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COMPUTATIONAL COMPLEXITY THEORY AND
NATURAL LANGUAGE: A PARADOX RESOLVED

This article surveys currently known results on the application of
computational complexity theory to natural language theories and the
practical implications of these results. Because they contain rich feature
systems and variables, all current descriptively adequate linguistic theories
evidently embed computationally intractable problems, in the class NP
(Nondeterministic Polynomial time) or worse. We can resolve this apparent
complexity paradox by noting that natural grammars contain substantive
constraints on complexity-producing processess like the number of
agreement featuses, or that the average-case problems encountered in
practice are truncated just enough to make processing efficient by a
deterministic computational device. Taken together, this evidence suggests
that natural languages are constrained to avoid the intractability of NP
problems and that people do not have the unlimited computational resources
to process languages as if they were nondeterministic or fully parallel
computers.

1 Introduction: complexity theory as an analytical tool for
natural language

In computer science modern computational complexity theory has
become one of the most powerful techniques known for analyzing the
inherent structural complexity of information-processing problems. By
posing linguistic analyses as such problems we can apply the same
techniques to linguistic theories as well. Complexity theory provides
a unique approach to analyzing the structure of linguistic models in a theory-
and algorithm-independent way. This neutrality is an enormous advantage,
since it is often quite difficult to see how to compare quite different linguistic
theories in terms of weak generative capacity (the languages they generate)
~ two theories may often diverge widely in what linguistic phenomena they
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cover and what component (syntax, semantics, etc.) they ascribe a particular
phenomenon to. In this paper we show how complexity analysis can sidestep
the ofen contentious issue of syntax vs. semantics. Then too, since we know
relatively little about the algorithms the brain might use to compute
linguistic analyses, an algorithm-independent approach would seem to be an
appropriate conservative research program.

This paper surveys what is known about the computational
complexity of many current linguistic theories, shows why all such theories
seem to have roughly the same high degree of complexity, and then examines
the practical significance of these intractability results — the potential
difference between the formal computational complexity of linguistic theories
and the observed cognitive complexity of actual language processing. A priori
there are three possible comparative outcomes: cither (1) the computational
complexity of a linguistic formalism matches observed cognitive
complexity; or (2) computational complexity is greater than observed
cognitive complexity; (3) cognitive complexity exceeds the computational
complexity of the theory on the same linguistic phenomena.

In case (1), the complexity analysis fully accounts for observed
cognitive complexity; in case (2), further restrictions must be forthcoming:
either the linguistic theory must be restricted (by, e.g., substantive
constraints) or else the range of inputs the cognitive system must handle is
restricted (possibly truncated) in some way, put another way, there must be
a substantive theory of linguistic performance; in case (3), the theory is
descriptively inadequate. Note that in each case the complexity analysis can
tell us something, irrespective of how the results turn out. Thus, our aim in
doing computational complexity analysis is #of to show that one theory is
better or worse than another - often the aim of a weak generative capacity
analysis — but rather to diagnose in an invariant way the sources of
complexity in all linguistic theories.

A second aim of this paper is to resolve a basic paradox mentioned in
the previous paragraph: most linguistic theories are computationally
intractable, more precisely, at least NP-hard (solvable only in Non-
deterministic Polynomial time or worse, with no non-exponential time
algorithms known). But at 2 minimum, modulo the three cases above, we
would expect natural language processing to be polynomial-time
computable, running in time proportional to » for some integer  fized in
advance; in fact, perhaps, linear time (with j = 1) or, even faster, real time
(allowing only a bounded number of processing steps between each input
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token read, a condition that can be violated by linear time processing).!
Indeed, given the number of results in hand (see table I below), it now seems
reasonable to put forth as a general thesis, as Ristad (1990) does, that any
adequate linguistic theory is bounded from below by the class NP. Let us call
this the NP thesis.

How can this paradox be resolved? NP-hard problems are
considered computationally intractable, yet people evidently solve these
problems every day even as we speak ~ just as computer scientists must solve
classic NP-hard problems like £-GRAPH COLORABILITY — a generalization of
the 4-color map problem — all the time. Therefore, we need constraints that
will make these NP-hard problems tractable. To understand what
constraints we need, we must carefully examine the source of computational
intractibility in cases where it arises. This is just a detailed analysis of case (2)
described above: when the complexity analysis of 2 language model does not
mesh with observed performance, then something substantive remains to be
said, beyond what the model claims.

We shall see that by examining more carefully the complexity of
intractable problems like propositional satisfiability (saT) or 4-GrapH
COLORABILITY and how they relate to natural languages, one can determine
that features or variables begin to cause processing difficulty as soon as their
number exceeds 4 or 5. This is quite striking, because the number of

! Indeed, some current linguistic models — GPSG (as defined in Gazdar, Klein, Pullum,
and Sag (1985); any model that includes vp-cllipsis by copy-and-bind lambda
abstraction are PSP ACE-hard (polynomial space hard) or worse. While at first glance
this scems incompatible with such results as the polynomial-time parsability of, say,
trec adjoining grammar (TAGs) (Vijay-Shanker and Joshi (1985)) we note that the
TAG results generally omit the complexity effects of feature-checking. Following
Ristad and Berwick (1989) we can show any formalism embedding agreement features
is at least NP-hard; see also Schabes and Joshi (1988) which raises the issue of
augmenting tags with feature-checking unification machinery but does not discuss its
complexity-theoretic implications.

It is also possible to argue (as Ristad (1990) does) that any adequate linguistic theory
ought to be bounded abose by the class NP, c. g., ought rof to be in the class PSPACE.
Why? Ristad’s reasoning is to note that NP problems have efficient witnesses (solutions
that can be mapidly verificd) but PSP ACE problems do not (see section 2.1). If we
assume that witness examples always exist — any linguistic output implies that an (ideal,
competence-based) speaker started from somre witness to the parsing problem, then
PSPACE systems are ruled out. Not however that there are auxiliary assumptions
that call this argument into question in the usual way: the relationship between
competence and performance models, for one, suggests that there is no necessary reason
that the speaker, even an ideal one, ought to have in hand an cfficient witness.
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syntactic agreement features across the world’s languages, and within
a given language does not exceed this number (being restricted to person,
number, gender, exclusively, dual; here we must assume, e. g., that kinship
terms or Bantu long/short classifiers do not do matching and are arguably
like color-term systems, not an agreement system at all). Similarly, the
number of independent vowel harmony processes in any natural language
evidently does not exceed three. Evidence like this supports the NP thesis
and the complexity analysis approach, because the complexity analysis is
assumed in order to explain otherwise mysterious facts about natural
language. Thus, contrary to what has sometimes been asserted (e.g., in
Koskenniemi and Church (1988)), the observation that natural languages are
restricted so as to sidestep /NP problems actually buttresses, not refutes, the
NP thesis.

A third aim of this paper is to suggest how computational complexity
can be used to probe the notion of modularity in linguistic theories. For
example, we shall see that the intractability of autosegmental phonology
arises from allowing variables (features) to interact across distinct
autosegmental tiers. Thus the autonomy promised by autosegmental theory
may not be so innocently autonomous at all.

Note that many current linguistic models, e.g., the principles and
parameters model of Chomsky (1986), are generally no# modular in the
computer science sense of that term even though it’s commonly said that
they are: they violate the notions of context-independence and
non-intetference because principles are designed to interact with one another
(large deductive consequences are to follow from a small set of modules, or,
as Fodor (1983: 27) notes, “some capacities surely arise from the interaction of
underlying causes, in fact, the more of these, the merrier for the theorist,
since his goal is to get the maximum amount of psychological explanation
out of the smallest possible inventory of postulated causal mechanisms.”?

