Reprinted from JoUrRNAL OF MATHEMATICAL PSYCHOLOGY Vol. 33, Na. 4, December 1989
All Rigts Reserved by Academie Press, New York and London Printed in Belgium

Computational Consequences of Agreement and
Ambiguity in Natural Language

ERrIC SVEN RISTAD AND ROBERT C. BERWICK

Massachusetts Institute of Technology

We argue that the modern computer science technigue of computational complexity
analysis can provide powerful insights into the algorithm-neutral analysis of information-
processing tasks. In particular, we show that a simple, theory-neutral linguistic model of
syntactic agreement and lexical ambiguity demonstrates that natural language parsing may be
computationally intractable, extending the classic work of Chomsky and Miller (1963).
Significantly, we show that it may be syntactic features rather than complex rules that can
cause this difiiculty. Informally, human languages and the computationally imtractable
satisfiability problem (SAT) share two costly computational mechanisms: both enforce agree-
ment among terminal symbols across unbounded distances and both allow terminal symbol
ambiguity. In natural languages, lexical elements may be required to agree (or disagree) on
such features as person, number, and gender (e.g., subject/verb agreement in English); in SAT,
agreement ensures the consistency of variable truth assignments. Lexical ambiguity can appear
freely in natural language utterances {can may be a noun, verb, or auxiliary), while a variable
in a SAT formula may be either true of false. When coupled with a deterministic performance
madel, this complexity result explains a subtle psycholinguistic distinction between discovering
and verifying the grammaticality of an utterance. Finally, the applicability of computational
complexity analysis to other cognitive faculties such as vision is discussed. © 1989 Academic

Press, Inc.

1. INTRODUCTION

What is language? On one account, it is our ability to pair sound and meaning,
ultimately an information-processing task. In this paper, we argue that modern
computational complexity theory can provide powerful insights into the structure of
this problem by providing an algorithm-neutral analysis of information-processing
structure.

Specifically we show two things. First, contrary to what is commonly assumed,

Reprint requests should be addressed to Eric Sven Ristad, Artificial Inteltigence Lab, Massachusetts
Instituted Technology, 545 Technology Square, 805, Cambridge, Massachusetts 02139,

We thank G. Edward Barton for discussions that inspired this work, and anonymous reviewers for the
Journal of Mathematical Psychology for comments that greatly improved it. This paper describes
research done at the Artificial Intelligence Laboratory at the Massachusetts Institute of Technology.
Support for this research has been provided by an IBM Fellowship to Eric Sven Ristad, by National
Science Foundation Grant No. DCR-8552543 to Professor Robert €. Berwick under a Presidential
Young Investigator Award, and by National Science Foundation Grant IRI-8511531.

379
0022-2496/89 $3.00

. Copyright © 1989 by Academic Press, Inc.
All rights of repreduction in any form reserved.

380 RISTAD AND BERWICK

most, perhaps all, natural languages are not easy to parse: some grammatical
sentences are too complex to be understood by person or machine. Second,
computational complexity theory’s distinction between the difficulty of finding a
solutton and of verifying a solution has a precise analog in the domain of natural
language processing. In brief, we demonstrate formally that sentences combining
syntactic agreement with syntactically ambiguous words can quickly become too
difficult to parse, although their well-formedness may be verified easily once a
paraphrased “solution” is provided. Since possibly all natural languages exhibit
ambiguity and agreement, such as subject-verb agreement and noun/verb
homophones like block in English (sece Section 4), this result provides a robust,
modern counterpart to Miller and Chomsky’s classic distinction between abstract
knowledge of language—linguistic competence—and how that knowledge is put to
use—performance. Qur result moves beyond Miller and Chomsky’s in four ways:
its application of computational complexity theory: its formal specification of the
syntactic phenomena of agreement and ambiguity as a precise model that we call
agreement granumars; its prediction of a specific class of sentences that are difficult
to analyze but easy to check for well-formedness in retrospect, as a consequence of
a sentence processor’s purely deterministic operation rather than simply its finite
characterization; and its broad applicability to most, perhaps all, natural languages.

The remainder of this paper is organized as follows. Section 2 outlines our
approach to applying complexity theory in the language processing domain,
reviewing the essential terminology of computational complexity theory that will be
used in the sequel. Section 3 formalizes the purely syntactic phenomena of agree-
ment and ambiguity in terms of agreement grammars. 1t then outlines a proof that
any natural language containing syntactically ambiguous elements and agreement
constraints will contain sentences that are computationally intractable to parse.
Section 4 discusses the implications of this result, indicating how the distinction
between solution and verification is reflected in human sentence processing. An
Appendix provides formal details of our proofs.

2. COMPLEXITY THEORY AND PSYCHOLOGICAL MODELS

Following Marr (1980), we assume the scientific explanation of any complex
biological information-processing system demands at least three distinct theoretical
levels: (1) a computational theory, explaining what is computed and why, including
algorithm-neutral representations for the input and output of the process; (2) an
algorithmic theory that can account for the transformation of input to output; and
(3) a (hardware) implementation theory, or the device in which the representation
and algorithm are physically realized. Accordingly, the study of Ilinguistic
knowledge divides into the study of competence and performance. A theory of com-
petence corresponds to Marr’s topmost level of computational theory, explaining
what information structures are computed and why, while abstracting away from
algorithmic details, memory limitations, shifts of attention or interest, and errors.

