
ROBERT C. BERWICK AND KENNETH WEXLER

PARSING EFFICIENCY, BINDING, C-COMMAND
AND LEARNABILITY

A principal goal of modern linguistic theory has been to formulate
constraints on grammars so as to explain how it is that linguistic
knowledge can be acquired. The aim has been to narrow the class of
possible grammars so that it is as small as possible, consistent with
observed variation in natural grammars. But from the very beginning of
the modern study of generative grammar, there has been another
"functional" motivation that has been used - though less frequently -
to constrain the class of possible grammars. This is the demand of
parsability or (in its dual sense), of generability. For example, we might
require that natural grammars be amenable to "easy" recognition or
generation, in some sense. This demand has actually been explicit since
the earliest days of the field, as the following quote from Chomsky's
Morphophonemics ofModern Hebrew [1951] indicates:

The criteria of simplicity governing the ordering of statements is as follows: that the
shorter grammar is the simpler, and that among equally short grammars, the simplest is
that in whk:h the average length of derivation of sentences is least.

If we identify "short" grammars as a proxy measure of acquisition
simplicity, and "number of derivation steps" as a proxy for recognition
or complexity, then this passage identifies the two crucial
complexity measures for grammars.

An important question is how these measures interact. In this paper
we will consider how one constraint that has been advanced in current
linguistic theory' can be viewed as a constraint that aids parsing, rather
than, as is typically (and tacitly) the case, as a constraint that aids
learning. This is the constraint of constituent command, or C-command.
We will show that C-command helps produce "short derivations,"
basically by reducing the number of computational steps required for
co-indexing. In particular we will show that C-command can be quite
readily embedded in an efficient parser for English based on the design
of Marcus [1980]. Moreover, the resulting design seems to comport
with a natural model of on-line sentence processing. Here we make use

45

B. Lust (ed.), Studies in the Acquisition ofAnaphora, Vol. II, 45-60.
© 1987 by D. Reidel Company.

46 R. C. BERWICK AND K. WEXLER

of well-known formal models drawn from compiler theory, as discussed
in Aho and Ullman [1972J.

To begin, let us first review the basic terminology and facts about
C-command and co-indexing. How do quantifiers bind pronouns? In
structural terms, an important law of binding states, that quantifiers in
their structural position must C-command the pronoun that they bind.
(See Chomsky [1981 j, based on work by Higgenbotham [19801) More
precisely, the trace of a quantifier, as positioned by a rule of Quantifier
Raising (QR) or wh-movement must C-command the pronoun that it
binds. We will say that a C-commands fJ iff the first branching
category that dominates a dominates fJ; some variation in this core
idea is probably necessary, but this definition will serve here. Finally,
for our purposes in this paper it will be enough to assume that it is the
quantifier at S-structure that must C-command a bound pronoun. Thus
we ignore in the sequel a level of "logical form". So for example, in (1)
below the quantifier every C-commands him and the sentence is good;
in contrast, in (2) every does not C-command he and the sentence is
out.

(1) Everyonei thinks Mary will write a book about him j •

(2) *The woman over there who has met everybodYi in the room
thinks hei is silly.

The binding of pronouns by quantifiers is an interesting parsing prob-
lem precisely because it is a case of non-local interaction: the distance
between quantifier and pronoun is not limited by a certain number of
terminal elements or even by a certain number of intervening phrase
structure nodes. This is in distinct contrast to the binding of NP's by
traces, which must obey Subjacency;here, while the separation between
NP and trace can be arbitrary in tenus of number of terminal items, the
number of cyclic nodes that can intervene is strictly bounded.

Generally speaking, the problem of binding a quantifier to a pronoun
could be viewed as one of linking two elements in a parse tree. (For
now we shall be deliberately vague about just how this tree is to be
represented.) At a certain level of abstraction, the problem of binding is
just that of co-indexing. Whatever the computational system assumed,
when a pronoun is reached one must locate the quantifier (if any) tha1
serves as its antecedent, and assign the pronoun the index of thE
quantifier. Plainly, there are many possible ways of constructing a
system so that this task can be carried out.