Finally, it may be that restricting ourselves to the problems that occur
in practice make the average complexity quite better than the worst-case
analysis. This point is sometimes raised as an objection to complexity
analysis generally. While saT and £-GRAPH COLORABILITY are hard in the
worst case, it is widely believed that such hard examples are quite sparse,
hence unlikely to arise in practice. We shall see that the emerging theory of
average-case complexity provides some insight into this question, since the
break-point for difficulty again comes at £ = 4 or 5. We can then relate this

3 This obscrvation and citation is due to S. Fong (personal communication).
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result back to the linguistic problem of pronoun antecedence, which is
modeled by £-GRAPH COLORABILITY: Berwick (1989) shows that if the
number of antecedents (the parameter £) is fixed, then there isa polynomial
time algorithm for disjoint reference, as in the sentence

(1)  John told Bill that he should leave

where be may be coreferential with either Jobn, Bill, or some arbitrary person
(drawn from the discourse). The average-case complexity analysis tells us
that as soon as the number of antecedents exceeds 4 or 5, then determining
pronoun antecedence becomes computationally intractable (under this set of
assumptions).* Much foundational work remains to be done with aver-
age-case analysis however, since average-case complexity theory naturally
depends on as yet unexplored distributional assumptions about linguistic
constructions. (See also Kasper and Rounds (1990) for a related view on the
complexity of unification in language.)

In any case, the existence of such constraints in natural languages,
which seem designed to sidestep the computational intractabilities of NP
problems, provides additional evidence that human cognitive processors do
not have sufficient computational resources at their command to simulate
general nondeterministic polynomial time computations, say by unlimited
backtracking or unlimited parallelism. Rather, this kind of search process is
severely limited.

The rest of this article is organized as follows. Section 2 briefly
reviews the terminology and foundations of complexity-based accounts of
linguistic processing. Section 2.1 outlines the major properties of the
computational complexity probe used: the fundamental distinction between
deterministic and nondeterministic Turing machine computations, the
method of problem reduction, the key litmus test problem of
3-saTisFIABILITY (3-5AT), 2 simple example of the complexity of pronoun
binding as related to the problem of 4-GRAPH COLORABILITY. Section 2.2
summarizes most of the known complexity-theoretic classifications of
linguistic problems and discusses Ristad’s VP thesis.

Section 3 turns to a case study of the computational complexity of
a different linguistic phenomena: nonlinear (autosegmental) phonology.
(The result was first presented in Berwick (1986) at the University of

4 For alternative formulations of the pronoun antecedence problem that make other

assumptions and obtain somewhat different results, sce Giorgi, Pianesi, and Satta
(1990).
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Pennsylvania, and substantially refined by Ristad (1990).) The case study
shows that the autosegmental formalism can encode a computationally
intractable problem, but, more importantly, it pinpoints where the
intractability comes from: an unexpected nonmodularity in the linguistic
representation. Given this diagnosis, Section 4 shows how to resolve the
apparent paradox of computational intractability in linguistic systems,
showing how either constraints on linguistic features and nonmodular
components or input truncation can yield efficient (polynomial time)
language processing.

2 Complexity theory: basic terminology and known
results about natural language

Computational complexity theory measures the intrinsic difficulty of
solving a problem no matter how its solution is obtained — it abstracts away
from algorithms and machine implementation details altogether. This
section reviews the basic terminology and methods of complexity analysis,
and then turns to a survey of known results about the computational
complexity of current linguistic models.

2.1 Complexity theory: basic terminology and methods

Let us review the key features of computational complexity theory as
they pertain to linguistic analysis; for further details, refer to Barton,
Berwick, and Ristad (1987) or Garey and Johnson (1979).

Computational complexity theory classifies problems, e.g., the
mapping from phonetic form (PF) or an input sentence to a parse tree or
S-structure, according to the amount of time needed to solve these problems
on some abstract computer model, conventionally a deterministic Turing
machine (TM). Recall that a TM has three parts, a finite-state control that is
effectively the program of the machine; an input tape bounded on the left but
extending arbitrarily far to the right, divided into some number of discrete
cells or tape squares; and a read[write tape bead that looks at one tape cell at
a time, and, given what the finite-state control says, in a single move (i)
changes state, (ii) possibly writes one of a finite number of symbols on the
tape cell it is currently scanning; and (iii) moves its read/write head one
square right or left (a st¢p or move of the TM). The TM starts with the input
written on the leftmost » cells and scans the very leftmost cell. Problems are
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encoded on the TM’s input tape, in some standard fashion that does not
obscure the complexity of the original problem.’

Crucially, the TM is dezerministic: at each step, given the symbol that
the read/write head is scanning, the finite-state control dictates that there is
only one possible move the TM can make. A TM is nondeterministic if there is
more than one such move. We shall see that this distinction between
deterministic and nondeterministic TMs plays a key role in what follows.

We use deterministic TMs to measure the computational resources,
generally time or space, used by algorithms in the following way. Incuitively,
we measure time by counting the number of moves and space by counting
the number of tape squares used during a computation, considering the
worst possible case. More precisely:

Definition 1: Given some TM M, if for every input of length #, denoted | #|,
M makes at most T(#) moves before halting, then M is of time complexity
T(n). (If M does not halt its time complexity is cither undefined or infinite.)
Definition 2: Given some TM M, if for every input of length #, M scans at
most S (n) tape squares before halting, then M is of space complexity S (n). (If
M does not halt its space complexity is either undefined or infinite.) The time
(resp. space) complexity of a problem is the minimum value of 7 () (resp.
S(n) as we range over all possible TM programs.

In contrast to deterministic TMs, the time or space complexity of
a nondeterministic TM is calculated in a slightly different way. We may
imagine the computation sequence of 2 nondeterministic TM as a branching
or-tree: starting at the root of the tree, at each step we may have some finite
number of possible next moves to make; then, for each of these possibilities,

For example, we might code a problem about graphs by encoding the graph as a matrix
of 1’s and 0's, written out as a set of 1-dimensional vectors. Typically the problem is
coded so that it becomes a decision problesm with a ves/no answer rather than actually
outputting the solution to the problem, but this ordinarily causes no change in the
complexity classification of a problem. Problems also cannot be encoded in some
baroque way that pads out their length so greatly that the complexity of the problem
becomes casier than it should be. For example, if a problem takes exponential time as
a function of its input length, time 2!, then we could simply puff up the input length
with dummy symbols to that size, ignore those dummy symbols, and the time
complexity would become a linear function of input length. For this reason, encodings
are usually restricted to be “reasonable,” meaning at most polynomially larger than the
original problem statement. The discussion in the next makes clear why this is
a reasonable definition of “reasonable”; see Garey and Johnson (1979) for additional
discussion.
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there may be further branches, and so forth. Some of these possible paths
will succeed in finding 2 solution to the problem, some mav not, and some
paths may never halt. The time used by such a nondeterministic TM is the
shortest such path that leads to a successful solution, if one exists. Thus the
failing paths do not count in the complexity analysis of a nondeterministic
TM. Intuitively, given some fixed input », the machine can “guess” possible
solutions for free. We shall see below how this guessing power enters into
the fundamental distinction between computationally tractable and
intractable problems.

