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AND LEARNABILITY 

A principal goal of modern linguistic theory has been to formulate 
constraints on grammars so as to explain how it is that linguistic 
knowledge can be acquired. The aim has been to narrow the class of 
possible grammars so that it is as small as possible, consistent with 
observed variation in natural grammars. But from the very beginning of 
the modern study of generative grammar, there has been another 
"functional" motivation that has been used - though less frequently -
to constrain the class of possible grammars. This is the demand of 
parsability or (in its dual sense), of generability. For example, we might 
require that natural grammars be amenable to "easy" recognition or 
generation, in some sense. This demand has actually been explicit since 
the earliest days of the field, as the following quote from Chomsky's 
Morphophonemics ofModern Hebrew [1951] indicates: 

The criteria of simplicity governing the ordering of statements is as follows: that the 
shorter grammar is the simpler, and that among equally short grammars, the simplest is 
that in whk:h the average length of derivation of sentences is least. 

If we identify "short" grammars as a proxy measure of acquisition 
simplicity, and "number of derivation steps" as a proxy for recognition 
or complexity, then this passage identifies the two crucial 
complexity measures for grammars. 

An important question is how these measures interact. In this paper 
we will consider how one constraint that has been advanced in current 
linguistic theory' can be viewed as a constraint that aids parsing, rather 
than, as is typically (and tacitly) the case, as a constraint that aids 
learning. This is the constraint of constituent command, or C-command. 
We will show that C-command helps produce "short derivations," 
basically by reducing the number of computational steps required for 
co-indexing. In particular we will show that C-command can be quite 
readily embedded in an efficient parser for English based on the design 
of Marcus [1980]. Moreover, the resulting design seems to comport 
with a natural model of on-line sentence processing. Here we make use 
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of well-known formal models drawn from compiler theory, as discussed 
in Aho and Ullman [1972J. 

To begin, let us first review the basic terminology and facts about 
C-command and co-indexing. How do quantifiers bind pronouns? In 
structural terms, an important law of binding states, that quantifiers in 
their structural position must C-command the pronoun that they bind. 
(See Chomsky [1981 j, based on work by Higgenbotham [19801) More 
precisely, the trace of a quantifier, as positioned by a rule of Quantifier 
Raising (QR) or wh-movement must C-command the pronoun that it 
binds. We will say that a C-commands fJ iff the first branching 
category that dominates a dominates fJ; some variation in this core 
idea is probably necessary, but this definition will serve here. Finally, 
for our purposes in this paper it will be enough to assume that it is the 
quantifier at S-structure that must C-command a bound pronoun. Thus 
we ignore in the sequel a level of "logical form". So for example, in (1) 
below the quantifier every C-commands him and the sentence is good; 
in contrast, in (2) every does not C-command he and the sentence is 
out. 

(1) Everyonei thinks Mary will write a book about him j • 

(2) *The woman over there who has met everybodYi in the room 
thinks hei is silly. 

The binding of pronouns by quantifiers is an interesting parsing prob-
lem precisely because it is a case of non-local interaction: the distance 
between quantifier and pronoun is not limited by a certain number of 
terminal elements or even by a certain number of intervening phrase 
structure nodes. This is in distinct contrast to the binding of NP's by 
traces, which must obey Subjacency;here, while the separation between 
NP and trace can be arbitrary in tenus of number of terminal items, the 
number of cyclic nodes that can intervene is strictly bounded. 