47 PARSING EFFICIENCY

To calculate the actual computational effort involved in binding a
quantifier to a pronoun, we must advance a specific computational
model - a parsing model. In this paper we will adopt a variant of the
Marcus parser [1980]. In brief, this machine is a restricted two-stack
parser that analyzes sentences left-to-right. One stack holds phrases
under construction - phrases that are partly built, but whose argument
structure has not yet been completely analyzed. This stack is called the
active phrase stack. The other stack, the input buffer, holds a finite
number of words of the sentence under analysis. These data structures
are actually push-down stacks because elements enter and exit them in
last-in, first-out order. For example, consider the analysis of the
sentence. The woman who likes the man thinks that he is silly. At the
point where the tokens he is silly are in the input buffer, the previous
tokens The woman who likes the man thinks that will have been
already analyzed into three partially built constituents: an S node, to
which is attached an NP (The woman who likes the man); a VP node,
to which is attached a Verb thinks, and, the most recently created node,
another S with that attached as a Complementizer. Note that all three
of these phrases - S, VP, and S - are not yet completely built. The old
S lacks its VP, the VP lacks its S complement, and the new S lacks an
NP and a VP. Crucially, these not-yet-completed nodes are accessible
to the parser according to the recency of their construction: the newest
S is on the top of the stack, and is most accessible phrase; the VP is
the next most recently created phrase, and the S that is the root of
the sentence is the oldest and hence at the bottom of the stack of
uncompleted phrases.

Suppose now that there is no C-command restriction on pronoun-
quantifier binding. Given the model sketched above, let us calculate
the maximum possible number of computational steps involved in
recovering the index of an antecedent quantifier. The worst case is
when we have a very deep NP structure attached to an S, with the S a
phrase in the stack, and this NP contains a large number of NP's that
must be searched to find the right antecedent. For example, suppose we
are given a structure like this:

The correct quantifier phrase could be any of the NP's in this list. If we
assume that the time it takes to find the right phrase is proportional to

48 R. C. BERWICK AND K. WEXLER

the number of nodes that must be searched, then evidently the number
of steps this could take is at most proportional to !!, where !! is the
number of terminal elements (lexical items, roughly) up to the point
where the pronoun was encountered. This is because there can be a
tree of width!! at the bottom where the number of internal NP nodes
is also proportional to !! as is the case in the example above. More
formally, suppose that the constituent structure is generated by a
grammar in Chomsky normal form, so that all phrases are generated by
context-free re-write rules of the form A BC, A a. In a symmetric
tree of depth j before terminals, the length of the terminal string is
!! = 2i. The number of nodes in the tree is 2i + 1 = 2n - 1. If half of
these are NP's then the number of NP's is proportional to !!.

Now assume that the C-command condition applies. Now any NP's
below the first are inaccessible to the pronoun, blocked by the C-com-
mand restriction. In other words, if "X" is a not-yet-completed phrase
in the stack, the C-command restriction limits the search for antece-
dents to immediate maximal projections attached to that "X" - call
these maximal projections "Y" phrases. But any phrases in turn attached
to Y's are inaccessible. Now what does the possible search space look
like? The phrase stack in the Marcus parser can be at worst propor-
tional to the depth of the constituent structure tree being built. Besides
this factor, we must search at most some constant number of NP's per
phrase in the stack (assuming now some fixed upper limit on the
number of NP arguments per S). Therefore, given C-command, the
number of NP's to be searched will be proportional to j, the depth of
the parse tree, rather than its width. For a perfectly symmetrical tree,
this amounts to a reduction in search time from n to log n. This saving
is nearly achieved in the NP case described above-:-ForarIght-branching
(linear) tree, there is no gain, since the width of such a tree is propor-
tional to its depth. We conclude that at least in certain cases, the
C-command restriction allows a substantial reduction in the number of
computational steps required for co-indexing. This is, then, a case
where a linguistically-motivated restriction can also be justified on
computational grounds.

We should point out that there are apparent exceptions to the
C-command constraint. One is that if we substitute an expression that,
intuitively at least, picks out a particular object in the world, then
co-indexing can violate C-command. For instance, the man and he can
be successfully co-indexed in the sentence below:

..