COMPUTATION, AGREEMENT, AND AMBIGUITY 381

Marr’s remaining levels belong to the theory of performance, that proposes a
representation, algorithm, implementation triple to account for actual language use.

Once we understand the topmost of Marr's levels—the computational theory of
an information-processing problem—we can understand more about the other
levels as well:

Although algorithms and mechanisms are empirically more accessible, it is the top
level, the level of compuiatioral theory, which is critically important from an
information-processing point of view. The reason for this is that the nature of the
computations that underlie perception depends more upon the computational
problems that have to be solved than upon the particular hardware in which their
solutions are implemented. To phrase the matter another way, an algorithm is
likely to be understood more readily by understanding the nature of the problem
being solved than by examining the mechanisms {and the hardware) in which it is
embodied. (Marr, 1980, p.27.))

What then is the role of complexity theory in scientific explanation? Computa-
tional complexity theory measures the intrinsic difficulty of solving an (information-
processing) problem no matter how its solution is obtained; for example, the
problem of arranging a list of n names into alphabetic order. Inherently then,
complexity theory studies problem structure: it classifies problems according to the
amount of computational resources (for example, time or space) needed to solve
them on some abstract computer model, typically a deterministic Turing machine.
Complexity classifications are invariant across a wide range of primitive machine
models, all choices of representation, algorithm, and actual implementation, and
even the resource measure itself.

It is important to sec how powerful this invariance is. Any change in the problem
representation that preserves the essential features of the original problem (pre-
serving solutions to the original problem, in effect, its descriptive adequacy)} can
have no effect on its complexity classification. The robustness of these classifications
makes complexity theory ideally suited for studying cognition: while we do know
something about the abstract problems the brain solves, we do not know much
about the representations, algorithms, or hardware involved. “If we believe that the
aim of information-processing studies is to formulate and understand particular
information-processing problems, then the structure of those problems is central...”
(Marr, 1980, p. 347.)

The two complexity classes we distinguish below are 2 and A%, 2 is the natural
and important class of problems solvable in deterministic olynomial time, that is,
on a deterministic Turing machine in time »’ for some integer j, where » denotes
the size of the problem to be solved.! 2 is considered to be the class of problems
that can be solved efficiently. For example, sorting takes n -log n time in the worst
case using a variety of algorithms, and therefore is efficiently solvable.

A is the class of all problems solvable in . #bndeterministic olynomial time in

! Problems must be encoded in a “reasonable” way for a size measure to make sense: for discussion,
see Garey and Johnson (1979).

)

382 RISTAD AND BERWICK

the worst case. Informally, a problem is in .#% if one can guess an answer to the
problem and then verify its correctness in polynomial time. Such problems have no
known polynomial-time (efficient) solution algorithms. For example, the problem
of deciding whether a whole number i is composite is in 4% because it can be
solved by guessing a pair of potential divisors, and then quickly checking if their
product equals i.

A problem T'is NP-hard if it is at least as hard computationally as any problem
in the class 47 if we had a subroutine that solved T in polynomial time, then we
could write a program to solve any problem in 4% in polynomial time (essentially
by efficiently transforming the problem in 4% to T and then solving 7 with the fast
subroutine: the Appendix gives a more detailed account of how this procedure,
known as problem reduction, works). Note that T need not be in A% to be
NP-hard. A problem is NP-complete if it is both in 4% and NP-hard.

NP-complete problems can be solved only by methods too slow for even the
fastest corputers.” Since it is widely believed, though not yet proved, that no faster
methods of solution can ever be found for these problems, NP-complete problems
arc considered computationally intractable. A famous NP-complete problem is the
traveling salesman problem: to find the shortest route for a traveling salesman who
must visit a number of cities and return to the city started at. For additional details,
the reader may refer to Garey and Johnson (1979); Lewis and Papadimitriou
(1978); or Barton, Berwick, and Ristad (1987). This last work explores further the
relationship between computational complexity and natural language.

3. MODELING AGREEMENT AND AMBIGUITY

Having reviewed the basic terminology of complexity theory, we now turn to
problem of formally modeling agreement and ambiguity in natural languages.

Syntactic agreement and ambiguity are widespread in human languages.
Agreement can be morphological (word based) or structural, and can hold across
unbounded distances and among unlimited sets of elements. This is quite easy to
demonstrate. For example, in nearly all languages, predicates must agree with their
arguments. In English, morphological agreement includes subject-verb agreement
on person, number, gender, animacy, humanity, abstractness, quantity, and other
features. Agreement occurs at the intra-morpheme level in some languages, for
example, in Turkish where a suffix ending such as 7 forces agreement in vowel
qualities with preceding vowels; this phenomenon occurs widely in such diverse
languages as Finnish, Arabic, Hebrew, and the Australian language Warlpiri.

Case marking is another form of agreement that surfaces both morphologically
and syntactically in natural languages. Noun forms such as epithets, pronouns, and

? However, some NP-complete problems_have good average-time behavior, that is, the instances that
occur most often can be efficiently solved. We discuss such behavior in relation to our NP-completeness
result below in Section 4.