How does complexity theory tie this TM model to computational
problems and linguistic analysis? Complexity theory can play a particularly
valuable role. First of all, computational complexity theory studies the
inherent complexity of problem structure - strong generarive capacity in the
case of linguistic theories since the grammar is typically included in problem
statements. We include the grammar in the problem statement because we
want the complexity analysis to tell us something about the internal structure
of linguistic theories, not just languages, so that we can discover where
a theory is too complex. In other words, even though any single natural
language might be described by just one grammar drawn from
a grammatical framework, in order to study the complexity of the
framework and not just single grammars we will often explicitly include the
grammar in the complexity analysis. In Barton, Berwick, and Ristad (1987)
this approach was dubbed the Universal Recognition Problem (URP) as
opposed to Fixed Recognition Problem (FRP), but it is probably more apt to
call it an intensional ot grammatical framework analysis as opposed to an
extensional or language analysis. (The distinction between a strong generative
capacity analysis and a weak generative capacity analysis also comes to
mind.)

This tack is in keeping with the spirit of standard computational
complexity theory that incorporates in the problem statement (hence in the
encoded input #) the important parameters of interest, for to exclude these
parameters is to eliminate them from complexity analysis altogether, and we
certainly wish to analyze the complexity of entire grammatical theories, not
just languages. Fixing the grammar generally allows precomputations and
optimizations that, while important for special-case processing (as we shall
discuss in section 4 below), often hide the real complexity of a problem. For
example, in order to analyze the complexity of games like chess or go,
complexity theorists standardly generalize board size to #xn, because
otherwise, for a fixed board size, akin to a fixed grammar, the complexity is
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esscntially zero: one can simply compute all the possible moves in advance
and look up answers in a table in cffectively constant time.

Second, complexity classifications are invariant across a wide range of
primitive machine models, representations, algorithms, and actual
implementations. We can contrast this approach to those that posit
a particular algorithm, machine implementation combination, such as
Marcus (1980) or Berwick and Weinberg (1984). These analyses depend on
assuming that, for example, the language processor uscs a certain kind of
language processor, one with a pushdown stack machine and a lookahead
buffer. The results change if the machine changes. In contrast, one can show
that complexity classifications are stable under fairly broad changes to the
underlying computer model, e.g., if we used a more “reasonable” machine
with a random access memory instead of a lumbering TM, or even any
physically realizable parallel computer, nothing substantial would change in
the analyses that follow.

It is important to see how powerful this invariance is. Any change in
the problem representation that preserves the essential features of the
original representation - preserving solutions to the original problem, in
effect its descriptive adequacy — can have no cffect on its complexity
classification as efficiently or inefficiently solvable. This robustness makes
complexity theory ideally suited for studying cognition. While we do know
something about the abstract computational problems the brain solves, we
know correspondingly little about the algorithms and hardware involved.

This invariance also lets us sidestep another common difficulty with
formal analyses of linguistic theories. Note that the complexity of a problem
abstracts away from the particular algorithm or implementation used to
solve it, since we range over all algorithms (and assume invariance over
computer models). Thus the complexity analysis holds over representational
shifts. This is a big advantage if one does not know whether a particular
phenomenon is to be captured in “syntax” or “semantics” or in any other
component of a grammatical system, because the complexity analysis does
not make any assumptions about this kind of division either. Thus, if
a problem is computationally intractable, it is hard no matter what (for
almost all purposes). The results cannot be dismissed by simply appealing to
another component of the grammar. We discuss this point further
immediately below, after introducing the method of problem reduction.

We next briefly review the basic categorizations obtained by
computational complexity theory and its key division of problems into
tractable and intractable classes; see figure 1. Pis the class of problems solvable
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GPSG (perhaps >7)

-
EXPTIME

tended standard theory

only computationally
intractable algorithms
known; hard to even verify
cobhition solutions

PSPACE .
only computationally

intractable algorithms
known (exponential time);
hard to find solutions,
easy to verify

computationally
tractable algorithms
known

CSL-recognition

Fig. 1. The standard hierarchy of time and space classes. All containments are assumed proper,
under the usual assumptions that P # NP, etc. No known deterministic polynomial time
solution algorithms are known for problems in NP, while problems in P arc known to have
deterministic polynomial time solution algorithms. Some representative problems in each class
are named, including some linguistic examples. For example, context-sensitive language
recognition is in PSPACE, while the older extended standard transformational theory, under

suitable restrictions, described exactly the languages recognizable in expontential time, or
EXPTIME.

in Polynomial time on a deterministic Turing machine (TM), that is, in the
worst case, time #/ for some integer j where # as before is the length of an
encoding of the problem to be solved. Such problems are considered to be
computationally tractable. For example, sorting a list of # names takes time
n log n in the worst case by a variety of algorithms, and so is efficiently
solvable (in P).

NP is the class of problems solvable in /Nondeterministic
Polynomial time. Such problems have only known exponential time
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solution algorithms and are dubbed computationally intractable. Informally,
a problem is in this class if one can guess the answer to the problem (that is
the nondeterministic part) and then verify its correctness rapidly, in
polynominal time. In other words, one of the computation sequences
leading to a solution is of polynomial length. Put another way, we say then
that VP problems have efficient witnesses, namely, the answers to the
problems that can be rapidly verified.

Some problems have no known algorithms for their solution in P but
are easily seen to be in NVP. For example, the problem of deciding whether
a whole number / is composite is in VP because it can be solved by guessing
a pair of potential divisors and then quickly checking if their product equals
i (This is the efficient witness for the problem.) But the only known
algorithms for finding composites on real computers take at least time
exponential in the worst case, proportional to 2". Obviously the class P is
contained in VP, But it is strongly hypothesized that this containment is
proper because there are no efficient algorithms known for a wide variety of
problems in NP, and because of the techniques of problem reduction,
described below, demonstrating that if cerrain problems in NP were
efficiently solvable #hen all problems in NP would be efficiently solvable (see
figure 3). But no such efficient algorithms are known, hence the suspected
proper containment of P in NP (figure 1).

Following standard definitions, a problem is called NV P-hard if it is at
least as hard as any problem in VP. A problem is NP-complete if it is both in
NP and NP-hard. In effect then, an NP-hard problem serves as a proxy for
the entire class INP. An instance of a problem is just a particular example of
a problem with all its parameters filled in — for example, an instance of the
sorting problem is some particular list of, say, twenty names to alphabetize.
We give more precise definitions of these concepts just below.

The other complexity classes illustrated in figure 1 are presumably
even broader, as shown, and include PSPACE, EXPTIME and
EXP-POLY:

The class of problems solvable in polynominal space (context-
sensitive language restriction is PSP 4ACE-complete); exponential time; and
exponential-polynomial time (the union over all time classes /™ where 4 is
some constant and f(#) is some polynomial). Again, it is widely assumed that
NP is properly contained in PSPACE, which is in turn assumed to be
properly contained in EXPTIME, and in turn EXP-POLY (see figure 1).
Note that a problem in PSPACE cannot even be verified in polynomial time
- that is, even if we have its solution in hand, it will take more than
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Known
difficult Beat the k-colorability,
problem Celtics 3-sat
""_ mapping can J I
introduce no
blemoff ey, complexity, [ Stop pronoun ante-
g?t!tc'::?:n and preserves | Larry Bird cedence,
Y | solutions to autosegmental
original problem phonology

Fig. 2. Computational complexity theory shows that one problem is as hard as another by using
the method of reduction. If a fast algorithm were discovered for solving the problem S, then we
could now solve problem 7T rapidly by (rapidly) transforming instances of T to instances of
S and solving S. Clearly, the transformation must preserve solutions to the original problem.

polynomial time to check it. PSPACE problems do not have (known)
efficient witnesses.