49 PARSING EFFICIENCY

(4) The woman over there who likes the mani In the room
thinks that he j is silly.

But just as intuition suggests, these examples do not seem to fall under
the operator-bound variable paradigm as do quantifiers. Evidently,
referential indexing does not abide by the same rules as quantifier-
pronoun indexing. This has also been noted by Hornstein [1984], who
points out that name-like indexing (i) violates C-command; (ii) operates
across sentences in a discourse (e.g., Pick a numberi Divide it; by
three); and (iii) does not enter into scope ambiguities.

Putting these exceptions to one side for now, we will show that the
C-command restriction is intimately related to a model of on-line
semantic interpretation, drawn from the theory of programming lan-
guage analysis. Let us consider how the Marcus parser would handle
the sentence, The woman thinks that he is silly. At the point where he
is in the input buffer, the phrase stack will hold the following elements:
the top of the stack will hold an S phrase, with that attached as a
Complementizer: the next phrase down in the stack will be the VP
corresponding to the matrix S, with the Verb thinks attached; and the
bottom phrase on the stack will be the matrix S phrase, with the NP the
woman attached. Recall that these three phrases are in the stack
because they are not yet completely built - the matrix S does not yet
have its VP attached to it; the VP does not yet have its arguments
attached to it; and the embeded S does not have its NP or VP attached
to it. Let us call phrases that have not yet been built open phrases. If we
use a context-free fe-write notation, then we can define this notion
formally. Given a rule X Y 1 Y2 ••• Yn' then X is open iff some Y j has
not yet been attached to X. Intuitively, we have not yet "run off" the
end of the rule that builds a complete "X". In contrast to the open S,
VP, and matrix S phrases then, any phrases attached to these open
phrases must be complete. For instance, the NP the woman is a
complete NP and is attached to the matrix S; the Verb thinks is a
complete V and is also attached to its proper mother.

Each phrase in the active node stack is a maximal projection of a
Head lexical (Xo) item, in thesense of X theory. Semantically, we can
think of each Xo item as an "operator" that must be supplied with its
proper arguments - its "operands" - in order to be successfully
interpreted. So, for example, a Verb might require NP, S, or PP
arguments; a Noun may require a PP or S, and a Preposition, an NP

50 R. C. BERWICK AND K. WEXLER

argument. On this view, there is a strong correspondence between
syntax and semantics: just where a phrase is syntactically open, it is also
semantically incomplete, in the sense that its operands have not yet been
completely supplied. Once a phrase has been completely built, how-
ever, it is semantically interpreted leaving aside the question of just
what this comes to - and then attached as a single, opaque object to its
proper dominating phrase. In the example above, once the woman has
been analyzed as a complete NP, it is interpreted as such and then
attached to the matrix S. Crucially, this means that the NP now acts as a
single, opaque unit; we may imagine that the semantic interpretation
process returns a single "value" (corresponding to the result of inter-
pretation) as the object actually attached to the S. This natural construal
of on-line semantic interpretation means that if a phrase is in the stack
(and hence is open) then all of its daughters will be accessible since the
mother phrase itself has not yet been interpreted and so has not yet
been rendered opaque. In contrast, any sub-constituents of the daughter
nodes will not be so accessible, at least not to syntactic analysis. (For
example, we leave open the possibility that referential indexing operates
according to an entirely different system, in line with our earlier
observation.) But now note that this restriction is simply the core
notion of C-command once again. Any NP underneath an NP that is in
turn attached to an S will be invisible for operator binding. We see then
that in addition to its functional import for parsing, C-command has a
natural interpretation as a reflex of on-lil!e semantic interpretation.