COMPUTATION, AGREEMENT, AND AMBIGUITY 383

anaphora may be required to agree of disagree with other noun forms in person,
number, gender, and so forth, as in, Reagan, the fool, believed he could appoint
justices himself. Typically such agreement can occur over an unbounded number of
words or phrases. In short, syntactic agreement is a widespread phenomenon of
natural languages generaily, perhaps found in all natural languages. ‘

Ambiguity is equally common in natural languages. Syntactic homonyms are
typical: in English, the word block may be a noun or a verb. Ambiguity in
quantifier scope and reference are equally common; for example, the dual meaning
of Everyone loves someone.

Descriptively adequate linguistic theories must therefore describe these two
phenomena, and, in fact, all major linguistic theories do so, using three devices:
(1) distinctive features to represent the dimensions of agreement; (2) an agreement
enforcement mechanism; and (3) provision for lexical and structural (syntactic)
ambiguity.

While different theories work out the details of these three devices in different
ways, one can abstract away from these variations in order to model just agreement
and ambiguity and study their computational complexity. We introduce agreement
grammars here as a simple formal linguistic model with exactly these three devices.
Agreement grammars are not natural language grammars. For ome thing,
agreement grammars are too simple to completely model any natural language.
They can also generate infinitely many unnatural languages, such as 2™, or any
finite, regular, or context-free language. But while our resuits apply only to this
simplified formal model of agreement and ambiguity, it is nonetheless true that all
current linguistic theories that attempt to describe natural grammars readily embed
the agreement grammar problem {see Barton, Berwick, & Ristad 1987). In this
respect, our approach follows that of Kirousis and Papadimitriou (1985), who
study the complexity of a formal model of scene recognition known as line-labeling.
While line-labeling is nor the same as scene recognition, it may be construed as a
simple formal model embedded in the full-scale problem of scene recognition.

We begin with an informal introduction, and follow that with a formal specifi-
cation of agreement grammars.

3.1. Defining agreement grammars

Following conventional notation, we first recall that a context-free grammar G is
a 4-tuple,

G=<VN5 VT:-P;S):

where ¥ is a finite set of nonterminal symbols, V r a finite set of terminal symbols,
P a finite set of productions of the form A — 7y, where A€ Vy and ye(Vyw Vy)*,
and S is a distinguished szart symbol. If P contains a production 4 — 7, then for
any «, fe(V,uV;)*, we write adf=>ayf and say that aAf derives xyfl with
respect to G. We let %, be the reflexive transitive closure of =, dropping the clause
“with respect to G” where it is understood from context. The language L{G)

384 RISTAD AND BERWICK

generated by a context-free grammar is the set of ail strictly terminal strings that
can be derived from the start symbol with respect to G, that is,

L(G)={x:xeVF#and % x}

We extend context-free grammars to obtain agreement grammars (AG's) by
adding nontermminals that are sets of features and by imposing an agreement
condition on the derivation relation.

A feature is a [feature-name feature-value] pair. For example, [PER 1] is a
possible feature, denoting first-person. Some features may be designated agreement
features, and required to match other features (see below). For instance, an AG
nonterminal labeling the first person pronoun 7 could be written {[caTN],
[PLu —1, [PEr 1]}, while the singular verb sleeps could be labeled with the AG
nonterminal features {[catv], [PLu —], [per 3]0

More formally, we define the set of nonterminals in the following way. The set
of nonterminals in an agreement grammar is characterized by a specification
{F, 4,p>, where F is a finite set of feature names and A is a finite set of feature
values. p is a function from feature names to permissible feature values; that is,
p: F— 2" (F, A, p) specifies a finite set ¥, of nonterminals, where a nonterminal
may also be thought of as a partial function from feature-names to feature-valucs:

Vy={Ce A" :¥fepom(C)[C(f)ep(f)]}

Here Y is the set of all partial functions from X to ¥, poM(C) is the domain of

C, that is the set {x:3y[(x, > € C]}. A category €’ extends a category C (written

C" 2 C) if and only if V/epoM(C), [C'(f)=C(f}], that is, C" is a superset of C,

For example, the category {[PEr 1], [NuM 1]} extends the category {[Per 1]}
An agreement grammar (AG) is a 5-tuple,

G=<<EAJP>’ VTaFA=P:S>!

whose first element specifies a set ¥, of syntactic categories and where V', is a finite
terminal alphabet. F, is the set of agreement feature names, F +=F. S is the
distinguished starting symbol, Se¥,. P is a finite set of the usual context-free
productions, each member taking one of the forms

1. C—aq, where CeV, and acV,,
2. Cy—=Cy---C,, where each C,e V).

No so-called null productions or epsilon transitions are permitted: each production
must have at least one non-null element on its righthand side.

To compiete our definition, we modify the derives relation to incorporate agree-
ment. We say that a production Cy— C --- (', extends a production Co— C,---C,
if and only if C; extends C, for every i and the mothers agreement features appear
on every daughter: :

COMPUTATION, AGREEMENT, AND AMBIGUITY 385

1. Vi0<gign, [CiaC/], and
2. Vie(moM(Cy)n F,), Vi, 1<i<n, [(fepom(CH) A (CH(f)=Co(/)]

The last condition (the agreement convention) ensures that all agreement features on
the mother are also found on all daughters.