Complexity classifications are established mainly via the proof
technique of reduction (figure 2). A reduction converts instances of a problem
T of known complexity into instances of a problem 5 whose complexity we
wish to determine. The reduction must operate in polynomial time or less in
order for it to introduce no spurious complexity, and it must preserve
solutions to the original problem. Note how the logic of reduction works: if
we had a deterministic polynomial-time algorithm for solving §, given the
reduction hen we could now solve 7 in polynomial time, using S as
a subroutine, simply by converting instances of T into instances of ., and
then solving S rapidly (note that this relies on the fact that functional
composition preserves polynomial time, i.e., if fand g are polynomial time
then so is fog because #/ - n* = o/ * %), If T is NP-hard, this leads to
a contradiction; in this case S must be at least as hard as 7. We can now
redefine the notion of a problem being hard or complete in a class Cin terms of
reducibility:

Definition 3: A problem T is hard for C if every problem in C is
polynomialtime reducible to 7.

Definition 4: If a problem T is hard for C and in addition 7 €C, then
T is complete for C.

To take 2 more nonmathematical and properly Bostonian analogy,
suppose we know that beating the Celtics is intractable, and that every
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Fig. 3. The method of reduction can show that some problems are compiete for a complexity
class. Here, all problems in the class C can be quickly transformed into instances of problem P1,
50 as not to take them outside the original class C. P1 is therefore the bardest problem in C.

instance of beating the Celtics may be transformed into an instance of
stopping Larry Bird (the example is a bit dated but something mysterious
stays the hand from updating it, to say, the Chicago Bulls and Michael
Jordan). Then stopping Bird must be at least as hard as beating the Celtics,
for it stopping Bird were easy, then we could also beat the Celtics easily,
a contradiction, by stopping Bird. (Note the transformation cannot
introduce any spurious complexity, say, triple-teaming).

Example. The problem of determining whether there exists
a satisfying assignment to the variables of a Boolean formula in
3-conjunctive normal form, i. e., an assignment of frue or false 10 the Boolean
variables such that a conjunction of 3-literal (negated or unnegated variable)
disjuncts evaluates to #rue, is NP-complete (3-saT). Here is an istance of such
a problem:

EVIVIOAQVIVHAKXVIVIAAFEVYV

In effect, 3-saT can simulate any nondeterministic polynomial time
computation. Informally, it can be difficult to figure the solution to a 3-sat
problem out without guessing; the best one can do is to explore every
combinatorial possibility, taking exponential time in the worst case. The
reason is that the variables on the surface give no clues as to whether they
should have the values ¢rxe or false. In addition, variable assignments must be
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globally consistent; they interact, like a jigsaw puzzle: by choosing x to be
frue in the first clause, it must be fa/se in the third, so then either 7 or # must be
assigned frue. (On the other hand, as section 4 shows, these “hard” 3-saT
problems are remarkably sparse and so unlikely to turn up “in practice”,
a point of some importance examined in section 4.)

Example. The problem of determining whether a map with
# countries can be colored with £ colors such that no two adjacent countries
have the same color (£-COLORABILITY) is N P-complete (see also figure 4 for
a linguistic example that can be related to this problem).

A linguistics example: pronoun binding and obviation. With
this terminology in hand, we can give an example of a linguistic problem that
is NP-hard and what the invariance of complexity theory means for the
question of syntax and semantics. The problem is that of INTRASENTENTIAL
PRONOUN ANTECEDENCE. An instance of the problem is a sentence of English,
with & possible antecedents (names), and » pronouns; the problem is to
determine a linking between the pronouns and names that satisfies the
conditions known to govern linking, namely, that a pronoun and an
antecedent cannot be too close (generally within the same S(entence)
domain), or what is sometimes called /oca/ obviation; and that the antecedent
and pronoun must agree in person, number, and gender. This problem can
be shown to be NP-hard (Ristad (1990)) by a straightforward reduction
from &-graph colorability, where the names are the colors and the pronouns
the countries; note that the obviation and agreement conditions induce
a graph that corresponds to a £-colorability problem, as with this example
sentence:

(2)  Before Bill,, Tom,, and Jack, were friends,
[he, wanted him, to introduce him, to him,]

In this case the colors are the three names and the vertices of the graph
are the four pronouns; it is easy to see that sentence (2) induces the graph in
figure 4. Note that introspectively at least, determining the linking relations
is cognitively difficult and becomes rapidly more difficult as £ and » exceed
3or4.

In the linguistic theory considered by Ristad, the linking constraints
are carried out at a level of logical form (LF), a modest transduction of
syntactic structure, and these are syntactic constraints. In contrast, other
linguistic theories (e. g., the one proposed in Gazdar, Klein, Pullum, and Sag
(1985)) do not state constraints such as obviation at a syntactic level, but
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k=3 (3 colors= Bill, Tom, Jack)
him

him

Fig.4. A sentence with pronouns and antecedents has an associated graph coloring problem.
The example is from Ristad (1990).

rather leave such constraints “for semantics.” It is here that the power of
a complexity analysis comes to the fore. We might consider the “linking” of
ke and the three 4ims to be carried out by some other component in some
other theory - say by a theory that does not even use a level of LE Can this
make any difference about the difficulty of the pronoun antecedence
problem? As long as we accept the basic descriptive facts about
pronoun-antecedent distribution, the answer is, in all likelihood, No. The
reason follows from the reduction argument: if it were the case that pronoun
antecedence was easy to compute, by whatever component, call it M, then
we could use this component to solve the pronoun antecedence problem
using the syntactic (LF) based representation, assuming that there were
a polynomial-time (easy to compute) transformation between LF and M.
Then the original /NP-complete problem used would be easy to solve,
a contradiction.

Of course, one could always avoid this possibility by assuming that
syntactic structure (or LF) and M were related by a nonpolynomial
computation, say even an arbitrarily complex recursive function. 1n other
words, M would not be related to the level of syntactic structure in any
computationally simple way. An arbitrary relation is of course possible, but
does not seem to hold of current linguistic formalisms, which for the most
part relate syntax and semantics via simple pushdown-stack transductions
(see, e.g., Borgida (1983) or Plitek and Sgall (1978)). In addition, the
“decoupled” relation of syntactic structure and M would be problematic. If
this reasoning is correct, then it becomes irrelevant whether we believe that
itis “syntax” or “‘semantics” that is doing the work for us. The point is that
the computational work must get done in seme component of the
grammatical system. By using complexity theory in this way, we can sidestep
complicated border disputes about the boundaries between syntax and
semantics; we can even ignore those labels entirely. In this way the
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complexity results are strongly theory-neutral, holding as long as one simply
adheres to the basic linguistic facts about obviation themselves. This is an
additional advantage of the complexity theory approach.

In section 4 we shall examine the cognitive aspects of this complexity
result and attempt to resolve the paradox of pronoun antecedence
intractability.

2.2 A review of known complexity results about natural language

We next review many of the known results about the computational
complexity of modern linguistic theories. We then turn in section 3 to where
this complexity comes from.