This approach to semantic interpretation is called "on-line" because
we do not wait for the whole sentence to be analyzed before we attempt
to interpret it. Rather, we interpret each completed argument and each
completed operator-operand structure as it appears. This was the
method adopted by Marcus [1980] and is in fact the usual method
employed in the interpretation of programming languages (see, e.g.,
Aho and Ullman [1972]). Plainly, on-line interpretation is advantageous
for real-time processing: why should one wait when partial semantic
analysis can proceed? In addition, it lends itself naturally to a simple,
modular multi-processing scheme. As each operand or operator-operand
structure is completely built, the result is handed off to a separate
semantic component, which then returns the result of interpretation. In
the literature on programming languages two basic approaches are
advanced as to how this inter-leaved processing might be done. In the
first, we assemble the entire right-hand side of some expansion X =:> Y I

.----•. ..

51 PARSING EFFICIENCY

... Yn, and then output a semantic representation of the phrase X. This
is a bottom-up method. The second is the dual of the first: we first
predict that a phrase of type X will be found, then confirm this against
the actual input. There are certain advantages to the second approach.
First, one can determine what the required semantic routine will be
before all the arguments are assembled a boon for inter-leaved
processing, if operations can be carried out in parallel. Second, the
process is goal-directed, so one has expectations as to what the remain-
ing arguments should be. If these expectations are not confirmed, then
we know exactly where things have gone astray. For example, if it is
known that a VP of a particular type should expand as a Verb plus two
NP arguments, then when just one NP is encountered we know what
the mistake is.

Interestingly, the Marcus parser incorporates both approaches so
that it can exploit all of these advantages. It predicts maximal pro-
jections wherever possible, so that inter-leaved semantic processing can
occur more easily. For example, if it sees the "leading edge" of a Noun
Phrase, such as the, then it will create an NP phrase, even though this
phrase has not yet been completely built. This allows one to retrieve,
concurrently, any necessary semantic routines required to process NP's.

We see then that one can view C-command as a constraint on
representations that has several computational implications. First, it
aids in parsing, in the best case reducing the search for an antecedent
by an exponential factor. Second, it fits comfortably into a model
of on-line semantic processing that allows for concurrent semantic
interpretation. Not surprisingly, linguistic representational constraints
- "data structures" - impact on computations that use these repre-
sentations - "algorjthms". The investigation of the interaction between
data structures and algorithms is one way that linguists can use their
knowledge of formal structures to develop a more computationally-
based linguistic theory.

THE INTERACTION OF PARSABILITY AND LEARNABILITY

In the previous sections we've seen how a grammatical constraint like
C-command can be motivated from the standpoint of parsing efficiency.
However, from another point of view the argument is a peculiar one. It
assumes that the language faculty has been designed with parsing
efficiency in mind - that this functional demand, above all others, was

52 R. C. BERWICK AND K. WEXLER

more highly valued in the evolutionary design of language. While this
outcome is certainly possible, it is by no means obvious. There are
other "functional" demands on language, notably, the demand that
natural languages be learnable. Indeed, since the inception of generative
grammar learnability has been taken as criterial for the naturalness of
languages: a natural language is precisely one that is learnable given the
usual environmental conditions available to the child.

Given this setting, there is no a priori reason why efficient parsability
should be first among the functional demands shaping language. In fact,
there is no reason to believe that the demands of learn ability and
parsability are even <;ompatible. After all, learnability has to do with the
scattering of possible grammars with respect to evidence available to
the child - a property of a family of grammars. Parsability, on the
other hand, is typically a property of a single grammar. This implies
that a family of grammars could be easily learnable, but not easily
parsable. Certainly this is so, at least in principle. One can imagine a
finite family of grammars, G = G I , G2, '" , Gn, where each G i
generates a non-recursive language L i . Suppose that all the sentences of
L) begin with a characteristic terminal element, say a, whereas
sentences of L2 always start with b, L3 sentences with c, and so forth.
Plainly any target L j (or Gi, the associated grammar) is easily identi-
fiable from very simple data: just one positive example sentence from
the target language suffices; if the example begins d ... then we know
that the grammar to guess is G4• But since each L j is not even recursive,
there is no algorithmic parsing procedure for any language in the
family, let alone an efficient one. So easy learnability and easy pars-
ability cannot be coextensive, at least in this sense. Examples like these
place direct appeals to the sole functional demand of parsability on
treacherous ground.