Generally speaking, the problem of binding a quantifier to a pronoun 
could be viewed as one of linking two elements in a parse tree. (For 
now we shall be deliberately vague about just how this tree is to be 
represented.) At a certain level of abstraction, the problem of binding is 
just that of co-indexing. Whatever the computational system assumed, 
when a pronoun is reached one must locate the quantifier (if any) tha1 
serves as its antecedent, and assign the pronoun the index of thE 
quantifier. Plainly, there are many possible ways of constructing a 
system so that this task can be carried out. 
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To calculate the actual computational effort involved in binding a 
quantifier to a pronoun, we must advance a specific computational 
model - a parsing model. In this paper we will adopt a variant of the 
Marcus parser [1980]. In brief, this machine is a restricted two-stack 
parser that analyzes sentences left-to-right. One stack holds phrases 
under construction - phrases that are partly built, but whose argument 
structure has not yet been completely analyzed. This stack is called the 
active phrase stack. The other stack, the input buffer, holds a finite 
number of words of the sentence under analysis. These data structures 
are actually push-down stacks because elements enter and exit them in 
last-in, first-out order. For example, consider the analysis of the 
sentence. The woman who likes the man thinks that he is silly. At the 
point where the tokens he is silly are in the input buffer, the previous 
tokens The woman who likes the man thinks that will have been 
already analyzed into three partially built constituents: an S node, to 
which is attached an NP (The woman who likes the man); a VP node, 
to which is attached a Verb thinks, and, the most recently created node, 
another S with that attached as a Complementizer. Note that all three 
of these phrases - S, VP, and S - are not yet completely built. The old 
S lacks its VP, the VP lacks its S complement, and the new S lacks an 
NP and a VP. Crucially, these not-yet-completed nodes are accessible 
to the parser according to the recency of their construction: the newest 
S is on the top of the stack, and is most accessible phrase; the VP is 
the next most recently created phrase, and the S that is the root of 
the sentence is the oldest and hence at the bottom of the stack of 
uncompleted phrases. 

Suppose now that there is no C-command restriction on pronoun-
quantifier binding. Given the model sketched above, let us calculate 
the maximum possible number of computational steps involved in 
recovering the index of an antecedent quantifier. The worst case is 
when we have a very deep NP structure attached to an S, with the S a 
phrase in the stack, and this NP contains a large number of NP's that 
must be searched to find the right antecedent. For example, suppose we 
are given a structure like this: 

The correct quantifier phrase could be any of the NP's in this list. If we 
assume that the time it takes to find the right phrase is proportional to 
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the number of nodes that must be searched, then evidently the number 
of steps this could take is at most proportional to !!, where !! is the 
number of terminal elements (lexical items, roughly) up to the point 
where the pronoun was encountered. This is because there can be a 
tree of width!! at the bottom where the number of internal NP nodes 
is also proportional to !! as is the case in the example above. More 
formally, suppose that the constituent structure is generated by a 
grammar in Chomsky normal form, so that all phrases are generated by 
context-free re-write rules of the form A BC, A a. In a symmetric 
tree of depth j before terminals, the length of the terminal string is 
!! = 2i. The number of nodes in the tree is 2i + 1 = 2n - 1. If half of 
these are NP's then the number of NP's is proportional to !!. 

Now assume that the C-command condition applies. Now any NP's 
below the first are inaccessible to the pronoun, blocked by the C-com-
mand restriction. In other words, if "X" is a not-yet-completed phrase 
in the stack, the C-command restriction limits the search for antece-
dents to immediate maximal projections attached to that "X" - call 
these maximal projections "Y" phrases. But any phrases in turn attached 
to Y's are inaccessible. Now what does the possible search space look 
like? The phrase stack in the Marcus parser can be at worst propor-
tional to the depth of the constituent structure tree being built. Besides 
this factor, we must search at most some constant number of NP's per 
phrase in the stack (assuming now some fixed upper limit on the 
number of NP arguments per S). Therefore, given C-command, the 
number of NP's to be searched will be proportional to j, the depth of 
the parse tree, rather than its width. For a perfectly symmetrical tree, 
this amounts to a reduction in search time from n to log n. This saving 
is nearly achieved in the NP case described above-:-ForarIght-branching 
(linear) tree, there is no gain, since the width of such a tree is propor-
tional to its depth. We conclude that at least in certain cases, the 
C-command restriction allows a substantial reduction in the number of 
computational steps required for co-indexing. This is, then, a case 
where a linguistically-motivated restriction can also be justified on 
computational grounds. 