Table 1 surveys known results about the Universa/ Recognition
Problems (URPs) for linguistic theories and their subcomponents, with
question marks indicating unconfirmed conjectures. (That is, we explicitly
include the grammar as a parameter in the complexity analysis, as mentioned
earlier. See Barton, Berwick, and Ristad (1987) for the source of many of
these results and Ristad (1990) for the results on the Barriers model and VP
ellipsis.) Note that every linguistic theory is bounded from below by NP — it
is at least /N P-hard. The general explanation for this is simple: it can be easily
shown (Ristad and Berwick (1989)) that any descriptively adequate linguistic
theory that embeds the simplest facts about agreement and word category
ambiguity, what they call AGREEMENT GRAMMAR RECOGNITION, is NP-hard.
It is quite easy to see how agreement phenomena can model 3-saT: whether
a lexical item is a2 noun or a verb mirrors whether a variable is truc or false;

Table 1. A summary of known complexity results about some linguistic theories and their
subcomponents. Question marks indicate conjectured relationships.

Theory/component Complexity lower bound Complexity upper bound
(at /east this hard) (at most this hard)

Autosegmental NP NP

phonology

2-level NP NP

morphology

(“Kimmo” systems)
(no surface null elts.)
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Theory/component Complexity lower bound Complexity upper bound
(at least this hard) (at most this hard)

3-level All recursively Allr.e.

morphology enumerable (r.e.) sets sets

LFG NP PSPACE

GPSG EXP-POLY PEXP-POLY

(1985 Gazdar e al.)

Revised GPSG (R-GPSG) NP NP

(Ristad 1986)

Agreement NP NP

Grammars

Tree Adjoining NP NP

Grammars

(with agreement)

Functional Unification Grammars NP NP

unification -

component only

Older Extended EXPTIME EXPTIME

Standard Transformational

Theory

Barriers NP PSPACE

transformational theory

(including vp ellipsis)

Lasnik & Saito 1984 NP PSPACE

transformational theory

(incl. vp ellipsis)

Intrasentential NP NP

pronoun antecedence (pa)

pa + vp ellipsis PSPACE PSPACE

copy + bind
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the syntactic structure of the clauses is easy to generate with a context-free
grammar (CFG); one can force at least one word per clause to have the value
true with a CFG; and the global consistency of truth assignments can be
mirrored by feature agreement.

On the surface, then, an agreement-and-ambi guity sentence similar to
police police police could contain no clues at all as to whether each word was
anoun or a verb, and at the same times, agreement processes could force, say,
the first occurrence of police, corresponding to the literal x, to agree with the
third. This is exactly like a 3-saT problem. (Note that the English example is
not exactly like such a problem because word order in English gives some
clues as to whether a token is a noun or a verb.) It is interesting that it is
JSeatures rather than rules that lead to the intractability. Finally, note that
AGREEMENT GRAMMAR RECOGNITION is in NP, neatly illustrating the
difference between problems whose solutions are hard to find but easy to
verify: once one is given the “solution” — the parse tree and agreement
feature values - to a sentence like police police police, it is trivial to check that
the sentence is grammatical. But it is very difficult to find that solution in the
first place without resorting to exhaustive search. Again, it is striking that
introspectively at least this becomes difficult after the number of interacting
variables reaches 3 or 4.

Summarizing, the plain fact is that amy descriptively adequate
linguistic theory will have NP as a Jower bound on its complexity, what we
might call, following Ristad (1990), the NP thesis for linguistic theories. This
is already an important result, since it means that one cannot take the efficient
processing of language for granted, as is usually done. In section 4 we shall
see how to possibly resolve this paradox.

In addition, the NP-hardness (or worse) of the remaining sub-
components of the linguistic theories shown in table I may be established
by other straightforward reductions. (See section 3 below for details on
autosegmental phonology; Kasper and Rounds (1990) for details on the
extended notion of unification deployed in Functional Unification Grammar
that includes disjunctive feature specification. The result on the older
extended standard transformational theory is due to Rounds (1975).) As for
the worst-case complexity conjectures in the table, it may be possible in
lexical-functional grammar (LFG) to mirror the existential and universal
quantifiers to yield a reduction from the standard PSP.4CE-complete
problem QUANTIFIED BOOLEAN FORMULAs (QBF), but an actual proof
remains to be found.

This result would be consistent with the suggestion in Kaplan and
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Bresnan (1982) that LFG can generate only strictly context-sensitive
languages. It seems similarly unlikely that generalized phrase structure
grammar would be more complex than the class EXP-POLY, which
includes the union of all exponential functions with polynomial exponents.
As for tree adjoining grammars with agreement features (TAGs),
a reasonable speculation is that their corresponding URPs are in NP, since
the fixed recognition problem for these grammars is in P and they bear
a close relation to context-free grammars, lying just beyond them in terms of
weak generative capacity (see Schabes and Joshi (1988) or Vijay-Shanker and
Joshi (1985)).

3 The source of computational complexity in natural
language: a case study

In this section we examine in some detail a result that illustrates the
method of reduction and the use of computational complexity theory to
discover the source of unwanted complexity in a linguistic theory. In
particular, we shall look at phonological theory and the so-called
autosegmental model (see, €. g., Halle and Vergnaud (1987)), since it has been
widely cited as somehow more restricted than the older theory of Chomsky
and Halle (1968). However, we shall see that in fact the autosegmental
framework admits computational intractability as well. The source of the
complexity is an unexpected violation of modularity. Then, in section 4 we
shall explore several ways to eliminate that complexity.

3.1 Autosegmental phonology and computational complexity

At first glance, autosegmental or metrical phonology seems ideally
designed to avoid the problems of computational intractability. It aims to be
a modular, restricted theory: formerly long-distant contraints which were
accounted for by means of string-variables in Chomsky and Halle’s (1968)
The Sound Fatterns of English (SPE), for instance, suprasegmental properties
like stress or vowel harmony, are dealt with by parceling out these constraint
onto separate “planes” on which the relevant predicates can be stated in
terms of strict adjacency. Note that even in a restricted interpretation of SPE
as using just context-sensitive rewrite rules we would have a PSP ACE-hard
system, since context-semsitive language recognition is PSPACE-
complete. Intuitively, SPE’s globally matching string variables, as with
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earlier transformational theories, are quite powerful. In contrast, the
autosegmental planes arc all supposed to interact without using string
variables by projecting to a surface form that represents a set of timing slots,
marked by X"s because their features are underspecified. It is this constraint
that leads to the hope for improved computational performance.

In Halle’s memorable image, the planes are like the leaves of a spiral
notebook, while the spine of the book is the surface form that emerges by
projecting the features of the planes to the spine. As is familiar, this is the way
that one can model the intercalated CV patterns of Semitic morphology,
studied by McCarthy (1979), McCarthy and Prince (1990), and many others.
Its descriptive success and constraint leads to the hope that it might be
immune from computational intractability.

But is the autosegmental theory really complexity immune? Berwick
(1986) first showed in a computer science colloquium at the University of
Pennsylvania that the autosegmental model is not as modular as it looks,
because under certain conditions feature variables could apply across global
domains to simulate the effects of 3-sat. Thus the framework is still
computationally intractable.