It looks then as though the relationship between learnability and
parsability cannot be settled by some simple a priori argument, without
examining in detail just what "learnable" and "parsable" languages look
like, under more realistic assumptions. Suppose, for example, that the
class of easily learnable languages (or their associated grammars)
turned out to define just languages that were efficiently pars able with
respect to· those grammars. In other words, suppose that the class of
natural languages was smaller than the class of efficiently pars able
languages, under a reasonable definition of efficient. In this case the
functional demand of parsability would not contribute much to an

53 PARSING EFFICIENCY

account of why natural languages are the way they are. (Of course,
there still could be a methodological or practical advantage to studying
efficient parsability - it could be the right way to build algorithms, or
the right way to think about certain problems). Conversely, if parsability
imposed constraints above and beyond those demanded by linguistic
theory, then we could use parsability as part of our explanatory
repertoire given that natural languages (or grammars) were observed
to adhere to those extra demands. Of course, it might turn out that
learnability and parsability are simply incompatible: in some respects,
natural languages would be easily learnable, but some of these properties
would cause difficulties for parsing, and vice-versa. This outcome would
not be unusual for a biological system subject to multiple functional
demands; indeed, such an outcome is more often than not the usual one.
Finally, it could be that just those constraints that make languages
learnable make languages parsable and vice versa. In some ways this
would be the most striking - hence the most interesting - outcome.

As we have said, there is no way to settle this matter without
studying specific theories of language learning and parsing. So, in order
to be concrete, in the rest of this paper we will pair a detailed theory
for the learning of a transformational grammar with a detailed theory
for the parsing of a transformational grammar. This is not to say that
we regard these models as the last word on learning and parsing: rather,
that comparisons demand worked out models, and these two are among
the most detailed that have been advanced. The parsing theory we have
in mind is roughly the one we've deployed earlier: a variant of the
Marcus parser. The learning theory is the Degree 2 theory of Wexler
and Culicover [1980J. The Marcus parser defines a class of languages
(and associated grammars) that are easily patsable; Degree 2 theory, a
class of languages (and associated grammars) that is easily learnable.
What is the relationship between these two classes?

To begin our comparison, we must sketch just what class of "easily
learnable" languages Degree 2 theory defines. The aim of the theory is
to define constraints such that a family of transformational grammars
will be learnable from "small" data; the learning procedure can get
positive (grammatical) example sentences of depth of embedding of two
or less (sentences up to two embedded sentences, but no more). The
key property of the transformational family that establishes learnability
is dubbed Bounded Degree of Error (BDE). Roughly and intuitively,
BDE' is a property related to the "separability" of languages and

54 R. C. BERWICK AND K. WEXLER

grammars given simple data: if there is a way for the learner to tell that
a currently hypothesized language (and grammar) is incorrect, then
there must be some simple sentence that reveals this all languages in
the family must be separable by simple sentences.

To move from this intuitive account will require a bit more detail
about the envisioned learning procedure. The way that the learner can
tell that a currently hypothesized grammar is wrong given some sample
sentence is by trying to see whether the current grammar can map from
a deep structure for the sentence to the observed sample sentence. That
is, we imagine the learner being fed with a series of base (deep
structure)-surface sentence (denoted "b, s") pairs. (See Wexler 1982 for
details and justification of this approach, as well as a weakening of the
requirement that base structures be available; see Berwick (1980,
1982) for an independently developed computational version.) If the
learner's current transformational component, T 1, can map from b to s,
then all is well; if not, and (b) s* does not equal s, then aT J
detectable error has been uncovered.

With this background under our belts, we can provide a precise
definition of the BDE property:

A family of transformation ally-generated languages I possesses the BDE property iff for
any base grammar S (for languages in L) there exists a finite integer U, such that for
any possible adult transformational component A and learner component C, if A and C
disagree on any phrase-marker b generated by S, then they disagree on some phrase-
marker b generated by S, with b ofdegree at most U.

Wexler and Culicover 1980 page 108.