We should point out that there are apparent exceptions to the 
C-command constraint. One is that if we substitute an expression that, 
intuitively at least, picks out a particular object in the world, then 
co-indexing can violate C-command. For instance, the man and he can 
be successfully co-indexed in the sentence below: 

..  
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(4)  The woman over there who likes the mani In the room 
thinks that he j is silly. 

But just as intuition suggests, these examples do not seem to fall under 
the operator-bound variable paradigm as do quantifiers. Evidently, 
referential indexing does not abide by the same rules as quantifier-
pronoun indexing. This has also been noted by Hornstein [1984], who 
points out that name-like indexing (i) violates C-command; (ii) operates 
across sentences in a discourse (e.g., Pick a numberi Divide it; by 
three); and (iii) does not enter into scope ambiguities. 

Putting these exceptions to one side for now, we will show that the 
C-command restriction is intimately related to a model of on-line 
semantic interpretation, drawn from the theory of programming lan-
guage analysis. Let us consider how the Marcus parser would handle 
the sentence, The woman thinks that he is silly. At the point where he 
is in the input buffer, the phrase stack will hold the following elements: 
the top of the stack will hold an S phrase, with that attached as a 
Complementizer: the next phrase down in the stack will be the VP 
corresponding to the matrix S, with the Verb thinks attached; and the 
bottom phrase on the stack will be the matrix S phrase, with the NP the 
woman attached. Recall that these three phrases are in the stack 
because they are not yet completely built - the matrix S does not yet 
have its VP attached to it; the VP does not yet have its arguments 
attached to it; and the embeded S does not have its NP or VP attached 
to it. Let us call phrases that have not yet been built open phrases. If we 
use a context-free fe-write notation, then we can define this notion 
formally. Given a rule X Y 1 Y2 ••• Yn' then X is open iff some Y j has 
not yet been attached to X. Intuitively, we have not yet "run off" the 
end of the rule that builds a complete "X". In contrast to the open S, 
VP, and matrix S phrases then, any phrases attached to these open 
phrases must be complete. For instance, the NP the woman is a 
complete NP and is attached to the matrix S; the Verb thinks is a 
complete V and is also attached to its proper mother. 

Each phrase in the active node stack is a maximal projection of a 
Head lexical (Xo) item, in thesense of X theory. Semantically, we can 
think of each Xo item as an "operator" that must be supplied with its 
proper arguments - its "operands" - in order to be successfully 
interpreted. So, for example, a Verb might require NP, S, or PP 
arguments; a Noun may require a PP or S, and a Preposition, an NP 
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argument. On this view, there is a strong correspondence between 
syntax and semantics: just where a phrase is syntactically open, it is also 
semantically incomplete, in the sense that its operands have not yet been 
completely supplied. Once a phrase has been completely built, how-
ever, it is semantically interpreted leaving aside the question of just 
what this comes to - and then attached as a single, opaque object to its 
proper dominating phrase. In the example above, once the woman has 
been analyzed as a complete NP, it is interpreted as such and then 
attached to the matrix S. Crucially, this means that the NP now acts as a 
single, opaque unit; we may imagine that the semantic interpretation 
process returns a single "value" (corresponding to the result of inter-
pretation) as the object actually attached to the S. This natural construal 
of on-line semantic interpretation means that if a phrase is in the stack 
(and hence is open) then all of its daughters will be accessible since the 
mother phrase itself has not yet been interpreted and so has not yet 
been rendered opaque. In contrast, any sub-constituents of the daughter 
nodes will not be so accessible, at least not to syntactic analysis. (For 
example, we leave open the possibility that referential indexing operates 
according to an entirely different system, in line with our earlier 
observation.) But now note that this restriction is simply the core 
notion of C-command once again. Any NP underneath an NP that is in 
turn attached to an S will be invisible for operator binding. We see then 
that in addition to its functional import for parsing, C-command has a 
natural interpretation as a reflex of on-lil!e semantic interpretation. 