The reduction from 3-saT to the autosegmental framework is fairly
direct; see figure 5. Given an arbitraty 3-sat formula, we construct an
autosegmental recognition problem, namely, a sequency of underspecified
segments (one for each literal in the original formula) that appear “on the
surface” as it where, and whose feature values we must determine, along
with a particular autosegmental system of tiers (planes) and a fixed set of
syllabic possibilities; the segmental sequence has a valid autosegmental
feature assignment if and only if the original formula is satisfiable. To do this,
each Boolean variable can be represented as a separate autosegmental tier, in
effect encoding one harmony process per variable and ensuring consistency
of whatever features are assigned on that tier —~ whether the variable is
consistently assigned to be #rue or false. The segments on the surface are
underspecified for these values so we cannot know what their full feature
specifications are simply by examining their surface form alone — just as in
the agreement and ambiguity example described in the previous section
where we did not know whether police was a noun or a verb, we don’t know
whether any particular segment X is #ru#e or false. Finally, the 3-sAT structure
may be duplicated by a metrical-syllabic structure of three segments per:
syllable, on a separate Consonant-Vowel plane, with at least onc vowel per
syllable mirroring at least one frue literal assigned per triple. The same
features in the Consonant-Vowel tier that force at least one ¢rue per triple of
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literals must of course also appear on the variable tiers (since they represent
the same true-assignment variables). Note that we may adopt a fairly
restricted version of autosegmental theory where the association lines from any
one tier to the surface segments do not cross (the lines from any one plane of
elements to the spiral notebook center line do not cross).

Figure 5 shows the details of the reduction used by Ristad (1990),
illustrating a sample reduction from the formula(x v j v ) A (Z V. V 3).
Each variable corresponds to a (distinct) place of articulation in phonology
like back or high; no association lines need cross. The input is just the original

formulap:  (x vy‘vz)/\('ivy vz)

(x is true)

[x f-x:1 —neg] [f-y:1 +neg] [f-z 1 —neg] [x f-x 1 +neg]
[f-y: 1 -neg)

/f—z 1 -neg]
gwen (x —neg] (y +neg] [z —neg] [x +neg] [y Zneg] [z

-neg]

spectﬁed
feature

segments,
1/literal

fx:1 x-plane f-x:1
f-y: 1 y-plane f-y: 1
KEY: f'z: 1 Z-plane f_z: 1

[f-i: 1 ~neg] = unnegated, true literal, e. 8. X
(f-i: 0 +neg] = negated, true literal, e.g., ¥
[f-i: 0 ~neg] = unnegated, false literal, e.g., y
[f-i: 1 +neg] = negated, false literal

Fig.5. Standard autoscgmental theory is NP-hard, even though tier-based theory looks
modular and even under constraints like no crossing association lines. This figure shows how an

example 3-sa7 formula instance can be reduced to an autosegmental recognition problem,
modeled after Ristad (1990).
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formula, with underspecified feature complexes x, y, etc. that are given
minimally the values — neg (if the literal is unnegated, like x) or + neg (if the
literal is negated, like 3). A “vowel” or true literal corresponds to one of two
feature combinations: - neg along with a 1 value for the place of articulation
assigned to the feature variable (x, 3, 2, ... projected from the underspecified
input) or + neg along with a 0 value for the place of articulation feature
corresponding to a negated literal like X. (The *“‘consonants,” or false literals,
have the dual feature values: ecither ~ neg and 0, because then the
corresponding unnegated variable must have the true assignment value fa/se,
or + neg and 1 because the negated literal has been assigned the value fa/se
and hence the corresponding unnegated value for that variable is #rue). In
fact, the entire proof is exactly the same as for the proof that
lexical-functional grammar recognition is NP-hard, in Berwick (1982). The
end result is that the surface segments form a permissible phonological
representation iff the original formula is satisfiable. The construction can

¢ c)’vkq

] ,
| [/

-neg) [y +neg] [z-neg) [x +neg) {y —neg) [z —neg]

tier 2

T

z-plane

Fig. 6. The appearance of the same feature-value combinations on different tiers destroys the
modularity of the autosegmental ticrs, In effect, global variables are admitted into the system.
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clearly be done in polynomial time, so autosegmental recognition is
NP-hard.®

Why is the autosegmental framework computationally intractable
when it at first appears so promising? Figure 6 tells the story. The problem is
with the variables in the tiers. Because the same features (the
truth-assignment feature for each variable) may appear on both the metrical
tier and the vowel harmony or variables tiers, the variables planes are really
not autonomous or modular even though they look like they are: the feature
value we pick for the place of articulation in the x-plane in fact interacts with
what we pick for the y-plane, just as with 3-saT: if we pick, say, a place value
of 1 for x, then we have one vowel in the first clause and y is free to have
a place value of 1 or 0. So the tiers are not really independent after all. We
shall take a look at potential remedies for this problem in section 4.

4 Escaping from computational intractability:
restrictions on natural languages

Computational intractability, then, lurks everywhere in grammatical
frameworks. How can one escape from the shackles of NP-hard
intractability in grammatical theories? The symptoms dictate the cure. To
sidestep intractability we have essentially three choices: (1) truncate the
number of feature variables, showing that an unlimited number of
variables/features are not needed descriptively in the linguistic theory;
(2) change the representation, so that nonmodular interactions cannot
occur, or (3) show that the hard examples do not arise “in practice”
(alternatively, on the average). As it turns out, each of these solutions seems
to be found in natural languages. (Of course, in any given situation
a particular choice may not prove sufficient; the examples must be examined
on a case-by-case basis.) One by one, let us see how these constraints can
help.

It is also NP-complete, as Ristad (1990) shows, since it is casy to demonstrate that,
given a sequence of surface segments and a syllabic system, one can simply guess all the
possible segmental feature specifications, and then check them in deterministic
polynomial time.
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4.1 Substantive linguistic constraints and feature truncation

In the autosegmental model, the satisfiability simulation relies on an
unbounded number of harmony processes. This is also true of the two-level
morphology reduction described in Barton, Berwick, and Ristad (1987).
However, natural languages do not ever seem to exhibit more than
3 independent harmony processes (Halle, personal communication;
Koskenniemi and Church (1988)). This is an intriguing fact. Why should the
number be three or four rather than, say, 17 or 20? Indeed, three seems to be
a “breakpoint” for computational intractability: there is suggestive evidence
that systems with three or fewer processes will generally (but not always) be
easy to compute, while those with more will be difficult. Thus, a substantive
linguistic constraint to three or fewer harmony processes may have some
computational underpinnings (and supports the view that unlimited or
nearly costless backtracking, required to simulate nondeterminism, is
unavailable to people). Let us call this the trancation thesis.

We can establish the truncation thesis empirically. There are at least
three striking, independent soufces of evidence for it. First, we can carry out
experiments on randomly constructed sat formulas, in an attempt to
discover the “hard” examples of sAT and the nondeterminism (as measured
by backtracking) as one varies parameters like formula length, number of
variables, etc. (see Purdom (1983); Goldberg, Purdom, and Brown (1982),
though these results ordinarily assume an arbitrary number of variables).” In
general, this is difficult to do because one must naturally make distributional
assumptions to calculate expected running times, but some results are
known, which we describe in more detail below. Roughly, if we assume that
saT formulas are uniformly distributed, and then vary the number of
variables, the expected time (measured by amount of backtracking) to solve
a SAT problem by, say, the usual Davis-Putnam procedure (1962) looks like
the graph in figure 7.8

Interestingly, these results don’t scem to vary very much if onc uses “smarter”
backtracking procedures. The best known sar algorithm currently known to the
author is from Van Gelder (1988), which has a worst case time of O(2¥8).

