves about 30 bits— 300
bits in all.? Of course, 47 bits are spent representing the word in the lexicon, but the net savings is atill
around 250 bits. More common words like ,the can save hundreds of thousands of bits. Notice that the
algorithm seems to have adopted a uniform policy of placing spaces at the start of words.

6.1.4 Brown Corpus Language Modeling Results

To test language modeling performance, where only the generalization rate over new input matters, a
slightly different methodology is required. Each of the 500 documents in the Brown corpus was split,
with the first 90% used for training and the last 10% reserved for testing. The algorithm was run on
all of the training text and created a lexicon of 30,347 words. This lexicon was then used to calculate
the probability of all of the held-out test data. The cross-entropy rate on the teat text is 2.04 bits/char
(compare with 1.92 bits/char for the training text). Running this experiment again with slightly different
conditions for creating words produces a lexicon of 42,668 words that has slightly poorer compression
performance on the training text (2.19 bits/char vs. 2.12 bita/char) but a cross-entropy rate of 1.97
bit/char on the test text. '

6.1.5 Calgary Ccrpus Compression Results

Run separately on each of the 10 files of the Calgary corpus, the algorithm produces compression
rates that beat other dictionary-based compression algorithms, and are competitive with the context
models produced by the PPM algorithm, especially on longer files. Figure 6.4 presents results over the
corpus, compared with the LZ78-based [147, 156] compress program, the LZ77-based [155] gzip program,
Sequitur [99] and a PPM-based program (42, 96]. The performance figures for other programs are taken
from Nevill-Manning [99].

37This is not exactly true. Were the parameter not in the lexicon, each of its components would have higher counts, and
thus slightly shorter codewords.
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Rank —logpa(w) lw|a cglu) w rep(w)
0 4.644 42101.60 . terminal
1 4. 83%0 35507.32 , terminal
2 5.822 21.293 21381.42 [ thel [ (thell
3 5.656 17.665 20873.68 [ and] [[ an]d]
4 5.793 1899236 = terminal
5 6.433 22,885 12186.05 [ of] [ [o2]1]
& 6.798  18.196 9461.31 [ al [ al
7 6.898 18.566 8826.39 [ in] [ [in]]
8 6.971 21.311 8389.09 [ tol £ (toll
100 10.333 23.135 816.11 [ twol [ (twol]
101 10.342  16.093 811.01 [ it was] [[ it][ was]]
102 10.347 21.721 808.46 [ time] [ [timell
103 10.348 18,786 807.69 ["7] 73
104 10.415 22.439 771.02 [ like] [ [likel]
105 10.416  23.505 17067 [ ( € a
106 10.466 22.218 744.37 [ oux] [ [our]]
107 10.469 23.052 742.74 [ nyl [ [myll
108 10473  16.954 740.73 [ there] [C thel[rel)
500 12.466 16.283 186.06 [ but] (L 1€ butl]
501 12.467 21.486 185.91 [ized] [[izeld]
502 12.469 18.645 185.68 [1lingl 1 lingl]
503 12.469 17.212 185.67 [ like al [[ likel( al}
504 12.470 30.686 185.52 [ period] [[ peri][od]]
505 12.474 25.611 185.00 [ =econd] [ [second]]
506 12.477 22.997 184,60 [ townl [ [town]]
507 12.481  19.682 184.21 [ine] [(inle]
508 12.482 22.068 18402 [ bestl ([ ba]l[st]]
15000 16.684 47.086 10.00 [ pakistan] [[ palk[ist][an]l
15001 16,684 40,181 10.00 [ creativity] [ [creat)[ivityl]
15002 16.684  45.745 10.00 [ misleading] ([ mis]fleald[ingl]
15003 16.684 39.732 10.00 [ criterion] [[ cril[tex][ionl]
15004 16.684 39.017 10.60 [ barbed wire] [[ varb] [ed] [ vire]]
15005 16.684 40.711 10.00 [ drexei] [[ drllex](ell]
15006 16.684 38.713 1000 [ shrewd]l [[ shr] [ew]d]
15007 16.684  40.047 10.00 [ nonotheless] [[ oonel[the] [less]l]
15008 16.684  40.85 10.00 [ configuration] [[ con][tigur] [ation]]
27167 18.006  33.412 400 [[ massachusetts][ imnstituta of technologyl)
33500 19.006 44.044 200 [, dionys] [,[ di][on]ysl
33501 19.006  44.245 200 [[ reflected][ from thel[ ionosphere]]
33502 19.006  40.688 2.00 [[ the belgians][, and][ sppealed ta]]
33503 19.006 43.168 2.00 [ ionosphers] [[ ion]o[sphere]]
33504 19.006 52.399 2,00 [ snd bogus material.] [[ end][ bo] (gus][ materiall.]
33505 19.006 41.010 2.00 [ of sant’] [[ of][ sanlt’]
33506 19.006  42.336 2.0 [ paprikal [[ pal(pril [xall
33507 19.006  57.078 2.00 [[ north][ atlantic][ treaty][ organization]]
33508 19.006 110.659 200 [[ to thel[ person or persons][ found][ by the][com

ptroller general of the united atates][ to be][ ent
titled][ thereto]]

Figure 6.3: Some words from the lexicon with their representations, ranked by probability.
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Source size (bytes) compress gzip Sequitur PPM our scheme
bib 111,261 3.35 2.51 2.48 212 2.3
book1 768,771 3.46 3.25 2.82 2.52 2.56
book2 610,856 3.28 2.70 2.46 2.28 2.27
news 377,109 3.86 l.06 2.85 2.77 2.78
paperl 53,161 3.77 2.79 2.89 2.48 2.73
paper2 82,199 3.52 2.89 2.87 2.46 2.63
proge 39611  3.87 268 283 249 2.75
progl 71,646 303 180 195 187 1.95
progp 49379 311 181 187 182 1.87
trans 93,695 3.27 1.61 1.69 1.758 1.73
mean rate (unweighted by size) 3.45 2.51 2.47 2.26 2.36

Figure 6.4: Compression rates over the Calgary corpus, compared with four other methodas: the UNIX
compress and gzip programs, Nevill-Manning's Sequitur, and a PPM-based program.