If we substitute "2" for U in the theorem, we get the Degree 2
constraint. Note that the BDE property is defined not just with respect
to possible adult target languages, but also with respect to the dis-
tribution of the learner's possible guesses. So for example, even if there
were just ten target transformational languages (grammars), the BDE
property must hold with respect to those languages and any intervening
learner languages (grammars). It is this joint relationship between
targets and guesses that subsumes Chomsky's picturesque "scattering of
grammars with respect to data" phrase - the learner's guesses are part
of the scattering process.

BDE, then, is our criterial property for "easy" learnability. Just those
families of transformational grammars that possess the BDE property
(with respect to a learner's guesses) are learnable.

55 PARSING EFFICIENCY

What about pars ability? What criterial property could we embrace as
representative of "easy" parsability? As a working hypothesis, we will
adopt the parsing model described in the previous section. That is, we
will assume a language is easily parsable iff it can be successfully
analyzed using the machine we have described. But what kind of parser
does this model define? As it turns out, there is a ready-made definition
of the parsing model we have suggested, one where parsing decisions
are made by looking at a local stack and buffer context: such machines
are called Bounded context parsers (BCP). Naturally enough, a language
(grammar) that is parsable using a BCP machine is called Bep parsable.
While our aim here is not to give a formal account of BCP machines
and language theory (see Szymanski and Williams 1976), we should
point out that our parser is indeed BCP in at least one crucial respect:
local parsing decisions are made by examining strictly literal contexts
around the current locus of parsing contexts.! For example, suppose the
machine is parsing the sentence, John was kissed by Mary. At the point
in the parse where the machine is looking at the token immediately
after kissed, it will have already assembled John into a Subject NP and
attached it to the S, as well as created a VP and attached was kissed to
it as the Main Verb. The input buffer will contain the tokens by Mary
and the final punctuation mark. Importantly, its next move will be to
drop a trace into the input buffer signaling its recognition that kissed
demands an Object and none is present in the input. That decision will
be made by consulting the local environment of the parse - the Sand
VP nodes, with the attached Verb, and the three input buffer items.
Further, these items are recorded exactly as written by the linguist as
the nodes S, VP, V, and so forth. No additional "coding" is carried out.
It is this literal use of the parse tree context that distinguishes bounded
context parsing from other, more general methods of this sor1.2

The BCP model was central to our explanation of c-command.
Remember that our account hinged on the notion of constituent
completeness: the "interior" of any phrase attached to a node on the
active node stack was assumed to be opaque to further access. Not only
does this define the C-command predicate in a natural way, it effec-
tively limits the amount of left-hand parsing context that is available. If
the parser's rule vocabulary can refer to just the unalloyed constituent
names provided by the X theory - V, V, VP, N, NP, and so forth
then this is in fact a necessary requirement for such a parser to work.
Otherwise, the parser might have to refer to an unbounded string of

56 R. C. BERWICK AND K. WEXLER

left-hand context symbols in order to make its correct move (since the
left-hand portion of the string already seen at some point can be
arbitrary in size). The BCP constraint rules out this possibility by fiat.

The BCP class also makes sense as a proxy for "efficiently parsable"
because all its members are analyzable in time linear in the length of
their input sentences, at least if the associated grammars are context-
free. .If the grammars are not context-free, then BCP members are
pars able in at worst quadratic (n squared) time. (See Szymanski and
Williams 1976 for proofs of some of these results.) The reliance on a
literal encoding of local context, via the same non-terminal symbols
that the grammar uses, also makes sense. (See Berwick and Weinberg
1984 for an argument that uses this property to show that "locality
conditions" like Subjacency must exist.) Finally, deterministic operation
is a reasonable (though strong) assumption. So for now, let us take the
BCP property as our representative of easy parsability.

We can now at least formalize our problem of comparing learnability
and parsability. The question now becomes: What is the relationship
between the BDE property and the BCP property? One approach
would be to show that the BCP property implies the BDE property, in
the sense that if one has a collection of transformational languages
defined according to Wexler and Culicover's model, and if each of
those languages (along with possible guesses) meets the BCP property,
then that collection will also meet the BDE condition. That is, the
family will automatically fulfill all the constraints required to meet the
BDE, and hence be learnable.