8 This procedure is a backtracking search with these steps: (1) if there are no clauses, the
formula is satisfiable; (2) if any clause is empty, the formula is unsatisfiable; (3) if there
is any clause consisting of a single literal, select the variable in this clause, and set it so
that the clause is true, then simplify and recurse; (4) if any variable appears only
negated or unnegated, select it as the next variable, and set it so that its literals are true,
proceed as in step 3; (5) sclect any variable and form two formulas by setting the
variable to frue in one and false in the other; recurse on cach subproblem.
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Fig. 7. This graph shows the increase in expected solution time (measured in terms of number of
backtrackings) for randomly constructed 3-SATISFIABILITY formulas as the number of variables
is increased. There is a sharp bend upwards at n = 4.

The graph in figure 7 shows that there is a breakpoint between 7 = 3
and 7 = 4 variables. (There are of course a fixed number of such formulas for
any ). Beyond this inflection point, the expected solution time rises
enormously. (Below we shall see that this breakpoint result is also confirmed
by independent experiments with £-GRAPH COLORABILITY.) Returning now
to natural grammars, this shows that, practically speaking, if all other things
are held equal, then limiting harmony processes to three or less makes the
resulting autosegmental problem tractable. Note that from a certain
perspective this empirical result confirms the validity of the complexity
analysis because by assuming that natural grammars are designed to avoid
intractability we can arrive at an explanation of why harmony processes are
limited to three or fewer: if there were more, then computational
intractability could arise very easily.

Second, as another example of the power of truncation, Berwick
(1989) shows that if the number of antecedent names is bounded, then
pronoun antecedence is in P. In fact there is some evidence that the number
of names must be small, again just 3 or 4, to gain tractability. Introspectively
this is true, and this result is indirectly supported by the &-GrapH
COLORABILITY simulations discussed below.
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Third, additional support for truncation position comes from an
examination of agreement processes in natural grammars. Agreement and
ambiguity systems are NP-hard, in general. However, the agreement
features actually used in any natural language (indeed, across all natural
languages) are limited quite strikingly in exactly the same way as harmony
processes. Natural languages use roughly 3 or 4 agreement features, and no
more: e.g., person, number, exclusivity, or gender.® Again this small
number is an otherwise a mysterious fact, particularly coupled with the
observed restrictions on harmony processes and the comparatively large
number of, say, phonemes or rule processes in natural languages. This fact
becomes less mysterious if we assume that computationally intractable
systems are (sometimes) avoided by natural grammatical systems.

Truncation facts like these argue that people cannot have the
unlimited computational resources required to simulate a nondeterministic
Turing machine (e. g., unlimited parallelism or cost-free backtracking). 1f
they did, then there would be no apparent reason to limit natural grammars
in any of these ways, at least on grounds of computational complexity.
(There might of course be some other reason for the restriction.)

4.2 Changing the linguistic representations

Rather than substantively restrict the mwmber of processes in a
linguistic framework, we next consider more fundamental representational
changes in grammatical systems that would remove intractability. The basic
idea is to increase the modularity of the system, using the traditional sensc of
that term.

In the autosegmental case, the complexity reduction can be blocked if
distince tiers cannot share the same features. Note that this antomatically
isolates each variable to a strictly contained, autonomous domain, as
originally desired in the autosegmental theory. This constraint has been
sometimes proposed on independent linguistic grounds, but we can see now
that this constraint has an independent, complexity-theoretic motivation.

Similarly, if agreement processes could be contained within strictly
local domains so that #o variable information can be passed from one domain
to another, then the 3-saT reduction used for agreement and ambiguity

9 As mentioned earlicr, we take systems like the Bantu longfshort classifiers to be
something else, not used for agreement or matching; similarly for kinship terms.
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grammars would not work. In linguistic terms, this would amount to
limiting agreement relations to, for example, single S domains. This
restriction seems too strong as stated. For instance, one would not be able to
link the agreement features in one NP, say, f4e guy to the agreement features
of NPs arbitrarily far away. But pronoun linking seems to involve just such
distances. A closer approximation to the needed restriction involves
information encapsulation or modularity. If we can ensure that the
agreement between, e.g., a subject NP and a verb does not interact with
some other local agreement process, then the reduction is blocked (recall that
in 3-saT the choices of a truth-assignment value for x interact with choices
for its neighbors).

The same question of modularity arises in analyzing the
computational complexity of a particular version of the modern principles
and parameters transformational theory (the Barriers government binding
theory, Chomsky (1986)). Putting aside the martter of agreement and
ambiguity, Table I indicated that this theory, too, is N P-hard (a result of
Ristad (1990)). The reason why is instructive. In this theory, local agreement
processes, indicated by the coindexing of a Subject NP and the inflectional
element (the specifier of the sentence and the bead of the sentence), are allowed
to interact with global mévement processes, indicated by the same kind of
coindexing between an NP and the underlying location where that NP is to
be interpreted in terms of thematic structure. For example, an NP in object
position might have to be moved to subject position in a passivetype
construction, and then agree with the verb in person and number. Ristad
shows that because the theory uses the same coindexing machinery to encode
both kinds of grammatical relations, we can effectively transmit information
just as in the autosegmental case. Indeed, the two constructions are
topologically identical.

This suggests the same remedy for breaking the complexity of the
Barriers theory: Use different machinery for agreement coindexing, head and
complement selection, and movement coindexing. Then this particular
reduction does not go through, because we cannot get the conflation of
complement selection, specifier-head agreement, and movement 1o work
together as one. If these elements cannot be conflated, we cannor get variable
truth assignment to work together with this additional saT constraint, In
short, a more modular account of indexing, with a different indexing system
for each “tier” of syntactic representation within phrase structure, is needed.
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4.3 Complexity in practice: average-case complexity and efficient pro-
cessing

Finally, while complexity theory’s abstraction away from particular
algorithms or implementations is quite valuable, the theory also assumes
“worst case” results. But do these arise in practice? It may be that human
cognitive processors never encounter the hard examples, just as they never
have to process deeply center-embedded sentences because they are not
produced by speakers. Note that this is again a kind of truncation effect, this
time on the distribution of input problem examples.

What we need, then, is some measure of the average-case complexity of
linguistic problems, as they arise in practice. One can do this by direct
sampling experiments, or one can use the developing theory of average case
complexity. Both methods suggest that computationally intractable
problems arise infrequently enough to solve the paradox of natural language
computational complexity in many cases. Let us consider four examples that
point in this direction, one sampling experiment and three average case
complexity results.

Sampling experiments. One can carry out empirical experiments
on the two-level morpholy system that decomposes surface form words like
tries into their underlying morphemes like fry + s (plural), taking into
account spelling change rules. Table I observes that this problem is
NP-hard, as proved in Barton, Berwick, and Ristad (1987). But this is
a worst-case analysis. What about in practice? Similar to the 3-saT
experiments in figure 7, we can plot the amount of backtracking against
word lenght, which directly measures the amount of nondeterminism in the
system and abstracts away from certain details of machine running time.*?