6.1.6 Discussion

The algorithm compresses the Brown corpus to 2.09 bits/char. This is the best result we have seen
reported on the Brown corpus, and is substantially better than standard compression algorithms like
gzip achieve. Of course, the algorithm is substantially slower than one-pass compression algorithma.
On the Calgary corpus of shorter texts, the algorithm beats other dictionary algorithms, including
Nevill-Manning’s Sequitur, indicating that there are substantial savings to be had by using stochastic
grammars and optimising the internal structure of the lexicon. For short texts, context models such as
PPM outperform our algorithm, taking advantage of the fact that they do not introduce independence
assumptions at word boundaries. On the other hand, one of the interesting advantages our algorithm
has over Markov-model based compression schemes like PPM is that it represents the input in terms of
linguistic structure (this will be shown in the next section). As a consequence, it is pozsible to perform
“linguistic” operations like search, text-indexing and summatization directly on compressed docurrents.

The algorithm achievea a cross-entropy rate of 1.97 bits/char on a portion of the Brown corpus not
used for training (though a portion fairly similar to the training data). This happens to be the same
rate achieved by Ristad and Thomas [116] using a context model on the same data. The best rate over
the entire Brown corpus, ackieved by Brown et al. [28] with a trigrain Markov model over words, is
1.75 bits/char. This upper bound on the “true” entropy of English (or at least of the Brown corpus)
ia significantly closer to the rates of 1.3 and 1.25 bits/char achieved by human subjects as tested by
Shannon [123] and Cover and King [44].* However, that result came after training on almost 600 miliion
words of text, starting with substantial knowledge of language. The resulting model would have dwarfed
the Brown corpus in size, and hence is difficult to compare with a compression algorithm. Without
performing the test, it is not easy to guess what entropy rate our algorithm would achieve after training
on such a large amount of data, though it is not likely to best Brown et al.’s 1.75 bit figure: although the
lexicons the algorithm produces model “lexical” phenomena fairly well, the independence assumptions
made at parameter boundaries prevent the algorithm from modeling many regularities that have syntactic

4Thoee rates were over yrmach smaller samples of text, and used s smaller alphobet, but it iz widely believed that human
subjects would best the 1.76 bits/cher figure on the Brown corpus.
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Figure 6.5: At top, the first two sentences of the Brown corpus as modified for segmentation tests, first
as the algorithm sees them, and then with the bracketings that define true word boundaries. Below,
seven of the “sentences” (phrases) from the Xinhua corpus of Chinese news articles. At left is the input
the algorithm gets (each character is actually presented as a two-byte code) and at right is the true
segmentation as defined by a segmentation program that had access to a human-made dictionary.

and semantic roots.

6.2 Segmentation

The algorithm’s statistical performance is pleasing, but the principal goal of this thesis is not statistical,
but linguistic. The most important question is how well the lexicons produced by the algorithm agree
with linguistic reality. There are two ways this might be investigated: directly, by looking at the lexicons,
or indirectly, through the derivations the algorithm produces when it analyges text. Here the second
possibility is chosen. One challenge is to find a gold standard to compare against. For want of a better
substitute, the hierarchical structures produced by the algorithm are judged against segmentations of
text as defined by spaces in the case of English input, and the output of another computer program
(that has access to a lexicon) in the case of Chiness output.

6.2.1 Input

Two different corpora are used for segmentation tests. The Brown corpus is used again, segmented
into sentences as before and shifted to lower case, but with spaces and punctnation removed (only
alphanumeric characters are retained). The original locations of spaces are stored for segmentation
testa: spaces (along with sentence boundaries) are used to bracket the sentence into words. Figure 6.5
presents the first two sentences of the corpus as the algorithm sees them. The second corpus is 4 million
characters of Chinese text, a collection of news articles from China’s official Xinhua news agency dating
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from 1990 and 1991.5 The text is divided into phrases at punctuation marks and has an alphabet of 4725
characters. These characters are coded as two-byte sequences. The algorithm is provided the raw byte
streamn (a 256-charzcter alphabet) and is not in any way speciaily modified for the two-byte format. In
practice, the algorithm groupsa bytes into characters before it builds bigger unita. For testing purposes,
the characters have been segmented into words (Chinese words generally range in length from one to
three characters) using a segmentation algorithm that has access to a 50,000 word dictionary but has
no mechanisms for dealing with unknown words and names. As a consequence, the ».gmentation that is
tested against is good, but not ideal. Figure 6.5 presents seven sample “gentences” (phrases) from the
corpus, along with their true segmentations.

6.2.2 Method

The algorithm is appiied to each corpus, producing a lexicon. This lexicon is used to produce represen-
tations of the input. For example, the following is the Viterbi representation of a typical sentence from
the Brown corpus, followed by the true segmentation as defined by where spaces occur:

[forthepurposeotjmaintaining][international] [peace][and][promot ing][the](advancement]
[ofal1][people][theunitedstatesotamerica](j oined][in|[foand][ing][theunitednations]

[for]|[the][purpose][of][maintaining][internat ional][peace]{and|[promoting][the]|[advancement]
[o2](al1][people][the][united]{states][ot][america](joined][in] [founding][the][united][nations]

Since the lexicon is represented as a hierarchy, cach of the words in the algorithm’s representation also
has a Viterbi representation. Expanding this hierarchy down to terminals gives:

((£[ox]] ([t [ee]l([plar]]{po]slell oz {fmalinl(talinll}((in]gl]([[in)[t[ex]|]{n[alt[2 [on]i]]][a2 ]}
[[pel(alcel]][{an]d]([p{ro]i[mo]t]{[ing])[t[be))(fadv(aln[cell]l[[[me]n]t]][[of][a[12]]]([pe] (o] L 6]
([t [e]]({{[un]{it]|[ed)](([st[at]le]s]]][of] alme]x[ic]al})[[[io}{in]][ed]][in][f[ofun]a]|{[in]g]
(e (re]l([{[an][it]][ea]}{{n(a(t[1[enlll]]s]]}

(The brackets around terminals are aot printed.) An casier format to read is given below; horizontal bars
are used in place of bracket pairs. Notice the linguistically natural structure assigned to the sentence.

fof the pur poseof maintain ing inter nation al peace and pro mot ing

the advance ment ofall péople the unit ed stat es ofalérica joinedin

found ing the whnit ed nation s

BSelected and processed by Guo Jin et al. at the National University of Singapore, as madec availnble by the Linguistics
Deta Consortium.
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To judge the algorithm’s performance, these hierarchies are compared to the irue segmentations. Two
measures are used, recall and crossing-brackets. To define these, it is helpful to think of a bracketing of
a senlence ¥ = u) ... u; as a set of pairs B(u) = {(1, j}} where (i, 7} € B(u) if 2 pair of brackets exactly
surrounds the subsequence w;y, ...u;. Thus, the bracketing [f{o[un]d]] has the bracket set

10, 1)(1,2)(2, 3)(3, 4) (4, 5)(2,4){1, 5)(0, 5)}

Then if Br(u) is the true segmentation of u, and By (u) is the bracketing of u produced by the lexicon,
the recall rate is defined

2 ey 1Br(u) N Bi(u)|
Yuer 1Br(w)l

recell =

The recall rate is the proportion of the subsequences bracketed in the true segmentation that are aiso
bracketed at some level of the algorithm’s hierarchical representation of the input. If the recall rate is
high, then it means the algorithm has learned most of the words in the input, and that it properly parses
the input into these words. In the example sentence, there is one recall error (the word founding occurs
in the true segmentation but is not spanned by any parameter at any level of the algorithm’s hierarchy)
for a recall rate of 232! = 96%.