We may now define the language generated by an agreement grammar. If P con-
tains a production A -y with an extension A" — 7', then for any a, fe (Vyv V)¥
we write xA’'f=>oy'f. Let % be the reflexive transitive closure of = in the given
grammar G. The language L(G)} generated by G contains all terminal strings that
can be derived from any extension of the start category:

L(G)={x:xeV}and 35, [§'3 S, and &' & x]}.
A NATURAL LANGUAGE Exampie. The following artificial agreement grammar
G, models subject-verb agreement for person and number in English.

1. G, includes the set F of feature names {CAT, PLU, PER} and the function
p defined by
p(CAT) = {s, VP, NP, V, N}

p(PER}= {1, 2, 3}

plrru)={+, - }.

The start category S is {[cars]}, and the set of agreement feature names
F, = {pEr, LU }. The feature CAT encodes the syntactic category of the nonterminal
(sentence, noun phrase, and so forth). PER encodes person (first, second, or third),
and PLU encodes number ([PLU +] is plural, [PLU —] is singular).

2. The terminal vocabulary of G, is
V= {1, men, John, sleep, sleeps}.
3. @, contains the following 9 productions:

{[caTs1} — {[caTne]}{[caT vP]}
{[catvp]} — {[caTV]}
{[eaT NP1} — {[caTN]}
{[carnr], [PLU —], [PER 1]} =7

{[caTN], [PLU +]} — men
{[caT~p], [PLU —], [PER 3]} — John
{[cAT V], [PLU +]} — sleep
{[carv], [PLU — 1, [PER 1]} — sleep

{[caTv], [PLu — 1, [PER 3]} — sleeps.

386 RISTAD AND BERWICK

The sample grammar generates exactly the following sentences:

a. [sleep (=1{lcars], [Per 1], [PLU —]})
b. men sleep (={[caTs], [PLu +1})
c. John sleeps (={[cars], [PEr 3], [plu —1}).

We next turn to the computational complexity of recognizing sentences generated
by an arbitrary agreement grammar.

3.2. The computational complexiry of agreement grammar recognition

Given an arbitrary agreement grammar, how hard is it to parse using the agree-
ment features of that grammar? Computational complexity theory gives us a precise
answer to this question. We may state the recognition problem for agreement
grammars as follows:

Given an arbitrary agreement grammar AG and a string x, is x &€ L{AG)?

This problem is NP-complete. Intuitively, feature agreement let us “simulate” the
problem of finding out whether there exists an assignment of truth-values to
variables that satisfies an arbitrary Boolean formula in 3-conjunctive normal form,
that is, a formula such as

(xvyvIIa{yvzvw),

where there are exactly three disjoined variables per clause, and cach clause is
conjoined with the next. This problem is called 3SAT (for “three-satisfiability”); the
appendix provides a formal definition of this problem.” Feature agreement
simulates the assignment of truth-values: if v is given the value true in one clause,
then it must be true in all other clauses (and ¥ must be false). Syntactic category
ambiguity simulates the fact that we must “guess” whether ¥ is to have the value
Irue or false, just as we must sometimes guess whether block is a noun or a verb.
Finally, ordinary context-free productions may be used to guarantee that there is
at least one true variable per clause, as is demanded for there to be a satisfying
truth-assignment. This simulation, formally called a reduction, establishes that AG
recognition is NP-hard. To establish inclusion in 4% we use the impossibility of
null transitions in AG’s to derive a polynomial bound on the length of a shortest
derivation. Given this, it is easy to show that a nondeterministic program can

*The possibility that the agreement grammar recognition problem might be NP-complete and a
general ideal of how to prove it arose out of a discussion between the authors and E. Barton.

COMPUTATION, AGREEMENT, AND AMBIGUITY 387

“guess” membership of x in L{AG) in polynomial time. The proof follows that in
Barton, Berwick, and Ristad {1987} and is spelled out in the Appendix.

It is important to note that this complexity result is a function of both input
sentence length and grammar size. At first glance, this might seem unreasonable. A
child learning a language might be abie to discover a more compact, highly efficient
grammar to use. Similarly, people appear to use one grammar to process sentences,
not a family of grammars. If the grammar were fixed, then it would not be part of
the input to the problem, and a polynomial time recognition algorithm might exist.

But factoring out grammar size has many problems, as discussed in Barton,
Berwick, and Ristad (1987). To summarize these: (1) Complexity analysis should
consider all relevant inputs; grammar size is an important, direct component of
recognition algorithms, and therefore it is wrong to ignore this dominant element
of recognition time. This is especially true for natural languages, where grammar
size is much larger than expected sentence length (typically by a factor of 10° or
more). (2) Known preprocessing steps for agreement grammars all fail, because
they expand the grammar size exponentially, which acts as a huge constant factor
of 2!°! multiplying the recognition time. For example, a full grammar with 10,000
rules could require time 2'%°, »* to parse—polynomial time in a strict sense, but
impossibly long in practical terms.