This approach to semantic interpretation is called "on-line" because 
we do not wait for the whole sentence to be analyzed before we attempt 
to interpret it. Rather, we interpret each completed argument and each 
completed operator-operand structure as it appears. This was the 
method adopted by Marcus [1980] and is in fact the usual method 
employed in the interpretation of programming languages (see, e.g., 
Aho and Ullman [1972]). Plainly, on-line interpretation is advantageous 
for real-time processing: why should one wait when partial semantic 
analysis can proceed? In addition, it lends itself naturally to a simple, 
modular multi-processing scheme. As each operand or operator-operand 
structure is completely built, the result is handed off to a separate 
semantic component, which then returns the result of interpretation. In 
the literature on programming languages two basic approaches are 
advanced as to how this inter-leaved processing might be done. In the 
first, we assemble the entire right-hand side of some expansion X =:> Y I 

.----•. .. 
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... Yn, and then output a semantic representation of the phrase X. This 
is a bottom-up method. The second is the dual of the first: we first 
predict that a phrase of type X will be found, then confirm this against 
the actual input. There are certain advantages to the second approach. 
First, one can determine what the required semantic routine will be 
before all the arguments are assembled a boon for inter-leaved 
processing, if operations can be carried out in parallel. Second, the 
process is goal-directed, so one has expectations as to what the remain-
ing arguments should be. If these expectations are not confirmed, then 
we know exactly where things have gone astray. For example, if it is 
known that a VP of a particular type should expand as a Verb plus two 
NP arguments, then when just one NP is encountered we know what 
the mistake is. 

Interestingly, the Marcus parser incorporates both approaches so 
that it can exploit all of these advantages. It predicts maximal pro-
jections wherever possible, so that inter-leaved semantic processing can 
occur more easily. For example, if it sees the "leading edge" of a Noun 
Phrase, such as the, then it will create an NP phrase, even though this 
phrase has not yet been completely built. This allows one to retrieve, 
concurrently, any necessary semantic routines required to process NP's. 

We see then that one can view C-command as a constraint on 
representations that has several computational implications. First, it 
aids in parsing, in the best case reducing the search for an antecedent 
by an exponential factor. Second, it fits comfortably into a model 
of on-line semantic processing that allows for concurrent semantic 
interpretation. Not surprisingly, linguistic representational constraints 
- "data structures" - impact on computations that use these repre-
sentations - "algorjthms". The investigation of the interaction between 
data structures and algorithms is one way that linguists can use their 
knowledge of formal structures to develop a more computationally-
based linguistic theory. 

THE INTERACTION OF PARSABILITY AND LEARNABILITY 

In the previous sections we've seen how a grammatical constraint like 
C-command can be motivated from the standpoint of parsing efficiency. 
However, from another point of view the argument is a peculiar one. It 
assumes that the language faculty has been designed with parsing 
efficiency in mind - that this functional demand, above all others, was 
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more highly valued in the evolutionary design of language. While this 
outcome is certainly possible, it is by no means obvious. There are 
other "functional" demands on language, notably, the demand that 
natural languages be learnable. Indeed, since the inception of generative 
grammar learnability has been taken as criterial for the naturalness of 
languages: a natural language is precisely one that is learnable given the 
usual environmental conditions available to the child. 