A good test language is Warlpiri, which exhibits significant harmony
and reduplication effects, but certainly fewer than two independent harmony
processes. The results are as expected. For example, below is a trace of the
system recognizing the surface form pinyi (the hyphens are inserted for
readability only). Recall that the system consists of two sets of finite-state
automata, one that checks for each surface — underlying form pairing type,
and other that checks for possible co-occurrences of stems and roots. In the

10 We must also test the system on more than unambiguous wordsfunderlying letter trees,
for otherwise this would just be like testing the Earley algorithm on unambiguous
sentences; of course the time will be linear in the length of the input in such cases.
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trace below, each backtracking point is numbered in square brackets and
refers to that state to which the system must return and proceed from. In the

example that follows, there are 9 such backtracks.

Recognizing surface form “pi-nyi”.

—

. (0) (y.0) - automaton NY] Orthography blocks from state 1.

.O+@Ep 111111

(G- 111112

. (2) Nothing to do.

(Bl ut)i)y—»(1 112112

. (2) Entry |p{ul)| ends — new lexicon] V3STEM, config (1 1 1 2

112).

7.3 (-0—-(1312112).

. (4) Nothing to do.

M E)-(1 212112,

10. @) (nn)—> (1223112

11. (5) (y.0) = automaton {ui) Assimilation blocks from state 3.

12.5)+@yn—-1211112)

13.(6) i)~ (1211112).

14. (7) Entry |-ayi| ends — new lexicon] END, config (1 2 1 1 11 2). °

15. (8) End — result is (“p{uid-nyi” (ODAMAGE V NPST)).

16. (7) [14)Entry |-nyi| ends — new lexicon DIRENCLITIC, config
(121111 2)17. (8)(-.0) ~ automaton Hyphen Realization blocks
from state 2.

18. (7) [14] Entry |-nyi| ends — new lexicon] WORD, config (1 2 1 11
12)

19. (8) (% .0) — automaton Hyphen Realization blocks from state 2.

20. (7) [14] Entry |-nyi| ends — new lexicon SUBJ, config(1 21 1 11 2)

21. (8) (-.0) — automaton Hyphen Realization blocks from state 2.

22. (7) [14] Entry |-nyi| ends — new lexicon OBJ, config(1 21 1 1 1 2)

23. (8) (-.0) » automaton Hyphen Realization blocks from state 2.

24. (7) [14] Entry | -nyi| ends — new lexicon RLA, config(1 2 1 1 11 2)

25. (8) (-.0) = automaton Hyphen Realization blocks from state 2.

26. (7) [14] Entry |-nyi| ends — mew lexicon], config (1 21111 2)

27. (8) (-.0) — automaton Hyphen Realization blocks from state 2.

28. ()P A)—-1111122)

29. (2) Nothing to do.

“pi-nyi” = (“p{ul)-nyi” (ODAMAGE V NPST))

(< NR T I R\

O oo
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Fig.8. A graph of the backtracking done by the two-level morphological analyzer for 81
Warlpiri words. The amount of backtracking is linear in word length, reflecting the relative
sparsity of *“hard” problems along with the nonambiguity of some underlying word
decompositions.

Figure 8 displays the resulting graph of word length vs. backtracking
for a distribution of over 80 Warlpiri words. Note that the two-level system
does substantial backtracking: the amount of backtracking grows linearly
with input length. Thus, in this sample, the amount of backtracking is not
the best it could be - it is #of a constant amount of backtracking, which would
result in a linear time algorithm and which is claimed, evidently incorrectly,
by Koskenniemi (1983) for the two-level both worst-case and average-case



Computational complexity and natural language 153

analyses — but neither is it the wors the two-level formalism allows — an
exponential amount of backtracking (since the problem is NP-hard).

Average-case behavior of 3-sat. In short, “hard” two-level problems
don’t seem to arise in practice, even for examples that involve just two or
three harmony processes. In fact this is a general result, not just for linguistic
examples. “Hard” cases of the problems used for the linguistic reductions
are hard to come by. But if the hard cases of a problem arc rare, then expected
running time for the problem will, on average, be easy. Since 3-sAT was used
for most of the reductions mentioned, it is important to note that 3-sAT is
considered to be average-time polynomial, although the distribution
assumptions under which this holds are not clear (see Johnson (1984) for
additional discussion). What this means is that most 3-saT problems are in
fact easy, and that improved backtracking methods (see note 7) work in
expected polynomial time (see Purdom (1983) for a review).

It is a challenge to transfer mathematical results about average-case
complexity to the linguistic domain. For an average-case complexity reduction
to hold, not only must the reduction be done quickly, it must preserve
properties of the original distribution assumed for the known problem we
started with. In particular, for the reductions we have used, both 3-sar
formulas and linguistic examples must have roughly the same actual
distributions. But this is by no means clear; we do not even know what the
linguistic distributions look like. Still, sampling experiments like those
described immediately above suggest that this good average time behavior
carries over to linguistic examples. This is an area that remains to be
investigated in depth.!!

Average-time behavior of extended unification. To buttress this
finding, we note that Kasper and Rounds (1990) have investigated the
complexity of extended unification, including disjunctions, which is required
in linguistic frameworks such as functional unification grammar. They point
out that the algorithms for solving such extended agreement problems often
have good average-time behavior, and that in fact Kasper’s (1987) algorithm
for the solving the consistency of a disjunctive feature specification runs in
cubic time in many practical instances.

Alrernatively, we could attempt to find a problem that can “simulate” all the
distributions in a class (i. ., is average-case complete for NP) but such problems are
rare (sec Gurevich (1989) for a review) and no such reductions have been carried out
for lingustic problems that this author is aware of.
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Pronoun antecedence and average-time behavior of £-GRAPH
COLORABILITY. Recall from section 2 and table 1 Ristad’s (1990) demon-
stration that INTRASENTENTIAL PRONOUN ANTECEDENCE is NP-complete.
That reduction hinges on £-GRAPH COLORABILITY: finding a valid assignment
of 7 pronouns to £ antecedents within a sentence can be as hard as coloring
a graph with # vertices with £ colors such that no two connected vertices
have the same color. This latter problem is NP-complete. But, as is widely
known (Johnson (1984)) most such problems are easy because the answer is
almost always No. Take for example 3-colorability. A random graph will
almost always contain a 4-clique — a tortally connected subgraph with
4 vertices — and hence, not be 3-colorable.

More generally, if the probability of selecting a graph is fixed,
standard backtrack search solves the problem in constant time — it takes
roughly 197 steps on average (Wilf (1985)). However, here again there is
a breakpoint at # =4 or # = 5; the search tree for 5-colorability contains
750,000 nodes. Thus, we would expect backtrack search to perform qulte
poorly past this point, and it does (Wilf (1985)).

This result is completely consistent with the truncation effect in
pronoun antecedence suggested earlier and figure 7, and strengthens the
truncation thesis. If human cognitive systems use simple backtracking
search, and if they are essentially deterministic engines — so that they do not
have unlimited parallel processors or memory at their disposal to simulate
a nondeterministic Turing machine — then we would expect pronoun
antecedence computation to become difficult with four antecedents. This in
fact seems to be the case. Simple backtracking can work, because people
need to solve only small or simple problems.

Summarizing, there is no paradox between the computational
intractability of linguistic theories and the observed efficiency with which
people process language. We need not even invoke the deus ex machina of
unlimited parallelism, whatever other merits parallel processing may have.
Natural languages avoid intractability by adopting truly autonomous,
modular representations; by incorporating substantive constraints that
truncate computationally troublesome problems before they arise; by
mirroring problems whose average-time behavior is good; or by handling
only simple, small inputs. Evidently a delicate balance is maintained berween
the immense computational sophistication of language and its actual
processing by people with limited, deterministic computational resources.
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