What this NP-completeness result means is that there is no known algorithm for
determining membership in the language of an arbitrary agreement grammar that
does not in effect exhaustively check an exponential number of possible feature
combinations. Further, there is no known reasonable representational recasting
of the AG recognition problem that would do better. Interestingly, this
NP-completeness result does not rely on the context-free power of the AG model.
The agreement grammar used in the reduction generates a regular language, and
essentially the same reduction would apply te an agreement grammar whose
language was finite. The reduction relies only on the combinatorial possibilities that
arise from nonlocal agreement and ambiguity.,

Put another way, natural languages that incorporate the minimal machinery of
agreement and ambiguity are inherently asymptotically intractable. This intrac-
tability arises from the interaction of agreement and ambiguity. Informally, human
languages and the NP-complete satisfiability problem (SAT) share two costly
computational mechanisms: both enforce agreement among terminal symbols
across unbounded distances and both allow terminal symbol ambiguity. In natural
language, lexical elements may be required to agree (or disagree} on such features
as person, number, gender, case, count, category, reference, thematic role, tense,
and abstractness (subject/verb agreement in English, for example); in SAT, agree-
ment ensures the consistency of variable truth assignments. Lexical ambiguity can
appear freely in natural language utterances (is cam a noun, verb, or auxiliary
verb?), while a variable in a SAT formula may be either true or false. Thus, the
linguistic mechanisms for agreement and ambiguity are exactly those needed to
simulate satisfiability—any linguistic theory that uses them, as any descriptively
adequate theory must, wili be computationally intractable.

388 RISTAD AND BERWICK
4, INTRACTABILITY AND LINGUISTIC PERFORMANCE

Having established the inherent computational intractability of descriptively
adequate linguistic theories, we turn next to the implications of this result for
models of human sentence processing. We show that the fundamenta] difference
between finding and verifving a result surfaces in the agreement grammar case, and
in the associated natural language examples.

Following Miller and Chomsky (1963), let us imagine a linguistic performance
model M (a “parser”) that is fundamentally deterministic and assigns structural
descriptions to utterances in real time. Refining their discussion, by “deterministic”
we mean that M may have limited parallelism and cannot guess correct answers.
This machine model is thought to include all physically realizable computing
machines, from the fastest digital computers to the brain.

A consequence of the NP-completeness results of the previous section is that M
will not be able to analyze certain constructions involving both ambiguity and
long-distance agreement. This result does not dispute that short, unambiguous, or
structurally simple utterances can be processed efficiently.* More importantly, given
the apparent speed of ordinary language use, the result suggests that actual
biological recognizers may be both fast and occasionally inaccurate. M will,
however, be able to efficiently “verify” (in a sense to be clarified below) many of the
constructions it fails to analyze. The choice of a deterministic performance model,
when coupled with the AG model of competence, indicates that some performance
himitations will arise out of the deterministic nature of processing (see Berwick &
Weinberg, 1982) rather than from the finite nature of human cognitive capacity (see
Miller & Chomsky, 1963).

As evidence of such a performance limitation, consider examples that exhibit
excessive lexical and structural ambiguity, as in Sentence (1} below, where hujffalo
can be one or many shaggy beasts, a city, or a transitive verb that means fool. The
sentences in (2) demonstrate the same effect with the elaborate agreement processes
found in consecutive constituent coordination, discontinuous constituent coordina-
tion, rightward movement out of coordinate structures, and gapping. Sentence (1)
has an array of possible interpretations, ranging from the simple interpretation
suggested by the parallel sentence “Boston buffalo fool Boston buffalo” to more
elaborate ones with relative clauses, for example “[Buffalo that buffalo fool] can
fool buffalo.”®

buffale buffalo buffalo buffalo buffalo (1)

a. John owned and then sold hundreds of late model cars
to us that he waxed all the time.

* Thus, the fact that many NP-complete problems have good “average time” solutions does mat
contradict our result. In fact, given the preponderant distribution of short utterances, it reinforces our
result, as the discussion below makes clear.

* Equivalent sentences can be constructed out of any word whose plural roun form is morphologically
identical to its plural verb form: pofice police police paolice police, french french french french french, etc.

COMPUTATION, AGREEMENT, AND AMBIGUITY 389

b. John liked and wanted to tease Sue and Bill, Mary.

c. John owned and then sold hundreds of late model cars (2)
to us and Bill, trucks.

d. John owned and then sold hundreds of late model cars
to us and to Bill, trucks.

Examples combining the two phenomena become even worse: Buffalo buffalo
buffalo and buffalo buffalo buffalo of buffalo buffale to buffalo buffalo buffalo
buffalo and buffalo, buffalo buffalo.

Linguistic agreement and ambiguity may cause intractability in other languages
as well. Free word order languages such as Warlpiri, a central Australian aborigine
language, have special morphology for verbs and for norminal arguments that
make sentences such as the buffalo examples easy to understand when they are
directly translated. But the morphological processes in these languages typically
allow other highly ambiguous constructions that are difficult to understand. For
example, Warlpiri fails to distinguish adjectives and nouns either morphologicaily
or configurationaliy (as in English), making the direct translation of such trivial
English seatences as John flushed the Air Force space shuttle toilet computationally
analogous to the intractable “buffalo” sentences of English. We conclude that there
is, in fact, a class of grammatical sentences whose recognition complexity can grow
exponentially faster than their length, and therefore, contrary to common belief,
natural language may not be efficiently parsable in general.

Significantly, the preceding natural language examples have the computational
character of NP-complete problems: solutions may be hard to find, but they are
easy to verify. This is a nontrivial result because there is no a priori reason why
solutions to a problem should be easy to verify. Thus, if full natural language
understanding was harder than NP-complete, as has been suggested by Chomsky
(1980), then some grammatical sentences could mever be understood, even with
extensive priming and prompting.