Given this setting, there is no a priori reason why efficient parsability 
should be first among the functional demands shaping language. In fact, 
there is no reason to believe that the demands of learn ability and 
parsability are even <;ompatible. After all, learnability has to do with the 
scattering of possible grammars with respect to evidence available to 
the child - a property of a family of grammars. Parsability, on the 
other hand, is typically a property of a single grammar. This implies 
that a family of grammars could be easily learnable, but not easily 
parsable. Certainly this is so, at least in principle. One can imagine a 
finite family of grammars, G = G I , G2, '" , Gn, where each G i 
generates a non-recursive language L i . Suppose that all the sentences of 
L) begin with a characteristic terminal element, say a, whereas 
sentences of L2 always start with b, L3 sentences with c, and so forth. 
Plainly any target L j (or Gi, the associated grammar) is easily identi-
fiable from very simple data: just one positive example sentence from 
the target language suffices; if the example begins d ... then we know 
that the grammar to guess is G4• But since each L j is not even recursive, 
there is no algorithmic parsing procedure for any language in the 
family, let alone an efficient one. So easy learnability and easy pars-
ability cannot be coextensive, at least in this sense. Examples like these 
place direct appeals to the sole functional demand of parsability on 
treacherous ground. 

It looks then as though the relationship between learnability and 
parsability cannot be settled by some simple a priori argument, without 
examining in detail just what "learnable" and "parsable" languages look 
like, under more realistic assumptions. Suppose, for example, that the 
class of easily learnable languages (or their associated grammars) 
turned out to define just languages that were efficiently pars able with 
respect to· those grammars. In other words, suppose that the class of 
natural languages was smaller than the class of efficiently pars able 
languages, under a reasonable definition of efficient. In this case the 
functional demand of parsability would not contribute much to an 
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account of why natural languages are the way they are. (Of course, 
there still could be a methodological or practical advantage to studying 
efficient parsability - it could be the right way to build algorithms, or 
the right way to think about certain problems). Conversely, if parsability 
imposed constraints above and beyond those demanded by linguistic 
theory, then we could use parsability as part of our explanatory 
repertoire given that natural languages (or grammars) were observed 
to adhere to those extra demands. Of course, it might turn out that 
learnability and parsability are simply incompatible: in some respects, 
natural languages would be easily learnable, but some of these properties 
would cause difficulties for parsing, and vice-versa. This outcome would 
not be unusual for a biological system subject to multiple functional 
demands; indeed, such an outcome is more often than not the usual one. 
Finally, it could be that just those constraints that make languages 
learnable make languages parsable and vice versa. In some ways this 
would be the most striking - hence the most interesting - outcome. 

As we have said, there is no way to settle this matter without 
studying specific theories of language learning and parsing. So, in order 
to be concrete, in the rest of this paper we will pair a detailed theory 
for the learning of a transformational grammar with a detailed theory 
for the parsing of a transformational grammar. This is not to say that 
we regard these models as the last word on learning and parsing: rather, 
that comparisons demand worked out models, and these two are among 
the most detailed that have been advanced. The parsing theory we have 
in mind is roughly the one we've deployed earlier: a variant of the 
Marcus parser. The learning theory is the Degree 2 theory of Wexler 
and Culicover [1980J. The Marcus parser defines a class of languages 
(and associated grammars) that are easily patsable; Degree 2 theory, a 
class of languages (and associated grammars) that is easily learnable. 
What is the relationship between these two classes? 

To begin our comparison, we must sketch just what class of "easily 
learnable" languages Degree 2 theory defines. The aim of the theory is 
to define constraints such that a family of transformational grammars 
will be learnable from "small" data; the learning procedure can get 
positive (grammatical) example sentences of depth of embedding of two 
or less (sentences up to two embedded sentences, but no more). The 
key property of the transformational family that establishes learnability 
is dubbed Bounded Degree of Error (BDE). Roughly and intuitively, 
BDE' is a property related to the "separability" of languages and 
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grammars given simple data: if there is a way for the learner to tell that 
a currently hypothesized language (and grammar) is incorrect, then 
there must be some simple sentence that reveals this all languages in 
the family must be separable by simple sentences. 