Such a result would be intriguing from a number of standpoints. For
one thing, it says that once we have efficient parsability, then learn-
ability follows. For another, since the BCP property has been studied
from a formal point of view, it might be easier to determine whether a
class was learnable by first looking at its parsability properties. Finally,
it gives a clue to what class of languages is learnable via Degree 2
theory (though it gives only sufficient conditions). For example, since
anbnc" is BCP (in an extended sense), it should be in the class of Degree
2 learnable languages - which it is. (See Wexler 1982) More carefully,
we would want to show that the class of languages which have the BCP
property is Degree-2 learnable. The actual demonstration of this result
would seem to require some care, and is a topic for future research.
However, we can sketch the logic of how such a demonstration would
go. This will indicate some of the problems involved in studying the
parsing-Iearnability connection.

57 PARSING EFFICIENCY

Intuitively, the BCP and BDE properties are related in the following
way. The BCP property implies that parsing decision effects must be
"localized" in the sense that any potential errors (parsing mistakes)
are detectable within a small, finite radius of each parsing decision.
Analogously, the BDE property amounts to the constraint that any
transformational effect be localized. The two properties differ in that
they refer to derivations in opposite directions: BCP refers to a locality
effect during parsing, going in the direction from surface sentences to
deep structures, and BDE refers to the derivation of a surface sentence
from its deep structure. So one must be careful in relating the two. One
way to demonstrate that BCP implies BDE would be to show that if
BDE fails to hold, then BCP fails to hold. Taking the contrapositive,
this will show that BCP implies BDE.

Suppose then that BDE fails to hold for a Wexler and Culicover
family of transformational languages (and their associated grammars).
Our Job then becomes to show these languages are not BCP. If a family
of languages doesn't meet the BDE condition, then there must exist a
detectable error but no detectable error on small data. That is, there
must be a target language LA (the adult language) such that for some
sentence s in LA, with associated base structure b, and some learner
guessed transformational component C, A(b) = sand C(b) s' not
equal to s, but no b' of bounded degree such that A(b') does not equal
C(b'). What we want to show is that this implies that the languages in
question are not BCP.

The way that we might do this is as follows. We will establish that
any detectable error (in the Wexler and Culicover sense, a "learning"
error) is also a detectable parsing error, and vice versa. The failure of
the BDE property will then show that there must be an unbounded
(detectable) parsing error for some pair of languages drawn from the
family of languages in question - that is, some sentence that will be
parsed (incorrectly) as belonging to the grammar for Lc rather than LA,
given only bounded context parsability. Thus BCP will fail to hold.

Now, to establish this last point will take some formalization of just
what is meant by a parsing error. We will sketch only part of how the
argument would go. To prove that any detectable (W and C) error is
also a detectable parsing error, suppose we have such a detectable
learning error. By definition, this means that we have some surface
sentence s with associated base structure b such. that some (adult)
sequence of transformations T I, T2, ••• , Tn applied to b yields, s, I.e.,
TnTn _ 1 ••• T1(b) ... s. In shorthand, TA(b) = s. By definition of

58 R. C. BERWICK AND K. WEXLER

detectable error, we have that there is some sequence of (child)
transformations applied to b that yields a different surface sentence,
s'. Now we apply some additional assumptions of the Wexler and
Culicover system. In their model, all transformations apply obligatorily
and detemlinistically. That is, at any step in a transformational deriva-
tion, at most one transformation can apply. (As Wexler and Culicover
note, this implies that there will be at most one surface sentence for
every distinct deep structure.) Now, transformations are invertible, but
perhaps not uniquely so. Let us denote an inverse transformational
sequence (in the adult) by T-1A" Since transformational inverses are not
unique, T-1(s) couid map to many base structures, but it is at least true
that for some T-1, T-1A(S) = b.

Now we define a detectable parsing error. Again we are given a
surface string, base pair, (b, s). We will say that there is a detectable
parsing error just in case the leamer's parser component (the inverse
transformational component) applied to the surface string does not
yield the right base structure, Le., T- Jc(s) does not equal b. There are
two ways that this can occur. Either (1) there is no inverse possible at
all, because T- 1c(s) is blocked at some point, or else (2) T- Jc(s) does
not equal b, for all possible nonblocked invertible sequences.