The crossing-brackets rate is the proportion of the subsequences bracketed in the true segmentation that
are crossed by some bracketed subsequence in the algorithm’s hierarchical representation. It is defined
by

Yper [{(3:3) € Br(u) 3 3(k, ) € Bu(u) S k<ini<l<jvi<k<jal<j)
E-EU!BT(")I )

crossing-brackel =

There are no crossing-brackets violations in the example sentence, so the crossing-brackets rate iz 0%.
If the true segmentation had included a bracket pair around unite in united there would be an erTor,
because the algorithm represents united as unit o ed, and the ed crosses unite. If the crossing-brackets
ratc is high, it means that the algorithm is making significant errors: it is parsing the input in a way that
is in conflict with the true segmentaticn. The algorithm can trivially achieve a 0% crossing-brackets rate
by representing cach sentence as a sequence of terminals (imposing no linguistic structure), but then
the recall rate will be low. A combination of high recall rate and low crossing-brackets rate is the ideal
situation.

In the sentence presented above, the algorithm’s bracketing is constructed by recursively expanding
Viterbi representations. Of course, the Viterbi representation is only one of many possible representations
for the input and the parameters. It would be possible (and perhaps desirable) to compute recall
and crossing-brackcts as expected values over all possible representations. However, as the Viterbi
representation tends to dominate the total probability, for these tests it will be the only representation
considered.
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6.2.3 Segmentation Results

The algorithm was run on the Brown corpus, producing a lexicon of 26,026 words (compression rate of
2.33 bits/char); some selections are presented in figure 6.6. Testing this lexicon on the input, the recali
rate is 90.5% and the crossing-brackets rate is 1.7%. Run on the Chinese corpus, the lexicon contains
57,885 words; the recall rate is 96.9% and the crossing-brackets rate is 1.3%. In both cases, almost all of
the recall errors are words that occur only once in the input, or several times but always as part of the
same larger phrase. One of the reasons that recall is higher on the Chinese corpus is that Chinese has
fewer affixes (like English’s -5, -ed and -ing) that tend to increase the size of the hapaz legomena (the
set of words that only occur once).

Several examples of words that cause recall errors can be found in figure 6.6. For example, feasibility
is not bracketed in feasibilityof,diffusing is not bracketed in primarilydiffusing, and broiledis
not bracketed in charcoalbroiled (parameters 26,002, 26,005 and 26,006). Parameter 25,920 is included
to provide an example of a crossing-brackets violation: infiltratedeithneutrophilsa is represented as
infiltra o teduwith o neutrophils. Because infiltrated is not bracketed, the parameter causes two
recall errors (one for each time it is used) and because tedwith crosses the true word infiltrated the
parameter causes two crossing-brackets errors (one for each time it is used).

6.2.4 Discussion

These results are very pleasing. The algorithm discavers words in unsegmented input and very reliably
parses sentences into proper linguistic structure (word recall rates are 90.5% and 96.9.%). It would be
difficult to better these rates with any algorithm that does not include words in the lexicon based on
single occurrences (nothing precludes this possibility). At the same time, only rarely does the algorithm
produce analyses that are in conflict with what is known about the true linguistic structure (word
crossing-bracketa rates are 1.7% and 1.3%).

Of course, the algorithm is producing far more structure than is tested by checking word boundary
conflicts. Therefore the word accuracy rate® (the proportion of bracket pairs produced by the algorithm
that are words as defined by the true bracketing) is generally substantially lower than for algorithms
that produce a single level of structure. Oune of the deficiencies of the segmentation tests is that they
look at only one facet of linguistic structure, namely that defined by space placement in English and
a standard dictionary in Chinese. The algorithm ie given no credit for discovering units smaller than
words (such as found in founding, from the example in section 6.2.2), or bigger than words (such as
unitedsiatesofamerica or nationalfootballleague).

8The accuracy rate is defined by

Y wco |Br{u) n B(u))
Yoo BLl)l

accuracy =
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Rank —logpea(w) |w]e colw) w rep(w)
0 4589 39820.24 = terrninal
1 5.147 16.661 27042.71 [thel (t[hel]
2 5.155 16.721 26886.31 ([and] ([an)d]
3 5.427 2227375 = terminal
4 6.171 19.306 13301.39 [of] [of]
5 6.180 17.854 13216.57 [in] [in]
6 6.593 18.698 9924.97 ([to] [te]
7 7.079 19.547 7088.43 ([that) [(th] [at]]
8 7.322 12,805 5988.71 [is] fis]
100 10.123 24.078 859.41 {two] [t[woll
101 10.160 22.040 837.29 [even] [eiven]]
102 10.161 836.93 g terminal
103 10.222 18.903 802,52 [men] [[meln]
104 10.277 18.196 772.12 [your] [[youlr]
105 10.280 12.830 770.85 [she] [a[hel]
106 10,282 25,761 769.83 [work] [lwoxik]
107 10.292 15.832 764.56 [haoras) {[(he] [vasl]
108 10.295 25.078 762.46 [after] [{aft] [er]]
1000 13.043 23.794 113.57 (drive] [[dr] [ivell
1001 13.043 24.480 113.56 [didnt] (fdid] [nt]]
1002 13.045 27.501 113,39 [performance] [[perform] [ance]]
1003 13.046 15.442 113.33 [afterthe] [[attexr] [thell
1004 13.047 23.68% 113.26 [mission] ([miss] [ion]]
1005 13.047 21.170 113,25 [11] [11)
1006 13,048 27.852 113.17 [project] [lprol [jectl]
1007 13.048 22.046 113.15 [lie] [1(ie])
1008 13.049 16.026 113.06 [outofthel tloutof] [the]]
10000 16.063 27.062 13.99 [transmission] [[trana] [(misaion]]
10001 16.063 27.063 13.99 [corruption] [[corrupt]{ion]]
10002 16.063 29.858 13.99 [forthebenefitaf) ({forthe] fbenofit] [o2]]
10003 16.063 19.948 13.99 [stillhad] ([still] (had]]
10004 16.064 24.526 13.99 (tak] [tak]
10005 16.064 27.996 13.29 [conservation] [{conserv][aticn]]
10006 16.064 27.246 13.99 ([sermon] [(s[er] [mon]]
10007 16.064 22.338 13.99 [ourcountiryl {[our] [country]]
10008 16.064 27.719 13.98¢ [irrelsvant] [[ir] [relevant]]
22202 17.870 32.569 4,00 ([[messachusetts][instituteoftechnologyl]
25920 18.870 52.706 200 ([[infiltra][tedwith][neutrophils]]
26000 18.870 43.904 2.00 ([pleuralbiocodsupply] {[pleural] [blood] [supply]]
26001 18.870 41.349 2,00 [anordinaryhappyfamily] {{anordinary] [happy] [family]]
26002 18.870 45.269 2.00 [teasibilityot] [f(ean] [ibility] [of]]
28003 18.870 46.646 2.00 [[lunar)fbrightness] [distribution]]
26004 18.870 43.008 2.00 [primarilydiffusing] [[primerily]) [dit£] [ueing]]
26005 18.870 47.115 2.00 [sodiumtripolyphosphate] [[sodium][tri][polyphosphate]]
26006 18.870 41.054 2.00 [charcoslbroiled] [[charconl] [broil] [ed]]
26007 18.870 41.171 200 [[over][considerable] [periodsoftima]]
25008 18.870 42.300 2.00 (per1000peryesr] [[per] [1000] [peryear]]