To move from this intuitive account will require a bit more detail 
about the envisioned learning procedure. The way that the learner can 
tell that a currently hypothesized grammar is wrong given some sample 
sentence is by trying to see whether the current grammar can map from 
a deep structure for the sentence to the observed sample sentence. That 
is, we imagine the learner being fed with a series of base (deep 
structure)-surface sentence (denoted "b, s") pairs. (See Wexler 1982 for 
details and justification of this approach, as well as a weakening of the 
requirement that base structures be available; see Berwick (1980, 
1982) for an independently developed computational version.) If the 
learner's current transformational component, T 1, can map from b to s, 
then all is well; if not, and (b) s* does not equal s, then aT J 
detectable error has been uncovered. 

With this background under our belts, we can provide a precise 
definition of the BDE property: 

A family of transformation ally-generated languages I possesses the BDE property iff for 
any base grammar S (for languages in L) there exists a finite integer U, such that for 
any possible adult transformational component A and learner component C, if A and C 
disagree on any phrase-marker b generated by S, then they disagree on some phrase-
marker b generated by S, with b ofdegree at most U. 

Wexler and Culicover 1980 page 108. 

If we substitute "2" for U in the theorem, we get the Degree 2 
constraint. Note that the BDE property is defined not just with respect 
to possible adult target languages, but also with respect to the dis-
tribution of the learner's possible guesses. So for example, even if there 
were just ten target transformational languages (grammars), the BDE 
property must hold with respect to those languages and any intervening 
learner languages (grammars). It is this joint relationship between 
targets and guesses that subsumes Chomsky's picturesque "scattering of 
grammars with respect to data" phrase - the learner's guesses are part 
of the scattering process. 

BDE, then, is our criterial property for "easy" learnability. Just those 
families of transformational grammars that possess the BDE property 
(with respect to a learner's guesses) are learnable. 
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What about pars ability? What criterial property could we embrace as 
representative of "easy" parsability? As a working hypothesis, we will 
adopt the parsing model described in the previous section. That is, we 
will assume a language is easily parsable iff it can be successfully 
analyzed using the machine we have described. But what kind of parser 
does this model define? As it turns out, there is a ready-made definition 
of the parsing model we have suggested, one where parsing decisions 
are made by looking at a local stack and buffer context: such machines 
are called Bounded context parsers (BCP). Naturally enough, a language 
(grammar) that is parsable using a BCP machine is called Bep parsable. 
While our aim here is not to give a formal account of BCP machines 
and language theory (see Szymanski and Williams 1976), we should 
point out that our parser is indeed BCP in at least one crucial respect: 
local parsing decisions are made by examining strictly literal contexts 
around the current locus of parsing contexts.! For example, suppose the 
machine is parsing the sentence, John was kissed by Mary. At the point 
in the parse where the machine is looking at the token immediately 
after kissed, it will have already assembled John into a Subject NP and 
attached it to the S, as well as created a VP and attached was kissed to 
it as the Main Verb. The input buffer will contain the tokens by Mary 
and the final punctuation mark. Importantly, its next move will be to 
drop a trace into the input buffer signaling its recognition that kissed 
demands an Object and none is present in the input. That decision will 
be made by consulting the local environment of the parse - the Sand 
VP nodes, with the attached Verb, and the three input buffer items. 
Further, these items are recorded exactly as written by the linguist as 
the nodes S, VP, V, and so forth. No additional "coding" is carried out. 
It is this literal use of the parse tree context that distinguishes bounded 
context parsing from other, more general methods of this sor1.2 

The BCP model was central to our explanation of c-command. 
Remember that our account hinged on the notion of constituent 
completeness: the "interior" of any phrase attached to a node on the 
active node stack was assumed to be opaque to further access. Not only 
does this define the C-command predicate in a natural way, it effec-
tively limits the amount of left-hand parsing context that is available. If 
the parser's rule vocabulary can refer to just the unalloyed constituent 
names provided by the X theory - V, V, VP, N, NP, and so forth 
then this is in fact a necessary requirement for such a parser to work. 
Otherwise, the parser might have to refer to an unbounded string of 
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left-hand context symbols in order to make its correct move (since the 
left-hand portion of the string already seen at some point can be 
arbitrary in size). The BCP constraint rules out this possibility by fiat. 