Now suppose that what we want to show, that any detectable
learning error implies a detectable parsing error, is false. This means we
have for all (b, s) pairs that TA(b) S '" Te(b). But since there is no
detectable parsing error for s, it is not the case that all T-Ic(S) '" b. But
this means that for some T-l, T-1c(s) = b. Taking inverses, we have
that T e(b) = s for some learning component transformational sequence.
But this contradicts our original assumption, that there was a detectable
learning error.

Establishing the rest of what we want to show seems more difficult at
present, and we leave it for future work. In any case, what we want to
illustrate here is not the final result but the method of study. We can
assess the relative strengths of parsability and learnability in this case,
but only because we have advanced specific models for each. These
characterizations are still quite specific, being grounded in particular
linguistic theories. The results are therefore quite unlike the formal
learning theories of Gold (1967), or more recently, of Osherson, Stob,
and Weinstein (1982) nor are they like the general results obtained
from the analysis of the parsability of formal languages. Rather, they
hold of a narrower class of languages that are already known to be

59 PARS1NG EFF1C1ENCY

linguistically relevant. In this respect, what the results lose in terms of
invariance over changes in linguistic theories, they gain in terms of
specificity. This lack of invariance does, however, leave the door open
for future work. It remains to be seen how to compare the learnability
of the grammars posited in more recent theories of transformational
grammar namely, the "parameter setting" model advanced as the
Government-Binding theory - and the parsability of the grammars of
that theory. What is clear is that an analysis like the one we have
just made awaits a crisp, formal characterization of learnability and
parsability that is particular to the Government-Binding theory itself.

NOTES

I The BCP model must be extended to handle non context-free languages. This is done
in Berwick 1982.
2 In fact. it was by weakening the literal coding demanded by BCP methods that Knuth
1965 was led to a more general method of Ieft-to-right deterministic parsing. LR(k)
parsing.

REFERENCES

Aho, A., and J. Ullman: 1972. The Theory of Parsing. Translation, and Compiling.
Prentice-Hall, Englewood Cliffs.

Berwick, R.: 1980, 'Computational analogs of constraints on grammars', Proceedings
of the 18th Annual Meeting of the Association for Computational Linguisitics,
Philadelphia, pp. 49-54.

Berwick, R.: 1982, Locality Principles and the Acquisition of Syntactic Knowledge,
unpublished doctoral dissertation, MIT, Cambridge.

Berwick, R., and A. Weinberg: 1984, The Grammatical Basis of Linguistic Petform-
ance, MIT Press, Cambridge.

Chomsky, N.: 1951, Morphophonemics of Modern Hebrew, unpublished masters thesis,
University of Pennsylvania, Philadelphia.

Chomsky, N.: 1981, Lectures on Government and Binding, Faris Publications, Dor-
drecht.

Gold, E.: 1967, 'Language identification in the limit', Information and Control 10,
447-474.

Higginbotham, J.: 1980, 'Pronouns and bound variables', Linguistic Inquiry 11,619-
708.

Hornstein, N.: 1984, Logic as Grammar, MIT Press, Cambridge.
Knuth, D.: 1965, 'On the translation of languages from left to right', Infonnation and

Control 8, 607-639.
Marcus, M.: 1980, A Theory ofSyntactic Recognition for Natural Language, MIT Press,

Cambridge.

\
i

60 R. C. BERWICK AND K. WEXLER

Szymanski, T., and J. Williams: 1976, 'Non canonical extensions of bottom-up parsing
techniques', SIAM Journal on Computing 5, 231-250.

Wexler, K.: 1982 , 'Some issues in the theory of Jearnability', in C. Baker and J.
McCarthy (eds.), The Logical Problem of Language Acquisition, MIT Press, Cam-
bridge, pp. 30-63.

Wexler, K., and P. Culicover: 1980, Formal Principles of Language Acquisition, MIT
Press, Cambridge.