Figure 6.6: Some words from the lexicon with their representations, ranked by probability.
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Comparisons with Other Results

It is difficult to compare these results against others, because few segmentation rates have been published
for English, and most Chinese segmentation algorithms start with dictionaries. Furthermore, direct
comparison is impossible given that our algorithm produces hierarchical segmentations whereas most
other algorithms produce only a single level of structure.

Olivier [102] presents an on-line word-learning algorithm and applies it to 288,000 characters of unseg-
mented (spacelesa), lower-case English text taken from the nomination speeches of major-party presi-
deutial nominees between 1928 (Al Smith) and 1960 (Richard Nixon). The algorithm achieves a peak
word recall rate of about 80%. This result is the most directly comparable to our Brown corpus tests.
The poorer recsll rate reflects the lengthy parameters learned to model regularities above the word level.
Cartwright and Brent [32], testing several word-learning algorithms on a very small (4000 phoneme)
corpus of phonemified English text,” report a peak recall rate of 95.6%, but this drops dramatically if
the algorithm is given more evidence, as the algorithm adds extralinguistic patterns to the lexicon. They
report in Brent and Cartwright [23] substantially lower recall rates (40%-70%) for similar algorithms
tested on slightly different data. In contrast, our algorithm achieves a recall rate of only 65.5% on the
small sample used in their first tests (because it doesn’t learn words that only appear once) but this rate
climbs to 96.5% on a much longer corpus of 34,438 utterances of motherese from the CHILDES database
transcribed in the same mauner. It seems therefore that our algorithm performs substantially better.
Wolff [149, 150] presents a word-learning algorithm and applies it to English and pseudo-English text,
but does not provide results in a manner suitable for comparison; however, experiments performed by
Nevill-Manning [99] indicate that Wolff's algorithms are not competitive. Finally, Nevill-Manning [99]
applies his Sequitur algorithm to English text (with spaces) but reports results in a manner incompa-
rable with those presented here. From the sample hierarchical structures he provides it appears that his
algorithm performs well, but has a lower recall rate and a substantially higher rate of crossing-brackets.

There is a larger body of literature on the segmentation of Chinese (and Japanese and other orthograph-
ically unsegmented languages). Most of these algorithms attack a slightly differently problem, starting
with a lexicon defined by hand-segmentations of text or man-made dictionaries. However, it is interesting
to compare results. Sproat et al. [136] make the point (see also Luo and Roukos [89]) that it is difficult
define “true” segmentations in Chinese: when people are asked to segment sentences into words, their
segmentations very often disagree. This reflects the fact that there are many levels of linguintic structure
in a sentence, and it can be difficult to define what a “word” is. Many segmentation algorithms ([89, 136]
and others) agree with human segmenters at approximately the same rate as human segmenters agree
with one another (recall rates between 60% and 90%). Our algorithm, in contrast, has a recall rate of
96.9%, substantially higher than any other algorithm achieves (or could possibly achieve), because it
produces structure at multiple linguistic levels.

Recall vs. Accuracy

It is reasunable to ask whether our algorithm is in some sense cheating by producing a hierarchical
structure for each sentence. Doea this not make it easy to achieve high recall rates? Is there any

" Tranacriptions of mothers' speech to children taken from the CHILDES databaae [90] and converted to phonernes in o
manner that ensures each word is given s consistent transcription. Spaces between words in the original text are used to
define word boundaries in the phoneme sequences, but arc removed in the evidence presented to the algorithm.
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information content to the structure?

First of all, notice that the algorithm can not produce a bracketing that brackets every subsequence of
a sentence. This is because the algorithm outputs a tree— its own brackets can not cross. For a sentence
of iength n, there can be at most 2n bracket pairs in the representation the algorithm produces. Yet
there are n(n — 1) possible subsequences that could be bracketed in the true segmentation. Therefore
the algorithm makes a significant commitment in producing a representation: it is not in any way the
case that the algorithm can trivially raise the recall rate to 100% by reducing the accuracy rate.

Second, although there are applications where multilevel representations are inappropriate (spell-checking,
for example), there are many applications that benefit substantially from them. The most obvious case is
language acquisition, the central topic of this thesis. Section 6.4 will demonstrate how the compositional
representation aids the acquisition of word meanings. QOther examples include document-indexing and
retrieval. Standard approaches to these problems involve treating documents as a collection of features,
where cach feature is a word that appears in the document. It is well known that words are not the
ideal level of representation for this problem. Often performance is improved by removing affixes (con-
verting cars to car, for instance). At the same time, performance can be improved by combining words
into bigger units (national football league). The compositional framework offers the possibility that all
parameters that occur in the hierarchical representation of a document be treated as features, whether
they be above, at, or below the word level. This adds slightly to the number of featurea considered by
the retrieval and indexing algorithms, but such algorithms tend to be quite robust to the introduction
of superfluous features.