The BCP class also makes sense as a proxy for "efficiently parsable" 
because all its members are analyzable in time linear in the length of 
their input sentences, at least if the associated grammars are context-
free. .If the grammars are not context-free, then BCP members are 
pars able in at worst quadratic (n squared) time. (See Szymanski and 
Williams 1976 for proofs of some of these results.) The reliance on a 
literal encoding of local context, via the same non-terminal symbols 
that the grammar uses, also makes sense. (See Berwick and Weinberg 
1984 for an argument that uses this property to show that "locality 
conditions" like Subjacency must exist.) Finally, deterministic operation 
is a reasonable (though strong) assumption. So for now, let us take the 
BCP property as our representative of easy parsability. 

We can now at least formalize our problem of comparing learnability 
and parsability. The question now becomes: What is the relationship 
between the BDE property and the BCP property? One approach 
would be to show that the BCP property implies the BDE property, in 
the sense that if one has a collection of transformational languages 
defined according to Wexler and Culicover's model, and if each of 
those languages (along with possible guesses) meets the BCP property, 
then that collection will also meet the BDE condition. That is, the 
family will automatically fulfill all the constraints required to meet the 
BDE, and hence be learnable. 

Such a result would be intriguing from a number of standpoints. For 
one thing, it says that once we have efficient parsability, then learn-
ability follows. For another, since the BCP property has been studied 
from a formal point of view, it might be easier to determine whether a 
class was learnable by first looking at its parsability properties. Finally, 
it gives a clue to what class of languages is learnable via Degree 2 
theory (though it gives only sufficient conditions). For example, since 
anbnc" is BCP (in an extended sense), it should be in the class of Degree 
2 learnable languages - which it is. (See Wexler 1982) More carefully, 
we would want to show that the class of languages which have the BCP 
property is Degree-2 learnable. The actual demonstration of this result 
would seem to require some care, and is a topic for future research. 
However, we can sketch the logic of how such a demonstration would 
go. This will indicate some of the problems involved in studying the 
parsing-Iearnability connection. 
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Intuitively, the BCP and BDE properties are related in the following 
way. The BCP property implies that parsing decision effects must be 
"localized" in the sense that any potential errors (parsing mistakes) 
are detectable within a small, finite radius of each parsing decision. 
Analogously, the BDE property amounts to the constraint that any 
transformational effect be localized. The two properties differ in that 
they refer to derivations in opposite directions: BCP refers to a locality 
effect during parsing, going in the direction from surface sentences to 
deep structures, and BDE refers to the derivation of a surface sentence 
from its deep structure. So one must be careful in relating the two. One 
way to demonstrate that BCP implies BDE would be to show that if 
BDE fails to hold, then BCP fails to hold. Taking the contrapositive, 
this will show that BCP implies BDE. 

Suppose then that BDE fails to hold for a Wexler and Culicover 
family of transformational languages (and their associated grammars). 
Our Job then becomes to show these languages are not BCP. If a family 
of languages doesn't meet the BDE condition, then there must exist a 
detectable error but no detectable error on small data. That is, there 
must be a target language LA (the adult language) such that for some 
sentence s in LA, with associated base structure b, and some learner 
guessed transformational component C, A(b) = sand C(b) s' not 
equal to s, but no b' of bounded degree such that A(b') does not equal 
C(b'). What we want to show is that this implies that the languages in 
question are not BCP. 