The reader’s first attempt to understand the buffalo sentence is likely to fail
completely. However, it is generally easy to check the paraphrased “soiution.” The
curious nature of this phenomenon confirms the predictions made by the model M,
since it is a property of a deterministic machine operating under polynomial time
constraints that it will be unable to find an analysis of the agreement-type sen-
tences. On the other hand, M should be able to verify an agreement sentence, since
such NP-hard problems are, by definition, verifiable in polynomial time by a
deterministic machine. This result also argues that neither agreement nor ambiguity
should be bounded by the competence model.

An explanation of the psycholinguistic dichotomy between solving and verifying
relies critically on the competence/performance distinction. The possibility of under-
standing (verifying) the utterances at all is explained by a competence theory that
does not bound agreement or ambiguity. On the other hand, the difficulty of under-

390 RISTAD AND BERWICK

standing (solving) the utterances is best explained by the deterministic nature of the
performance model.

Agreement and ambiguity, if permitted to operate without bound in the speaker,
will quickly generate utterances that exceed the (deterministic) perceptual
capabilities of hearers. These sentences, being too difficult for the hearer to under-
stand, will not be used due to the fidelity criterion of communication systems (see
Chomsky & Miller, 1963, p.273). The fidelity criterion states that the receiver
establishes the criterion of acceptability of a communication system: if the receiver
cannot process a signal, then the fidelity of the communication channel is wasted.
Simply put, unacceptably ambiguous sentences, being difficult for the hearer, are
not used in practice, “just as many other proliferations of syntactic devices that
produce well-formed sentences will never actually be found,” {(Miller & Chomsky,
1963, p. 471).

Nearly all utterances evince both agreement processes and ambiguity to varying
degrees. Therefore, there is no reason to expect that occasional unacceptability
introduced by excessive agreement and ambiguity will cause those processes to dis-
appear from language over the course of time. In fact, all known natural languages
employ these mechanisms. It would be reasonable to expect, however, that natural
language processing sysicms might develop techniques to efficiently process the
“easy” cases and approximately process the “hard” ones.

It remains to develop a complete theory of approximate processing for hard
problems, but complexity theory again suggests some possible answers. One
approach is what we advance above: hard sentences are not in fact solved, but only
verified for grammaticality upen paraphrase. Another approach is to simply restrict
the domain of problems solved: only short agreement sentences will be analyzed,
and analysis of those exceeding a set resource limit will be aborted.

More generally, on this analysis, whenever the computational cost of a task
maltches its observed cognitive cost, we know that scientific explanation of the task
should occur primarily in a theory of competence and that the performance theory
is likely to be straightforward: that is, deterministic and faithful. But whenever the
inherent computational cost differs from measured cognitive cost, complexity
theory yields specific imsight into the performance theory: what nceds to be
explained at that level and the form such an explanation might take.

If complexity theory classifies a cognitive problem as intractable, yet humans
appear to solve that problem efficiently, this suggests that the performance algo-
rithm restricts its input domain or solves costly instances only approximately (as in
simulated annealing; see Kirkpatrick, Gelatt, & Vecchi, 1983 for further discussion),
or perhaps aided by parallel hardware specially designed for the cognitive problem
at hand.

On the other hand, a problem could be easy in principle, yet impossible for
people to solve. Then the performance algorithm might be simple-minded,
inefficient, or quite restricted (as with the “no reentrant procedures” constraint of
an early performance model), or the mental hardware might limit memory use or
processing time.

COMPUTATION, AGREEMENT, AND AMBIGUITY 391

To take a simple example from another cognitive domain, Kirousis and
Papadimitriou (1985) consider the complexity of the historically important line-
labeling problem in machine vision. They prove that the line-labeling problem and
the more general scene recognition problem are NP-complete, and likely to be
intractable. Given the apparent speed with which humans recognize scenes, and
hence the surprising nature of their result, they suggest that computationally
difficult scenes are scarce in practice, or that real-world hints (for exampie, surface
texture and assorted depth clues) might simplify the real-world scene recognition
problem.

+ In cither situation, then, the complexity analysis of information-processing tasks
can lead to significant conclusions about linguistic performance because complexity
theory makes strong empirical predictions. Agreement grammars provide a
linguistically and algorithmically neutral model for agreement and ambiguity in
natural languages. Agreement grammar recognition is theoretically intractable. We
have also observed that the buffalo-type sentences are difficult for humans to
process. In order to explain this apparent match between predicted intractability
and observed cognitive difficulty, we are led to postulate a deterministic processing
model for English, and perhaps for ail natural languages.

A. ForMAL RESULTS

In this appendix we give additional details on the proof technique of reduction,
followed by a formal proof of the NP-completeness result sketched in the main text.

A.l. Reduction as a Proof Technigue

Complexity classifications are established with the proof technique of reduction.
A reduction converts instances of a problem T of known compiexity into instances
of a problem S whose complexity we wish to determine. The reduction operates in
polynomial time. Therefore, if we had a polynomial time algorithm for solving S,
then we could also solve T in polynomial time, simply by converting instances of
T into S. (This follows because the composition of two polynomial time functions
is also polynomial time.) Formally, if we choose 7 to be NP-complete, then the
polynomial time reduction shows that S is at least as hard as T, or NP-hard. If we
were also to prove that S was in A%, then § would be NP-complete.