6.3 Learning from Raw Speech

Section 2.2 argues that theories of language acquisition should involve as few unjustified assumptions as
possible, and be tested on input similar to that children receive. So far, however, all the experiments
that have been described treat the learning problem as one of learning from text, not speech. Learning
from speech can be significantly more challenging:

» Speech is continuous, rather than discrete. Discretizing speech involves making chcices, which
introduces either errors or ambiguity.

® In text, characters are given consistent representations. In speech, sound units like phonemes are
pronounced differently cach time they are spoken, in a manner that is dependent on everything
from apeaker sex and age to blood-alcohol content.

e In text, words generally receive consistent spellings. In centrast, sounds in spoken words are
dropped, added and changed in ways that depend on context and speech speed.

To demonstrate that our algorithm can also learn words from speech, it is applied to a large, multi-
speaker collection of continuous utterances. A two-part process is used. First, the speech is tranacribed
(automatically) into a phoneme sequence, and then the algorithm is applied as is to the result.
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6.3.1 Imnput

Two sourcea of speech are used, the Texas Instrument-MIT (TIMIT) database (for training acoustic
models) and the WSJ1 database (for testing). These are both large collections of digitized speech
distributed by the Linguistics Data Consortium.

The TIMIT collection is designed to be used for training speech recognisers. It consists of 6,300 utter-
ances, each one a sentence read aloud by one of 630 speakers of either sex from around the United Statea.
Each speaker reads 10 sentences. Two are fixed “calibration” sentences, five are “phonetically compact”
gentences drawn from a set of 450 sentences designed for phonetic coverage, and three are “phonetically
diverse” sentences drawn from a set of 1,890 designed to add variety to the collection. We do not use the
calibration sentences, leaving 5,040. Of these, 3,696 are used for training and the remainder set aside.
Each utterance in the TIMIT collection has been transcribed into a phoneme sequence by phoneticians,
with phoneme boundaries labeled in the acoustic stream.

The WSJ1 collection is a large database of speech designed for experiments and tests of continuous
speech recognition systems. It consista of 78,000 utterances totaling almost 73 hours of speech. Of this,
we use approximately 68,000 utterances in our tests. Each is a dictated sentence from a Wall Street
Journal article: 200 nun-journalists read 150 sentences each, another 25 read 1200 sentences each, and
20 journalists read 200 sentences and spontaneously composed 200 more.

6.3.2 Method

The HTK HMM toolkit developed by Young and Woodland was used to build a triphone-based phoneme
transcriber. This is essentially an automatic speech recognition device that outputs a sequence of
phonemes rather than the more traditional wotd sequence.® The transcriber does not incorporate a
prior model of phoneme sequences, as a normal speech recognition device would. This is because the
process of learning a stochastic lexicon and grammar is that of learning a model of phoneme sequences;
incorporating a prior model into the phoneme recognition device would defeat the purpose of the language
acquisition experiment.

The transcriber uses a set of 48 phonemes. The parameters in the acoustic models for each triphone are
trained on 3,696 utterances from the TIMIT database, each of which has been pre-labeled with phoneme
boundaries so that supervised learning methods can be used. Tests of the transcriber on the TIMIT test
data put phoneme recall at 55.5% and phoneme accuracy at 68.7%. These numbers were computed by

85cc Rabiner and Huang (108] for an introduction to the methods of sutomatic speech recognition. In s triphone-based
speech recogniser, speech production is modeled as o three-stage process. First o phoneme sequence is generated. In
our model phonemes ure generated independently under a uniforrn distribution. Each phoneme in the resulting sequence
is further specializsed by incorporating information about its two neighbors, forming a triphone (a context-dependent
phoneme). In our model ncighbors are divided into cight classes (vowel, fricative, etc.), so one triphonc is vowelj-vowel.
In the sccond stage of production, each triphone independently generates s scquence of acoustic vectors. In our case this
process is modeled by a three-state HMM chain with a looping (variable-length) middle state, Each state emits an acoustic
vector under a mixture-of-gaussians distribution, where each acoustic-vector is an LPC-coded 40-vector consisting of an
energy and 13 mel-frequency cepstral cocfficients and their first and second time differences. The final (deterministic)
stage of speech production maps the resulting vector sequence to speech. In this model of speech production there are
frec parsmeters in each of the many triphone acoustic models (the HMM3). These arc citimated from speech using the
Baum-Welch algorithm.
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Bricks are an alternative.
/brikstarnoltenitiv/ (phonetician)
/brikzarenoltrinitiv/ (eutomatic)

Fat showed in loose rolls beneath the shirt.

/f=tsoudtinlusroulsbinifisrt/ (phonetician)
/fetiediindadoliswrltspitniifdiart/ (automatic)

It suffers from a lack of unity of purpose and respect for heroic leadership,
/itmfraﬁamala:kivyunitiavprpisenrispektfrﬂrouiklitrilp/ (phonetician)
/its%prsfrna]a:kedkiinlds—iiprp.»\sinrispbaktfrhraelikli:ﬁaep/ (automatic)

His captain was thin and haggurd and his beautiful boots were worn and shabby.
/hlzkaeptinwasemaenﬁagrdinlzbyutuﬂbuts-wrwornin-éaz:bi/ (phonetician)
/hlzkatAuwastamnanhmglrdsnlizpbyutiﬂdblouktz—wrw:rnigEa:bi/ (automatic)

The statute allows for a great deal of latitude agrees Arthur Christy the first special prosecutor

appointed under the nincteen seventy eight law.
/nhistzkérzilanessudgreitilouzlaiatizhithigrizir@1zhistihisarsasldhos-
ntéitrmhlitidenisinaintinsiminieii-lounhi/

In past investigations he notes the focus has been quite narrow.
/hindhausdzinzezigiiizhinslashisaldglahizhlnklitmjrouluhae/

But in each case he suggests it’s up to the counsel he certainly has the powers.
/taﬂ.-hntlx_)it(':tkishizidjssdzsahimztibikzls—lhisezalihsz-ahslrusuha/

The department said wages are rising an average one point two percent in the first year of the
nineteen eighty six labor contracts.

/ hitiharmaennidlitjlxrvraiziglnazvidtmwenhaligdtihraaanh
inssritirhasinaitipitisiklthrshontraundsah /

Figure 6.7: Above, four utterances from the TIMIT corpus used to evaluate the performance of the
automatic transcriber; both the phoneticians’ transcriptions and the automatic transcriber’s output are
shown. Below, four utterances from the WSJ1 corpus with the transcriber’s output. Note the extremely
poor quality of this input to the learning algorithm.

comparing the Viterbi analyses of utterances against phoneticians' transcriptions. It should be clear from
this performance level that the input to our algorithm will be very, very noiey. This is the consequence
of not using a prior model over phonemes. Ordinary speech recognition systems achieve subatantially
better ratea by building a prior model from hand-constructed dictionaries and word-sequence models
trained on text. Some sentences with their “true” transcriptions (a8 produced by phoneticians) and the
output of the automatic transcriber are presented in figure 6.7.

The automatic transcriber was run on each of the 68,000 utterances from the WSJ1 corpus of continuous
speech. Only the maximum-likelihood (Viterbi) phoneme sequence was recorded. The resulting tran-
scriptions are usually unreadable, even by trained experts. Figure 6.7 presents the first four sentences
from the WSJ1 corpus and their automatically generated transcriptions.
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Rank —logpa(w) ju|a calw) w rep(w} Usage
0 4.356 137161.72 d terminal
1 4.376 135301.41 t terminal
2 4.454 128187.62 terminal
80 9.978 14.735 278507 [his] [his) his
81 9.985 15.799  2772.66 [dei] (3[i]] they
82 10.008 13.516  2728.53 [ist] [ist]
1000 13.568 16.861 231.30 [nem] [nem]
1001 13.570 16.327 231.03  [tan] [tén]
1002 13.570 17.384 231.00 [yuti] [[yu]ti]
9160 18.829  25.498 6.03 [ipbrsn] (lin][bi=]n]
9161 18.830 25.870 6.03 [dminist] [dm[inst]] administration
9162 18.831 25.752 6.03 [prisiten] ([prini]ten]] president
9163 18.833  25.559 6.02 [endspr] {[en]ds[pr]]
9164 18.837 44.253 6.00 [gouldminseeks] ({[goul]d[min]s[eks]] Goldman-Sachs
9165 18.837 33.683 6.00 [kmpsutr] [[kmp][8ut]r] computer
9166 18.837 31.309 6.00 ([gavrmin] [ga[vrmin]] government
9167 18.837 31.549 6.00 [oublschuou] [[oubl][sahuou]] double quote
9168 18.837 31.174 6.00 [ministreidin] [(min]i[streisin]] sdministration
9169 18.837 23.988 6.00 ([tjerin] [[tje]x[in]]
9170 18.837 30.343 6.00 [hablhkohwor] [[habl][hehwou]) double quote
9171 18.837 29.909 6.00 [sampdig] (s[amp][dip]] somekhing
9172 18.837 32.469 6.00 [prplousl] {[pe][plon]zl] proposal
9173 18.837 30.133 6.00 [bouskgi] ((bou][ekgli] (Ivan) Boesky
9174 18.838  30.019 6.00 [kgedjil] [[kge][dill] schedule
9175 18.838 33.758 6.00 [gouldmaiins] {{goui]d[maiinz]] Goldman-Sachs
9176 18.838 29.464 6.00 [korpreitid] [Meorpr][eitid]] incorporated
9177 18.838 30.073 5.99 [sitZueifim] [[sit&u][eidim]] situation
9178 18.838 30.214 5.99 [kamr#al] [[(kom]r[Ea1]] commercial
9179 18.838 26.638 5.99 ([sougks [#[ou][gks]]
9180 18.839 31.360 5.99 [iindizt]i) (ifind](ist)]3]
9181 18.839  20.854 5.99 [leesd)ir] [lee[zd)ir]] last year
9182 18.839  28.147 5.99 [hauwesvr] [[bauw][==vr]] however
9183 18.839 28.110 5.99 [sibilati] [[ib][ilati])
9184 18.840 28.088 5.99 [mididln] [[1n1d18]tn] in addition
9185 18.840 24.205 5.99 [rind)i] (r[iin][d]i])
9186 18.840 28,961 5.99 [bigdham)] ([big]d[ham]] become
9187 18.840 3G.456 5.9 [shelesmr] [[she](leera]r]
9188 18.840 28.059 5.99 [mairkgl] ([mai]r{kgt]]
9189 18.841 28.383 5.98 [sinlimin] [8[inli][min]] Solomon (Brothers)
9190 18.841 29,154 5.98 [3davrmen] ([8i]d[avrmen]] the government
3191 18.841 28.658 5.98 [pramlam] [(pra]m[lam]] problem
9192 18.841 27.380 5.98 [d}enral] ([d)][een](zal}] general
9193 18.841 30.144 5.98 [hoblsahwou] [[hablesh][won]] double quote
9194 18.841 27.137 5.98 [stroan) {[stra3]n] strong
9195 18.842 27.166 5.98 ([afinis] [a8]inis]] Japanese
9196 18.843  29.567 5.98 [ipklrti] [i{p&d)(ree]}
9197 18.843 29.517 5.97 [leestsir] [[ees][t&i]r] last ycar
9198 18.843 28.774 5.97 [djeepini [[djeep][in]i] Japanese
9199 18.844 24.464 5.97 [crieel] [[exi]eel]

Figure 6.8: Some words from a lexicon learned from dictated Wall Street Journel articles.
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6.3.3 Results

The standard concatenative algorithm was run on the 68,000 phonemic transcriptions from the WSJ1
corpus, separated at utterance boundaries. The algorithm produces a lexicon of 9,624 words; excerpls
are presented in figure 6.8. Those words which are used consistently in the representation of the input are
labeled with the “underlying words” they account for. For example, parameter 9,164 (/gouldmins=zks/)
is used to represent spoken utterances about the Goldman-Sachs inveatment firm. So is parameter 9,175
(/gouldmaiinz/), a slightly different pronunciation of the same words. Most of the longer parameters
near the end of the lexicon are used in a consistznt manner; the list in figure 6.8 reflects the financial
nature of the speech. Noticr that many common phrases have several parameters devoted to them,
such as Goldman-Sachs, Japanese, last year, administration etc. In some cases the pronunciations seem
quite strange. For example, double quote (used by readers to refer to the “ symbol) is captured by
the parameter /hablzohwou/. This reflects the flaws of the speech recognition nystem- it syatemnatically
mistranscribes the sounds of double quote. This is not a fundamental problem, although it doea make
it difficult for us to interpret the Jexicon. All a language learner needs is for the parameters of their
lexicon to be used consistently, so that meaning can be associated with sounds; internal agreement with
standard phonetic writing systems is irrelevant.

In many cases the compositional hierarchy is clearly performing as desired. For example, parameter
9,182 (however /hauwavr/) is represented as how /hauw/ o ever /avr/. See similarly parameters
9,176 and 9,177 where morphological decomposition takes place. Also, in line with the discussion of
section 4.2.2, the algorithm compiles out word sequences that have idiosyncratic pronunciations. For
example, parameter 9,181 is last year /leesdjir/. Notice that the underlying /sty/ sequence is pronounced
/3dj/. In English fast speech /ty/ is commonly pronounced /t&/ (want you becomes wantcha). And if
a sound is pronounced with vibrating vocal cords, the previous sound often assimilates that property.
Thus, the transformation (for an unknown reason) of /té/ to /dj/ also changes the /s/ to a /3/. /lzzdjir/
is therefore a natural pronunciation of lzst year. The algorithm has captured the fact that the two words
are pronounced differently together than separately by creating this parameter. If the algorithm had a
mechanism for capturing sound changes via perturbations, one would hope that this parameter would
be represented in terms of the two isolated words and a sound change.

At the same time, it is important to realize that the algorithm has not learned enough to analyze any
particular utterance well. Parameters are learned in cases where words or phrases are given consistent
pronunciations multiple times. Since there is significant variation in word pronunciation (or at least
the transcriber’s interpretation of word pronunciation), infrequent words are not usually learned, and
neither are many words with lax vowels, which are transcribed inconsistently.

6.3.4 Discussion

In one sense, the dictionary presented in figure 6.8 is extremely impressive. It represents the first
significant machine acquisition of linguistic knowledge from raw speech, speech that is in many ways
much more complex than that children are exposed to. Furthermore, this learning took place without
access to the extralinguistic environment. This brings into question claims that language acquisition is
only possible because of special properties of mothers’ speech and actions.
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Nevertheless, this is only a very preliminary experiment, and suffers from many deficiencies. The acouatic
models are trained using supervised learning. The compositional mode! has no means of representing
sound changes via perturbations. In fact, the composition operator is quite fundamentally flawed: if
a word that ends with a given phoneme is composed with a word that start:s with the same phoneme,
the result is a doubled phoneme, even though such pairs are pronounced (and transcribed) 2s one. In
section 4.4.4 (see also de Marcken [49]) we presented a more sophisticated composition and perturbation
model that incorporates significantly greater knowledge of phonology and phonetics, and allows for sound
changes. Results of experiments with that model are inconclusive: its computational burdens prevent.
it from being applied to the large WSI1 corpus, and on smaller tests we have performed there is not
enough data for substantial learning to take place.

Another significant flaw in the learning model is the use of Viterbi transcriptions produced by the
phoneme transcriber. The automatic transcriber assumes an uninformative, uniform language model.
From its output our algorithm attempts to learn a more informative language model, but the result is
never used by the transcriher to improve the quality of its output. A conceptually and algorithmically
small change that could substantially improve the results of this experiment would be for the transcriber
to produce a phoneme lattice rather than a single sequence. It is not difficult to modify our algorithm
to take such a lattice as input (see section 5.2).

6.4 Learning Meanings

This section reports some preliminary tests of the concatenative model extended with the meaning
perturbation operator. The testa are completely artificial in the sense that the meanings presented to
the learning algorithm are constructed from the orthography of sentences rather than dervied from real
situations.

6.4.1 Input

Evidence is constructed from the Nina portion of the CHILDES database [90, 138]. This is a sct of
transcriptions of interactions between a mother and a young child (Nina) over a multi-year pericd. Only
the transcriptions of the mother’s speech are used; these amount to approximately 34,000 sentences
of English text. Each sentence is converted to a phonemic form using a very simple text-to-phoneme
converter. This produces phoneme sequences that are not far removed from text; words are pronounced
consistently, for example. These unsegmented phoneme sequences are the sound-side of the input to the
learning algorithm.

Meanings are constructed for each utterance by looking up each word in the original (text) sentence
in a small hand-constructed dictionary. The dictionary defines a set of sememes for each word. The
meaning of a sentence is the union of the meanings of the words in the sentence. The dictionary has
been constructed to test various properties of the compositional framework. Words related by simple
morphological transformations are given common sememe sets (usually a single sememe). For example,
the words decorate, decoraling, decsration and decorations are defined to mean {decor}. Some function
words (a, an, the, of, this, that and a few others) are assigned the empty meaning. Some words with
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this is 2 baok? let’s see if Linda can bring in a glass of something to drink.
/d1s1zebuk/ /letssiiflaindskznbrigineglesovsamfiptudrigk/
{be book} { let us see if linda can bring in glass

something to drink }

what do you see in the book? can you go see if there's a little cranberry juice left to drink?
/watduyusiindsbutk/ /k®nyugousiifderzelittalkrenbrrijuaislefttudrigk/
{vhat do you see in book} { can you go see if there be little red berry

juice leave to drink }

how many rabbits? I don’t think we have anything else.
/haumenirabbits/ /aidountfinkwihavenibinels/
{how many rabbdit} {1 do not think we have anything else}

Figure 6.9: Six utterances as constructed from the Nina portion of the CHILDES database. The left
three are from the start of the corpus and the right three are from a bit later in Nina’s life. Each
utterance is presented in three parts: first, the original text (this is not seen by the algorithm); then the
phonemic form; then the meaning of the utterance, an unordered set of sememes.

very different pronunciations are assigned the same meaning: OK and yes both mean {yes}. Some
words exhibit simple compositional behavior: nightgown and nightgouns mean {night gowm}; unzip
means {urdo zip} and unwrap means {undo wrap}. And finally, some words exhibit non-compositional
behavior: bleckboard means {black board blackboard}; yesterday means {previous day}; cranberry
and cranberries mean {red berry} and strawberry and strawberries mean {seaet berry}. Figure 6.9
contains some sample utterances.

6.4.2 Method

Two experiments were performed, both over the same 10,000 utterance subset of the 34,000 utterance
corpus. The data spanned the entire corpus, but was filtered down to 10,000 utterances to reduce
computation time. In both cases the basic concatenative algorithm was run for 10 iterations to produce
a seed dictionary for the meaning algorithm, which was run for an additional 8 iterations. This staged
process was algo designed to reduce computation time,

In the first experiment, each utterance was paired with its meaning. In the second, three possible
meanings were presented for each utterance, weighted equally with p{z|v) = 1. The meanings were
taken from the utterance and the two surrounding utterances.

After training, the original input was reparsed using the basic concatenative algorithm: the dictionary
contained meanings, but the algorithm parsed the input on the basis of its sound only. ‘The Viterbi
representation of each utterance was used to construct a sememe set, and this was compared against the
“true” meaning of the utterance.
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The description length of a sememe was set at 10 bits.

6.4.3 Results

Trained on single meanings, sememe accuracy was 97.6%, sememe recall waa 21.4%. Trained with the
three ambiguous meanings, sememe accuracy was 96.5%, sememe recall was 70.2%. For very similar
results on a slightly different data set, see de Marcken [50].

Although it would have been valuable to do so0, no experiments were performed in which the algorithm
was tested on different utterances than it waa trained on. However, it was not the caee that the meaning
algorithm created words bigger than those produced by the basic algorithm, so it iz not the case that
the algorithm’s good performance is due to an over-fitting of the data.

6.4.4 Discussion

These results are very encouraging. The algorithm very rarely learns the wrong meaning for words
(sememe accuracies of 97.6% and 96.5%), and learns most word meanings (sememe recalls of 91.4% and
70.2%). Some of the recall errors are cases of words that only once in the training data.

However, the learning algorithm suffers when ambiguous meanings are presented; notice the significantly
lower recall. The reason is that the algorithm starts with “empty” meanings for each word. It therefore
predicts that all utterances have the empty meaning, and when computing the posterior probability
of meanings, meanings which are simple (have few sememes) get assigned a disproportionately high
probability. As a consequence, the algorithia is excessively biased towards simple meanings, and the
confusion that results interferes with learning.



Chapter 7

Conclusions

This thesis has presented a broad computational theory of unsupervised language acquisition, based on
Bayesian inference with a prior defined in terms of model size, and a common representation for grammars
and evidence that is both linguistically appropriate and statisticaily efficient. It has presented learning
algorithms for several specific instantiations of the theory, and tested these algorithms on complex text
and speech signals. The resulting grammars accord very well with known properties of the human
language processing mechanism.

'This thesis represents a significant milestone for theories of language acquisition, because it provides a
concrete demonstration of how learning can take place from evidence that is of comparable complexity
to that children receive. Few other theories have been shown to produce linguistically plausible gram-
mars, and none from data that is unequivueally available to children. The experiments on learning
words directly from continuous speech and on learning to map from unsegmented cnaracter sequences
to representations of meaning are both firats.

At the same time, the thesis has explained conditions that need to be met for any theory of unsupervised
language acquisition to converge to linguistically plausible grammars. These are conditions on the
relationship between linguistic mechanisms and statistical models. Among the most important ia that
grammars must be able to model patterns in the input that arise from causes external to language,
without sacrificing linguistic structure. Most other statistical theories of language acquisition have
failed because they have violated one or more of these conditions.

It is interesting to look at why this work has succeeded whereas many similar cxperiments have not.
The general learning framework is not new: Bayesian inference, stochastic language models, and the
minimum description length principle are all standard tools in the machine learning community, and
have been applied by many to problems of language acquisition. At the same time, many of the specific
types of language models discussed here are also similar or even identical to those others have used.
Indeed, the multigram model that is the foundation for all of the experiments described here is a staple
of the data compression and language modeling communities, and has been applied to the problem of
learning a lexicon many times over the last thirty years.
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Two innovations are key to the superior performance of our algorithms. The first is the compositional
framework. It provides a principled means for the description length of a grammar to be computed, makes
parameters inexpensive, and biases the learner towards linguistically plausible grammars. Perhaps moat
fundamentally, it allows a grammar to capture patterns at many different scales simultaneously, ensuring
that linguistic structure does not lose out in a statistical competition with other sources of regularity in
the input. The second innovation is the type of learning algorithm we use. Urlike most other grammar-
optimisation procedures, our algorithms do not directly manipulate, or even store, a representation of
the grammar. Instead, they manipulate the “content” of the grammar- information that determines how
the grammar behaves, rather than how it looks. From this information an optimal representation can
easily be reconstructed. This strategy avoids many of the local optima problems that have traditionally
plagued classes of grammars in which desired moves require complex changes to representations.

Future Work

The theory of language acquisition that has been presented here is very general, and only a few instances
have been explored in any depth. Many interesting ones remain open for further research.

The concatenative model, based on the multigram distribution, is simple but weak. It has no concept of
type, and therefore can not capture patterns over syntactic and semantic classes. The simplest remedy to
this problem is to associate with each a parameter a class, as described in section 4.4.2, but as discussed
there this is a poor fix. It makes more sense in the compositional framework to model classes with
features that are inherited. Each parameter introduces a unique feature and also inherits the features
of its components; perturbations alter the default feature set of a parameter. In this way, a phrase like
red apples has the features of red and apples and its own feature. A class is any sei of objects with a
common set of features. Many interesting statistical and algorithmic issues arise in such models.

Tests of the meaning perturbation operator have been completely artificial; more interesting experirnents
would apply the algorithms to representations of meaning that arise in real situations. An obvious appli-
cation is machine translation. Given a pair of translated documents, the methods described in this thesis
can be run to produce representations for each document. One of these (ambiguous) representations can
be treated as the meaning of the other, for purposes of learning a translation model. The fact that the
framework explains some forms of non-compositional behavior is very desirable for machine translation.

Perhaps the area that most deserves follow-up work is learning directly from speech signals. The ex-
periments performed in this thesis are promising but rudimentary, and only hint as to what is possible.
With better acoustic models and models of sound change, and proper integration of the language model
with the acoustic model, results will no doubt improve dramatically. It may be that there are near-term
limits on what is learnable from speech alone and an intriguing possibility is to provide the learning
algorithm with textual transcripts as “meanings”. This extra information may improve performance to
the point that practical lexicons for speech recognisers caa be learned from transcribed speech.

A final area that warranta further research is the derivation of on-line learning algorithms based on the
ideas of this thesis. The algorithms described here make multiple passes over the input, which imposes
limits on the amount of evidence that can be used for learning, and makes it difficult for the algorithms
to adapt to non-stationary properties of the data.



Appendix A

Phonemes Used in Transcriptions

Sounds are transcribed in the text using the following set of symbols to represent phonemes, taken from
the International Phonetic Alphabet (IPA). Phonemes and phoneme sequences are delimited by slesh
marks: the word canoe might be transcribed /kanu/.

Symbol Example Symbol Example

b bee h hay

p pea fi ahead
d day 1 bit

t tea i beet

£ B3y u book
k key u boot
j Jjoke 3 bet

é choke [ base

8 sea A but

8 she o bone
2 zone = bat

H asure a bob

f fin 3 bought
v van H roses
0 thin a about
i} then - silence
m mom

n noon

p  sing

1 lay

r ray

w way

y yacht
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