The way that we might do this is as follows. We will establish that 
any detectable error (in the Wexler and Culicover sense, a "learning" 
error) is also a detectable parsing error, and vice versa. The failure of 
the BDE property will then show that there must be an unbounded 
(detectable) parsing error for some pair of languages drawn from the 
family of languages in question - that is, some sentence that will be 
parsed (incorrectly) as belonging to the grammar for Lc rather than LA, 
given only bounded context parsability. Thus BCP will fail to hold. 

Now, to establish this last point will take some formalization of just 
what is meant by a parsing error. We will sketch only part of how the 
argument would go. To prove that any detectable (W and C) error is 
also a detectable parsing error, suppose we have such a detectable 
learning error. By definition, this means that we have some surface 
sentence s with associated base structure b such. that some (adult) 
sequence of transformations T I, T2, ••• , Tn applied to b yields, s, I.e., 
TnTn _ 1 ••• T1(b) ... s. In shorthand, TA(b) = s. By definition of 
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detectable error, we have that there is some sequence of (child) 
transformations applied to b that yields a different surface sentence, 
s'. Now we apply some additional assumptions of the Wexler and 
Culicover system. In their model, all transformations apply obligatorily 
and detemlinistically. That is, at any step in a transformational deriva-
tion, at most one transformation can apply. (As Wexler and Culicover 
note, this implies that there will be at most one surface sentence for 
every distinct deep structure.) Now, transformations are invertible, but 
perhaps not uniquely so. Let us denote an inverse transformational 
sequence (in the adult) by T-1A" Since transformational inverses are not 
unique, T-1(s) couid map to many base structures, but it is at least true 
that for some T-1, T-1A(S) = b. 

Now we define a detectable parsing error. Again we are given a 
surface string, base pair, (b, s). We will say that there is a detectable 
parsing error just in case the leamer's parser component (the inverse 
transformational component) applied to the surface string does not 
yield the right base structure, Le., T- Jc(s) does not equal b. There are 
two ways that this can occur. Either (1) there is no inverse possible at 
all, because T- 1c(s) is blocked at some point, or else (2) T- Jc(s) does 
not equal b, for all possible nonblocked invertible sequences. 

Now suppose that what we want to show, that any detectable 
learning error implies a detectable parsing error, is false. This means we 
have for all (b, s) pairs that TA(b) S '" Te(b). But since there is no 
detectable parsing error for s, it is not the case that all T-Ic(S) '" b. But 
this means that for some T-l, T-1c(s) = b. Taking inverses, we have 
that T e(b) = s for some learning component transformational sequence. 
But this contradicts our original assumption, that there was a detectable 
learning error. 

Establishing the rest of what we want to show seems more difficult at 
present, and we leave it for future work. In any case, what we want to 
illustrate here is not the final result but the method of study. We can 
assess the relative strengths of parsability and learnability in this case, 
but only because we have advanced specific models for each. These 
characterizations are still quite specific, being grounded in particular 
linguistic theories. The results are therefore quite unlike the formal 
learning theories of Gold (1967), or more recently, of Osherson, Stob, 
and Weinstein (1982) nor are they like the general results obtained 
from the analysis of the parsability of formal languages. Rather, they 
hold of a narrower class of languages that are already known to be 
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linguistically relevant. In this respect, what the results lose in terms of 
invariance over changes in linguistic theories, they gain in terms of 
specificity. This lack of invariance does, however, leave the door open 
for future work. It remains to be seen how to compare the learnability 
of the grammars posited in more recent theories of transformational 
grammar namely, the "parameter setting" model advanced as the 
Government-Binding theory - and the parsability of the grammars of 
that theory. What is clear is that an analysis like the one we have 
just made awaits a crisp, formal characterization of learnability and 
parsability that is particular to the Government-Binding theory itself. 

NOTES 

I The BCP model must be extended to handle non context-free languages. This is done  
in Berwick 1982.  
2 In fact. it was by weakening the literal coding demanded by BCP methods that Knuth  
1965 was led to a more general method of Ieft-to-right deterministic parsing. LR(k)  
parsing.  
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