In this case, the known NP-complete problem T that we will use is 3S8AT, and
the problem S of unknown complexity is AG recognition. Therefore, the proof
will reduce instances of 3SAT (a 3-conjunctive normal form or 3-CNF Boolean
formula F) into instances of AG recognition (an AG G and input string x). The
3-satisfiability problem (3SAT) is to determine, given a Boolean expression in
3-CNF, whether the formula is satisfiable. 3SAT is NP-complete. An example of a
satisfiable 3-CNF Boolean formula with five clauses is

(avbvc)/\(&Vdve)A(evJvE)A(bvévd)A(&vJvé).

392 RISTAD AND BERWICK

A Boolean expression is an expression composed of variables {e.g, x),
parentheses, and the logical operators v (OR), A (AND), and negation. Negation
is represented as a horizontal bar over the negated expression (e.g., X is the nega-~
tion of the variable x). A literal is a variable or the negation of a variable. Variables
may have the values 0 (false) and 1 (true), as may expressions. An expression is
satisfiable if there is some assignment of s and s to the variables that gives the
expression the value 1.

A Boolean expression is in conjunctive normal form (CNF} if it is of the form
E, A E,n --- A E, and each clause E; is of the form a; v ap vV -++ V 0, where
cach oy is a literal—either a variable x or a negated variable . An expression is in
3_CNF if each clause in the CNF expression contains exactly three distinct literals.

A2. AG Recognition is NP-Complete

LEmMMA A.l. Let {@q, ... ¢1) be a shortest leftmost derivation of @, from @ in an
agreement grammar G containing at least one branching production.® If k> 1P|,
where P is the set of productions in G, then |@| > |@ql.

Proof. In the step @,= ¢, ,, where @,=uxd'f and @, =y’ B for aeV¥,
Be(V,uK)*, one of the following cases must hold:

1. The production 4 —y with extension 4" — 73" is ponbranching (|y|=1). In
the worst case, we could cycle through every possible nonbranching production
(without using a branching production), after which we would begin to reuse them.
Any extension of a production that has already been used in this run of non-
branching productions could have been guessed previously, and the length of the
shortest nonbranching run must be less than |P|.

2. The production 4 —7 with extension 4" — 7y’ is branching (|y| > 1). Then
@ > @iyl

A total of at most #— 1 branching productions derives an utterance of length »,
because there are no null-transitions in an agreement grammar. Each branching
production can be separated from the closest other branching production in the
derivation by a run of at most |G| nonbranching productions, and the shortest
derivation of x will be of length (|G| - |x|). (As is conventional in computer science,
the expression #(x) stands for “exactly x.”)

THEOREM 1. Agreement grammar recognition is in NP

Proof. On input agreement grammar G and input string xeV§, guess a
derivation of x in nondeterministic polynomial time as follows.”

SIf the agreement grammar G does not contain a branching production, then L{G) contains only
strings of length one and all shortest derivations are shorter than | P|: membership for such a grammar

is clearly in AP,
7 Again, we assume G contains at least one branching preduction. If not, then we should only loop

as many limes as there are productions, and then halt.

COMPUTATION, AGREEMENT, AND AMBIGUITY 363

1. Guess an extension S’ of S, and let S’ be the derivation string,

2. For a derivation string ad’f, where ae Vi, Be(V,uK)* guess a
production 4 —y and extension 4’ — 9’ of it. Let ay’f be the new derivation string.

3. Ifay'f=ux, accept.

4. If |ay'B| > | x|, reject.

5. Loop to Step 2 (at most |G| - |x| times).
Every loop of the nondeterministic algorithm performs one step in the derivation.
By Lemma A.1, the shortest derivation of x is of length at most 8(|G| - |x|), so we
need to loop through the algorithm at most that many times. Guessing an extension
of a category may be performed in time 8{|F)), and an extension of a production
may be guessed in time §(|F] - | P}). This nondeterministic algorithm runs in polyno-
mial time and accepts exactly L(G); hence AG recognition is in A% i

THEOREM 2. AG recognition is NP-hard.

Proof. We reduce 3SAT to AG recognition in polynomial time. Given a 3-CNF
formula f of length m using the n variables g1+ q,, We construct an agreement
grammar G, such that the string w is an element of L{G,) iff f is satisfiable, where
w is the string of formula literals in f; G, is constructed as follows:

1. G, includes the set F of feature names {STAGE, LITERAL, G1, s g, With
values defined by the function p:

P(STAGE) = {1, ., n+3}
p(LITERAL) = { +, ~ }

P(q:') = {Os 1}

The grammar will assign truth-values to the variables and check satisfaction
in n+3 stages as synchronized by the feature sTAGE. The start category is
{[sTAaGE 1]}.

2. At each of the first n stages, a value is chosen for one variable; because the
g; are declared as agreement features, the values that are chosen will be maintained
throughout the derivation tree. The following 2» nonbranching rules are needed,
constructed for all 7, 1 <i<n:

{[sTacE{], [q,0]} — {[sTAGEi+ 1], [4,0]}
{[sracei], [q,11} - {[sTacei+ 1], [g; 1]}

Note that square brackets ([,]} delimit features, while curly brackets ({.H
delimit the sets of features that form nonterminals.

3. At stage n+1, the grammar has- guessed truth assignments for all
variables; all that remains is to use the truth assignments to generate satisfied

394 RISTAD AND BERWICK

three-literal clauses. The following two rules generate enough clauses to match the
number of clauses in w:

{[sTaGE n-+ 1]} — {[STAGEn+ 2]}
{[sTAGE n+ 1]} — {[STAGE n+ 11} {[sTAGEn +2]}.

4, At stage n+2, the grammar generates satisfied three-literal clauses—
clauses containing at least one true literal. Let C, and €, be the categories

Cy= {[STAGE 1 + 3], [LITERAL —]}
C, = {[STAGE n + 3], [LITERAL +] .

Then the following seven ternary-branching rules are needed; any set of three
literals makes the clause true, provided at least one literal is true:

{[sTaGEn+2]} - CoCoCy
{[sTaGEn+21} = C,C,Cy
{[sTAGER+ 2]} = C,Co Cy
{[sTaGEn+2]} - CoC, Cy
{[stagEn+2]} = C,C,C,
{[stagEn+2]} - C,C, Cy
{[stacEn+2]1} - C,C,C,.

5. TFinally, lexical insertion at Stage n + 3 ties together the truth-values chosen
for the variables and the literals. For every ¢;, 1 <i<n, we need the following four
nonbranching rules, bringing us to a total of 6n +9 rules:

{[sTAGE n + 3], [LITERAL + 1, [4, 11} = ¢;
{[sTAGE n + 3], [LrreraL — 1, [4,0]} > g;
([sTaGE n+ 3], [LITERAL +], [¢,0]1} = .
{[sTaGE n+ 3], [LITERAL — 1, [¢: 11} ~ 4.
If some extension of the start category S == [STAGE 1] can be generated, then the

formula 1 is satisfiable; each extension of the start category that generates a string
must encode a satisfying truth assignment. For example, the category

{[STAGE 1:[9 [41 1]: [‘12 0}9 ey [qn 1]}

generates 3-CNF formulas f with the satisfying truth assignment g,=1,
g,=0, .., g,=1. Note that the agreement grammar constructed in the reduction

COMPUTATION, AGREEMENT, AND AMBIGUITY 395

[Start]
il —
o1
Guess variable
truth assignments
DR
[v,0] —

|GENERATE-SAT-3CLAUSES]

[GENER ATTS AT-3CLAUSE] [GENERATE—FAT-SCLAUSES]
[GENERATE-100-3CLAUSE] [GENERATE-SAT-3CLAUSE]

[GENERATEQ10-3CLAUSE]

[Literal 1] [Literal 6] [Literal 0| [Literal 0] [Liceral 1] |Literal 0]

J 1
1 Yy 3 Bl Uy "3

FiG. 1. A sample reduction for the agreement grammar proof, showing a 3SAT instance recoded as
an AG parsing problem. The 3SAT problem to sobve is (v, v @, v u3) A (i, Vv u; v u;), which has the
satisfying assignment u; =1, u, =1, and u; =0. The solution expressed at the terminal leaves of the tree

is u, = (i.e., true); u, =1 (true}; and u; =0 (false).

generates all satisfiable 3-CNF Boolean formulas, of any length, using n or fewer
variabies. [

Figure T contains a sample reduction, showing the parse tree needed to analyze
a 3SAT instance recoded as an AG parsing problem. The 3SAT instance to solve
is (uy v iy vuy) A (@, vu, vus), which has the satisfying assignment u, =1,
=1, and u;=0. The corresponding input string to be parsed is a formula of
Iiterals, u i, usth usus. The agreement features are therefore {u,, u,, uy}.

396 RISTAD AND BERWICK

REFERENCES

BartoN, E., Berwick, R., & Risrap, E. (1987). Compuiational complexity and natural language.
Cambridge, MA: MIT Press.

Berwick, R., & WEINBERG, A. (1982). The grammatical basis of linguistic performance. Cambridge,
MA: MIT Press.

CHoMsKy, N. (1980). Rules and representations. New York: Columbia Univ. Press.

CHOMSKY, N., & MiLier, G. (1963). Introduction to the formal analysis of natural languages.
In R.D.Luce, R.R. Bush, & E. Galanter (Eds.}, Handbook of mathematical psychology, Vol. II
(pp. 269-322). New York: Wiley.

GaRrey, M., & Jounson, D. (1979). Computers and intractability. San Franecisco: W. H. Freeman.

Kirousis, L., & Papapmmrriou, C. (1985). The complexity of recognizing polyhedral scenes. In
Proceedings of the 26th annual IEEE symposium on the foundations of computer science (pp. 175-183).
Boston: IEEE Society.

KIRKPATRICK, S., GeLaTT, C.D., JR., & VECCHI, M. P. (1983). Optimization by simulated annealing.
Science, 220, 671-680.

MaRrr, D. (1980). Vision. San Francisco: Freeman.

MILLER, G. A., & CHomsky, N. (1963). Finitary models of language users. In R. D. Luce, R.R. Bush &
E. Galanter (Eds.), Handbook of mathematical psychology, Vol. II (pp. 419—492). New York: Wiley.

RECEIVER: November 9, 1987

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium

