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A b s t r a c t .  In this paper we propose an explicit computer model for learning natu- 
ral language syntax based on Angluin's (1982) efficient induction algorithms, using a 
complete corpus of grammatical example sentences. We use these results to show how 
inductive inference methods may be applied to learn substantial, coherent subparts of 
at least one natural language - English that are not susceptible to the kinds of learn- 
ing envisioned in linguistic theory. As two concrete case studies, we show how to learn 
English auxiliary verb sequences (such as could be taking, will have been taking) and the 
sequences of articles and adjectives that appear before noun phrases (such as the very 
old big deer). Both systems can be acquired in a computationally feasible amount of 
time using either positive examples, or, in an incremental mode, with implicit negative 
examples (examples outside a finite corpus are considered to be negative examples). As 
far as we know, this is the first computer procedure that learns a full-scale range of noun 
subclasses and noun phrase structure. The generalizations and the time required for 
acquisition match our knowledge of child language acquisition for these two cases. More 
importantly, these results show that just where linguistic theories admit to highly irreg- 
ular subportions, we can apply efficient automata-theoretic learning algorithms. Since 
the algorithm works only for fragments of language syntax, we do not believe that it 
suffices for all of language acquisition. Rather, we would claim that language acquisition 
is nonuniform and susceptible to a variety of acquisition strategies; this algorithm may 
be one these. 

1. Introduction: The role of inductive inference in 
language acquisition 

As a sophisticated cognitive faculty, language acquisition poses an acid 
test for any learning theory. How are children able to learn language so flu- 

ently and effortlessly, without evident explicit instruction? Broadly speak- 
ing, researchers have proposed two ways to attack this problem: first, as- 
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sume that the child has a rather sophisticated inductive inference engine 
that can infer the required rules and representations (whatever those may 
be); second, assume that the grammar hypothesis space is small, so that 
no sophisticated inference is required. Unfortunately, these differing per- 

spectives have rarely been combined; too often, the results and techniques 
of one group have been downplayed by others. 

For example, many linguists, starting from a position first outlined by 
Chomsky in the early 1960s, see their job as delimiting the class of natural 
grammars so narrowly that there really need not be any learning theory for 

natural language at all something as simple as hypothesis-and-test would 
do the job, at least in principle. 1 Such "no learning theory needed" views 
have often been criticized as ignoring the actual time course of acquisition, 
computational demands, and the need for some kind of induction (if only 

the induction of word classes). 

On the other hand, researchers concerned with the detailed developmen- 
tal course of acquisition (MacWhinney, 1982; Langley, 1982) have assumed 
a larger role for mechanical inductive inference in language acquisition. 

Finally, though a considerable body of mathematical inductive inference 

techniques have been accumulated, these are not usually applied to natural 
languages in any detailed way. Either the results supply general "boundary 
conditions" that apply to all kinds of learning (see Osherson, Stob, & 

Weinstein, 1986), or else the systems described are applied only to artificial 
examples (Fu & Booth, 1975) and not to natural languages. 2 

This paper bridges the gap between these three traditions by present- 

ing a polynomial-time computer model that uses recent advances both in 
inductive inference techniques and explicit constraints on natural gram- 
mars to learn certain regular (finite-state) syntactic subsystems of English 
syntax. Using Angluin's (1982) algorithm for the inference of reversible 

automata, we show how substantial syntax subsystems may be learned by 
examining finite, positive-only example corpuses. 3 We also compare the al- 

1See Wexler and Culicover (1982) for one explicit formulation of this kind of "simple" 

learning procedure. 

2This is not universally so. Olivier (1968) used a statist ical  da ta  compression algo- 

rithm to pinpoint word boundaries by hunting for cormnonly occurring token clusters, 

such as ' t  h e' (which are much more common than ' t  t h').  The same statistical regular- 

ity approach was exploited in Wolff's SNPR system (1978, 1982). SNPR also contained a 

general substi tution class algorithm that  is less constrained than the one that  we present 

below. 

3Since examples outside the finite corpus are assumed to be negative examples, the 

algorithm in fact uses implicit negative evidence. The inference algorithm can operate 

incrementally only after we have restricted the space of target grammars it can consider 

as valid hypotheses. This restriction can be built  in only after we have determined the 
right hypothesis space restriction. Exact details of the acquisition procedure are given 
in section 2.4. Each corpus contains on the order of 100 to 500 distinct sentence types, 
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gorithm's performance to what is known about child acquisition, and find a 
rough correlation. 4 (As always, it is sometimes difficult to assess the child 

acquisition data here, so the usual caveats apply.) 

More importantly, whatever the particular outcome of these case stud- 

ies, our results suggest that finite-state natural language subsystems can 
be learned by general induction procedures, provided those procedures are 

coupled with restrictive computational constraints. On this view, there is 

a role for machine learning theory in natural language acquisition, but it 

must be woven together carefully with what is known about constraints on 

natural grammars. In fact, grammatical constraints and inductive inference 

appear to work hand in hand: in our case studies, just where the gram- 

mar hypothesis space becomes enormously large (the number of possible 

automata with n states for n > 20 is huge), inductive inference techniques 

may be applied because the associated grammatical subsystem is suscep- 

tible to efficient induction techniques. 5 This suggests that there may be 

general constraints on the design of certain linguistic subsystems to make 

them easy to learn by general inductive inference methods. 

The remainder of this paper is organized as follows. The next two sub- 

sections discuss the limits on grammatical regularities as a source of hy- 

pothesis space restrictions and computational limits on inductive inference 
algorithms. Section 2 continues with an informal description of Angluin's 

inductive inference algorithm, as applied to natural languages. It also for- 
mally describes the Angluin inference algorithm. Section 3 applies that 

algorithm to two case studies, the English auxiliary verb system and noun 
phrase specifiers (material that precedes the head of a noun, e.g., the big 
blue in the big blue ball). Section 4 evaluates our case study results and 

probes more deeply into how linguistic and inductive inference constraints 

may be combined. 

1.1 The limits of grammatical regularities 

Many linguists adopt the view that natural language syntax is regular 

enough to be learned by simple positive examples, without explicit instruc- 
tion. But this is really an empirical issue. There are many subportions of a 

language's syntax that do not demand a powerful inference engine. As an 
example, the complements of most phrases are highly systematic, as one 

can see from the English examples given below. A complement is simply 

and we are currently conducting experiments with even larger corpuses. 

4We have drawn primari ly on the discussion in Pinker (1984) here, though recently 

we have examined a computer da ta  base from the Brown (1973) corpus. 

5In general, it is possible to show that  each of these hypotheses must be explicitly 

considered, as Gold's  1967 and 1978 results imply. Therefore, "summarization" methods, 
like Mitchell 's (1978) version space algorithm, would become unwieldy. 
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the phrasal  sequence tha t  follows the Head of a phrase,  e.g., the Noun in 

a noun phrase (NP), the verb in a verb phrase (VP), and so forth. As a 

simple example,  in John hit the ball against the .fence, hit the ball against 

the .fence is the verb phrase, and the ball against the fence is the comple- 

ment  of the verb hit. It  is made  up of two separate phrases: the object 

noun phrase the ball and the preposi t ional  phrase against the fence. More 

generally, the following array of possibilities is pe rmi t t ed  in English: 

Verb Phrase ~ Verb 
Prep Phrase ~ Preposition 
Adjective Phrase --* Adjective 
Noun Phrase ~ Noun 

Noun Phrase (Prep Phrase)* (Sentence) 
Noun Phrase (Prep Phrase)* (Sentence) 
Phrase (Prep Phrase)* (Sentence) 
(Prep Phrase)* (Sentence) 

Evidently, within a language like English, all complement  phrases can be 

expressed via the schema X P ~ X  NP PP* (S). T h a t  is, they  obey the for- 

m a t  Head-Complement, where Head is a metavariable replaceable by verb, 

preposit ion,  adjective, noun,  and where Complement is a metavariable re- 

placeable by NP  PP*(S).  Note tha t  the Complement  roughly denotes the 

"arguments" of the Head. 6 If all na tura l  g rammars  have this s t ructure,  

then  what  the  child mus t  learn is quite trivial: since the order of comple- 

ment  phrases is fixed, the only decision to be made  is whether  the head 

comes first (as it does in English, French, or Italian) or last (as it does 

in Japanese).  If word classes are known, this evidence is readily available 

from simple sentences. 7 

While this is not  the whole story of phrasal  acquisition, many linguistic 

authors  (Lightfoot, 1982) have noted  tha t  it goes a long way to explain- 

ing the relative rapidi ty and error-free acquisition of basic phrase s t ruc ture  

among children. This  highly constrained s t ructure  can be exploited in com- 

puter  models  of language acquisition, as Berwick (1982, 1985) has shown. 

We may  contrast  the extreme regularity of phrasal  complements  with so- 

called specifiers, the mater ial  tha t  precedes a phrasal  Head. For instance, 

in the following examples the specifiers are italicized: a very big deer; a 

60f course, there are additional factors that intervene to complicate this simple pic- 
ture: NP may be replaced by 2 or more NPs, depending on a verb's type; and NP must 
not be present if the head is an adjective or a noun. These constraints arise essentially 
from the case marking properties of the language; this is not a part of basic phrasal 
information, but additional constraints that must be learned. For example, in other 
languages the noun may mark case, and in these languages NP may appear after a head 
noun. 

7Continuing the point made in the previous footnote, we note that in any individual 
language there may occasionally be variation in this strict Head-first/Head-final division, 
but presumably the bulk of sentences, and in particular the sentences used for learning, 
exhibit a clear-cut choice. See Lightfoot (1982) for additional discussion. 
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.few dozen deer; a great number of deer; and so forth. 

Allowable specifier sequences are highly idiosyncratic within and across 

languages. Jackendoff (1977) puts it this way: 

There are problems in studying specifier systems that do not arise in 
studying complements. First, specifier systems involve very small num- 
bers of lexical items and are riddled with idiosyncrasies. Thus general 
phrase structure rules must be supported on the basis of impoverished 
and skewed surface distributions ... 

A second problem with specifier systems, at least in English, is that 

it appears much less possible to correlate semantic regularities with 

syntactic positions. 

It does not appear, then, that  learning specifier systems should be as easy 

as learning phrasal complements because there are more than one or two 

binary decisions to make. This would seem to require a powerful kind of 

inductive inference engine. Indeed, Pinker (1984) has noted that fixing 

noun subclasses seems to be quite difficult: 

How might the identity of Noun subclasses be established? ... There are 

several ways this might be done. One could combine two word classes 

that overlap to some minimum extent ... but this step is treacherous. 

On Pinker's view, combining word classes is "treacherous" because of the 

tremendous number of possibilities involved and because one does not know 

how to define overlap properly: should two words be substituted if they 

occur only in exactly the same contexts, or only if their one or two word 

surrounding contexts are identical? 

In the remainder of this paper, we probe exactly this point by examin- 

ing two specifier systems: first, English auxiliary verbs (such as could have 

been won, which may be loosely regarded as specifiers of the main verb); 

and second, noun phrase specifiers (such as three dozen deer). Despite the 

"small number" of lexical items involved (see the appendix for the actual 

sentence sequences), we discovered substantial variation in how difficult 

these systems are to induce (as measured by the computational complex- 

ity of the required inference program), and corresponding variation in the 

difficulty children have in acquiring these two systems. See section 4.2 for 

further discussion. 

1.2 The l imits  of  formal inductive inference 

Having pointed out a natural language domain where simple, linguistic- 

ally-motivated learning procedures fail, and hence a suitable domain for 

formal inductive inference, we turn next to the limits of mechanical in- 
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ductive inference itself. We maintain that unless inductive inference is 

formally restricted and applied to narrow linguistic domains, it rapidly 

becomes computationally intractable. This may account in part for the 

reason that formal mechanical inductive inference techniques have been so 

rarely applied to full-scale language acquisition studies. Thus, such proce- 

dures are bound to limit themselves to simple artificial examples, with at 

most a few distinct word categories. 

To begin, we first note that finite-state inference is in general compu- 

tationally intractable. Finding an automaton of n states or less agreeing 

with a given sample of positive and negative data is NP-complete (Gold, 

1978). s If the number of states is not known at all, then as Gold (1967) 

showed much earlier, positive exa~nples alone will not suffice. 

The reason for this computational difficulty is intuitively clear. If all we 

know is that a target automaton is a finite-state automaton with n states, 

then it may take a very long string to distinguish that automaton from all 

other n-state machines. Indeed, Angluin (1977) shows that in some cases 

one must look at all O(2 n) strings of length n, where n is the number of 

states in the target machine. 

In order for inference to be computationally feasible, we must restrict 

the class of target automata to be acquired, just as the linguists have ar- 

gued; not all finite-state automata can be in the hypothesis space. We 

propose that the target automata are all deterministic, finite-state, and 

k-reversible. This constraint guarantees an O(n 3) time inference algorithm 

from positive-only examples (Angluin, 1982), where n is the number of 

example sentences examined. The associated induction procedure is also 

incremental; that is, it can process one example sentence at a time, rather 

than the entire corpus all at once. This constraint is again designed to be 

consistent with knowledge about human language acquisition. In the re- 

mainder of this paper we use an explicit computational model to show that 

the English auxiliary verb and NP specifier systems meet these constraints, 

allowing them to be easily inferred from a positive-example corpus. 

SThe problem is NP-complete in the number of states of the target  automaton. This 
problem can be solved in polynomial time if we exhaustively list all strings of length 
n or less over the assumed alphabet ,  but only by a coding trick. It is important  to 
remember that  the statement of the problem itself includes in its encoding the set of all 
sentences (strings) of length n or less, which in this case will be an exponential amount 
of data. To get this result, then, we in effect do not "charge" the learning algorithm for 
the time to read the positive and negative data.  If one changed the representation used 
for characterizing finite-state automata,  then it might also be possible to develop more 
efficient inference algorithms. 
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2. Learning k-reversible languages f r o m  e x a m p l e s  

We now introduce the notion of k-reversibility, and follow with a formal 

definition. The next section presents Angluin's inference algorithm itself. 

Informally, a zero-reversible language supports the simplest kind of word 

class induction: If you were told that  Mary bakes cakes, John bakes cakes, 

and Mary eats pies are legal strings in some language, and if one then 

guessed that  John eats pies is also in that  language, then you have assumed 

that  the target language was zero-reversible. The strings mentioned above 

might been generated by the language expressed by the following regular 

expression: (Mary[John)(bakes[eats)(cakes[pies).  

2.1 T h e  f o r m a l  de f in i t i on  of  0 - revers ib i l i ty  

To formally define when a regular language is reversible, let us first 

define a prefix as any substring (possibly zero-length) that  can be found at 

the very beginning of some legal string in a language, and a suffix as any 

substring (again, possibly zero-length) that  can be found at the very end 

of some legal string in a language. In our case the strings are sequences of 

words, and the language is the set of all legal sentences in our simplified 

subset of English. 

Also, say that  in any legal string the suffix that  immediately follows a 

prefix is a tail for that  prefix. Then a regular (finite-state) language is 

zero-reversible if, whenever two prefixes in the language have a single tail 

in common, then the two prefixes have all tails in common. Pu t  another 

way, a language is 0-reversible if the automaton recognizing it remains 

deterministic when one swaps initial and final states and reverses all arcs. 9 

Figure 1 gives some simple examples. The top half (a) shows a non-0- 

reversible automaton,  generating strings such as walks very very fast, walks 

very very very very •ast and talks very fast. The automaton in the bot tom 

half of the figure (b) generates an infinite 0-reversible language. 1° One can 

see how automaton (a) fails to meet 0-reversibility: the prefixes talk and 

walk share the tails very very fast in common, but  they do not share all 
tails in common, since automaton (a) does not generate walks very fast. 

In contrast, the second automaton in the bo t tom half of the figure is 0- 

reversible, as can be easily seen by reversing all the arcs and swapping 

initial and final states. 

9Of course, the reversed automaton does not accept the same language as the original; 
reversing the automaton just tests for a property of the original language. 

1°In fact, automaton (a) is not even k-reversible; see the next subsection for a 
definition. 
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(a) A v e r y  

walk ~ ~  ~ fast 

very ( ~ very 

q3 

Figure 1. (a) A non-0-reversible automaton; this automaton also happens to be 
non-k-reversible, for any value of k. (b) A 0-reversible automaton. 
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2.2 The formal definition of k-reversibility 

Intuitively, the extension from 0- to k-reversibility expands the backward 

context that  must be deterministic. A regular language is k-reversible, 
where k is a nonnegative integer, if whenever two prefixes whose last k 
words match have a tail in common, then the two prefixes have all tails 

in common. In other words, a deterministic finite-state automaton (DFA) 

is k-reversible if it is still deterministic with lookahead k when its sets of 

initial and final states are swapped and all of its arcs are reversed. A higher 

value of k gives more conservative inference, in the sense that  it will not 

overgenerate as readily (because it looks at more possible sentences). 11 

2.3 A simple language example 

Before presenting the induction algorithm proper, we will give a simple 

example showing how the notions of 0- and k-reversibility may be used for 

inference. 

Consider again just the sentences Mary bakes cakes; Mary eats pies; and 

John bakes cakes. Suppose we assume that  the target automata  are 0- 

reversible. (This would be an a priori restriction on the class of possible 

learnable languages, like that  made by linguists.) But then, since the 

language is assumed to be 0-reversible, all prefix tails must be held in 

common. In particular, the prefix Mary has the tail eats pies, but the 

prefix John does not. In order to maintain 0-reversibility, the string John 
eats pies must be in the target language. Thus we have inferred a new 

string, just enough to make the language 0-reversible. 

The same idea holds for other values of k. For example, if we assume 

the target language is 1-reversible, then we must tack on an additional 

word and see whether May bakes and John bakes have all tails in common 

(and hence that  the language is 1-reversible). In this case these two-word 

sequences do have all tails in common (cakes), so the three-sentence corpus 

does not force any additional inference. However, if we now added the 

sentence Mary bakes pies, then we would have to add the sentence John 
bakes pies to the language in order to maintain 1-reversibility. Adding one 

more sentence, Mary bakes, would force us to add John bakes, resulting 

in the seven-string 1-reversible language expressed by (MarylJohn) bakes 
[cakeslpies] I Mary eats pies. 

With these same examples, assuming the target is O-reversible would 

have produced the regular expression (Mary I John) (bakes I eats) ( cakes I pies)* 

l l In  the worst case, if we make k as long as all possible sentences, then the procedure 

cannot overgenerate. Of course, the time required for inference also increases modestly: 
Angluin's algorithm runs in time O(kn3). 
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Table 1. Example of incremental k-reversible inference for several values of k. 

Sequence of new New strings inferred: 

strings presented k = 0 ] k = 1 

NONE Mary bakes cakes 

John bakes cakes 

Mary eats pies 

Mary bakes pies 

Mary bakes 

NONE 

John eats pies 

John bakes pies 
Mary eats cakes 

John eats cakes 

John bakes 
Mary eats 

John eats 
Mary bakes cakes cakes 

John bakes cakes cakes 
Mary bakes pies cakes 

(Mary[John) (bakes [eats)(cakes [pies) * 

NONE 

NONE 

NONE 

Johnbakespies 

John bakes 

k = 2  

NONE 

NONE 

NONE 

NONE 

NONE 

This generates an infinite language, as indicated in the second column of 

Table 1.12 On the other hand, assuming that the target language is 2- 

reversible would force us to add no new sentences. For a particular language 

we hope to find a k that is small enough to yield some inference. However, 

k should not be so small that we overgeneralize. Table 1 summarizes our 

examples of 0-, 1- and 2-reversible inference. 13 

2.4 An inference algorithm 

With the definitions of k-reversibility and a simple natural language ex- 

ample behind us, let us consider the inference algorithm itself. In addition 

to formally characterizing k-reversible languages, Angluin (1982) also de- 

veloped an algorithm for inferring a k-reversible language from a finite set 

of positive examples, as well as a method for discovering an appropriate k 

when negative examples (strings known not to be in the language) are pre- 

12Because of loops like these, the 0-reversible algorithm may in general be able to infer 

infinite languages. 
13Note that since we minimize the resulting automaton, we always obtain the smallest 

reversible automaton that just covers a corpus. 
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start 

John ~ M a r y  

bak es 

 Oes 

Figure 2. A prefix-tree for some simple sentences. 

sented. She also gave an algorithm for determining, given some k-reversible 

regular language, a minimal set of examples from which the entire language 

can be induced. We have developed a LISP program that implements this 

procedure, as well as some refinements on Angluin's incremental acquisition 

algorithm. 

Given a sample of strings taken from the full corpus, we first generate a 

prefix-tree automaton that accepts or generates exactly those strings and 

no others. As its name implies, a prefix-tree is simply a directed acyclic 

graph with a single root, where every sentence is "spelled out" by tracing 

a unique path from the root to the terminal nodes, which are all final 

automaton states. Figure 2 gives a prefix tree for the sentences Mary bakes 
cakes and John bakes cakes. 

We now want to add additional strings to maintain a k-reversible lan- 

guage, for some chosen k. The key idea is to collapse equivalent states 

in the prefix tree, starting from the final states and working backwards, 

according to the following definition of equivalence: 

Let us say that when accepting a string, the last k symbols encountered 

before arriving at a state is a k-leader of that state. Then to generalize 

the language, we recursively merge any two states for which either of the 
following two conditions are true: 
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1. Another state arcs to both states on the same word (this enforces 

determinism); OR 

2. Both states have a common k-leader AND either 

(a) both states are accepting states, OR 

(b) both states arc to a common state via the same word. 

When none of these conditions obtains any longer, the resulting DFA ac- 

cepts or generates the smallest k-reversible language that  includes the orig- 

inal sample of strings. 14 This procedure works incrementally. Each new 

string may be added to the DFA in prefix-tree fashion and the state-merging 

algorithm repeated. The resulting language induced is independent of the 

presentation order of sample strings. 

Returning to our example in Figure 2, suppose we assume a 0-reversible 

target automaton.  We now work backwards from the bot tom of the tree. 

We first note that  both states q5 and q6 are final states and that  the last 0 

symbols (that is, no symbols) before arriving at these states are the same; 

therefore, we merge these two states. Call this new state q56. Continuing 

upwards from this newly merged state, we merge states q3 and q4 under 

condition (2) because both arc to the same (new) state q56 on the same 

word and both have the same 0-leader. Finally, we do not merge states 

ql or q2 because neither of the two conditions is met. This gives us the 

regular expression [(JohnlMary ) bakes cakes]. 

One can determine for what  value of k a (finite-state) language is re- 

versible (assuming it is reversible at all) if some negative as well as positive 

examples are known. One simply tries increasing values of k until the in- 

duced language contains no negative examples. In our case studies, we 

assumed that  the learning procedure in effect knows in advance what  the 

appropriate value of k is for a given corpus; this is like the linguists' assump- 

tion that  the learner knows something about the class of target languages 

to be acquired. In practice, we carried out this approach by the following 

procedure that  is executed external to the learning algorithm itself: We 

assume that  every sentence outside a particular finite corpus is a negative 

example. We set k = 0 and see whether the resulting DFA covers the cor- 

pus and does not generate any negative examples. If so, we are done; if not, 

we increase k by 1 and try again. 15 Once we know that  a particular corpus 

14This usually is not the smallest DFA for the language; we can minimize the corre- 

sponding DFA using s tandard techniques. 

15In fact, the learning procedure could use this same method to discover the proper  

value of k for itself, but  only if it has access to some negative examples or a complete set 

of positive examples and hence, implicitly, negative examples. We discuss this proposal 

explicitly in section 4.3, since it seems to correspond to what happens in children's 
acquisition of these syntactic subdomains. 
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is k-reversible for a specific value of k, we can then impose this as an a 

priori constraint on the class of target automata acquired by the learning 

system via positive-only examples. As we shall see, for interesting natural 

language syntax fragments, setting k to 1 or 2 seems most appropriate. 

Though the inference algorithm takes a sample and induces a k-reversible 

language, it is quite helpful to use Angluin's algorithm for going in the re- 

verse direction: given a k-reversible language we can determine a minimal 

set of shortest possible examples (a "characteristic" or "covering" sample) 

sufficient for inducing the language. This is helpful in determining a min- 

imal corpus that suffices for acquiring a particular language fragment, or 

in calculating the "inferential power" of the algorithm; the fewer sentences 

required to infer the full corpus, the greater the inference power. Though 

the minimal number of examples is of course unique, the set of particular 

strings in the covering sample is not necessarily unique. 

3. Applying formal inductive inference to natural language 

As our example corpuses, we aimed to select subportions of English syn- 

tax known to be partly regular, yet with some exceptions and variation. 

There are two well-known examples: auxiliary verbs and noun phrase spec- 

ifiers. Linguists point out that auxiliary verbs are more regular than noun 

phrase specifiers (Akmajian, Steele, & Wasow, 1979). 

3.1 Learning the English auxiliary system 

We represent the English auxiliary system as a corpus of 92 variants 

of a declarative statement in third person singular. The variants cover 

all standard legal permutations of tense, aspect, and voice, including do 
support and nine modals. We simply use the surface forms, which are 

strings of words with no additional information such as syntactic category 

or root-by-inflection breakdown. For instance, one present, simple, active 

example is Judy gives bread. One modal, perfective, passive variant is Judy 
would have been given bread. It is clear that this corpus does not cover all 

modals: for example, negatives are not represented, and examples such as 

Judy need not bake bread or Judy got taken to the bakery are also omitted. 

Nonetheless, we feel that this corpus is reasonably representative; in later 

experiments we plan to expand the range of sentences covered. 

We first determined for what values of k the corpus is in fact k-reversible. 

We found that the English auxiliary system can be faithfully modeled as 

a 1-reversible regular language. Thus, if a learning system assumes that 

the target corpus is 1-reversible, it can use the 92 positive examples to 

learn auxiliary system in time 0(2 • n 3) in the number of corpus examples 
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(Angluin, 1982).16 If the learning system assumed that the auxiliary system 

were 0-reversible, it would overgeneralize; the inferred DFA contains loops 

and so generates infinite numbers of illegal variants. 

Figure 3 compares a correct DFA for the English auxiliary system with 

the 0-reversible, overgeneralized DFA. Both are shown in a minimized, 

canonical form. The top (correct) automaton can be generated in two 

ways. First, one can minimize the prefix tree for the full corpus; second, one 

can minimize the result of k-reversible inference applied to any sufficiently 

characteristic set of sample sentences, for any k _> 1. One can read off 

all 92 variants in the language by taking different paths from initial state 

to final state. The bottom (overgeneralized) automaton is generated by 

subjecting the first to 0-reversible inference. 

Does treating the English auxiliary system as a 1-reversible language 

yield any inferential power? Making this assumption, the system can in 

fact infer the entire auxiliary system from a cover of only 48 examples out 

of the 92 variants in the corpus. Further, if the learning system "knows" 

that the corpus divides into subportions that can be separately acquired 

(this might be known on other syntactic or semantic grounds, for example) 

then additional savings may be won. For instance, if we split up active 

and passive forms and acquire them separately, the active corpus requires 

only 38 examples out of 46 and the passive corpus, 28 examples out of 46. 

Treating the full corpus as a 2-reversible language requires more examples 

(76), and a 3+-reversible model cannot infer the corpus from any proper 

subset whatsoever. 

3.2 Learning noun phrase specifiers 

Our second example corpus, noun phrase specifiers, is more challenging. 

No simple, exhaustive covering corpus is directly available. We first used 

84 example sentences culled from Jackendoff (1977) as a test case. We 

then expanded the Jackendoff corpus to 735 example specifier sequences. 

As far as we know, this is one of the largest and richest subfragments of a 

natural language ever analyzed by an automatic induction technique. For 

example, it includes such long sequences as these very oldest two hundred 

very big deer. Still, as we shall note below, even this sample is known to be 

incomplete and omits some NP specifier sequences; we believe that several 

thousand sequences are possible. Second, the noun phrase specifier cor- 

pus divides into many more "natural" semantic subcomponents than just 

active/passive; for instance, it might divide into sequences with mass and 

count nouns, or into sequences with partitives (of, as in some of those deer) 

16It will also successfully acquire the auxiliary system if it assumes the target  language 

to be k + 1 reversible, for k > 0. 
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(a) 
(giveslgave) 

• give 

(islw~s) 

/ (h~slhad) 

/MMoa~ls ~ 

etc.) I f l  
I be ~ ~ (givinglgiven)j/ 

L given j 

give ..~ 

r 

(gives Igave) 

(b) f % 

(islwas]haslhad) (beenlbeing) 

~Modals (get ~ " - - ~  (givinglgiven) 

give j 

Figure 3. The top automaton (a) generates the English auxiliary system• Zero- 

reversible inference merges state 3 with state 2 and merges states 7 and 

6 with state 5, resulting in the bottom overgeneralized version (b). 
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and sequences without partitives. Whether these divisions can be exploited 

remains largely an open question, though it appears that  some divisions 

(see below) can make the system 1-reversible, like the active/passive forms 

for the auxiliary verbs. 

The noun phrase specifier sentences fall into the following rough groups: 

demonstrative-quantifier-adjectives, such as those several deer; article-ad- 

jective-cardinal numbers, such as no big deer or any two deer; quantifier- 

adjectives, such as many deer, many  old deer; article-adjectives, such as 

this deer, this big deer; seminumerals, such as a score deer, only a score 

deer; cardinal numerals, such as these two hundred deer; intensifiers, such 

as very many  deer; superlatives, such as the oldest deer; pseudopartitives, 

such as a group of some deer; and a residual collection of eclectic examples. 

One can see that  the range of these constructions is quite varied, and 

the restrictions on them quite subtle. For example, one cannot say, which 

many several deer, enough a deer, or many of some deer. As far as we 

are aware, this is one of the most complex target languages ever a t tempted 

for mechanical inductive inference. Indeed, we did not know beforehand 

whether the sample would be 1 or 2-reversible at all. 

Before using the learning procedure proper, to determine whether the 

corpus was reversible we again applied our incremental procedure first: 

we assumed a 0-reversible target language, then checked whether this as- 

sumption resulted in a DFA that  produced any negative (ungrammatical) 

example sentences; if so, we proceeded to assume a 1-reversible target lan- 

guage, and so on. 

The corpus was not 0-reversible or 1-reversible: both of these automata  

vastly overgenerated. The inferred 0-reversible automaton had only 3 

states, including a loop from state 0 to itself that  collapsed together words 

such as a, all, any, no, these, and this. The 1-reversible automaton had 

33 states, and did not contain these loops; however, it still overgenerated, 

accepting such sequences such as a score of all deer. This is because the 

"window" for 1-reversible inference cannot detect the cooccurrence restric- 

tion between a bunch or a score and all when they are separated by of. 

We found that  the NP specifier corpus is 2-reversible, and that  it can 

be inferred from a subset of the full corpus, 359 examples out of 735. 

This represents considerable inferential power. The resulting full DFA has 

81 states (see Table 2), which is considerably larger than the auxiliary 

system's automaton.  Many more states are required to make the requisite 

fine distinctions between cardinals, seminumerals, quantifiers, partitives 

(with of) and so forth. For instance, in our corpus one can say a hundred 

big deer but  not a number big deer, so hundred and number must arc to 

distinct states, even though they seem otherwise very much alike. Table 

2(a) further shows that  the inferred automaton does exactly that: hundred 
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maps to state 26, while number maps to state 27. Similarly, enough and 

either are different: one cannot say enough two deer, but  one can say either 

two deer, so these two words must arc to distinct states (5 and 6), as the 

table shows. On the other hand, these and those can be substi tuted for 

each other, and the automaton shows them mapping to the same state, 

16. Additionally, one cannot have two number-like quantifiers in the same 

specifier sequence, such as all several deer, or the all deer, though one can 

have all the deer. 

However, a note of caution must be added about the results. It appears 

that  in part the larger number of states has to do with the restricted 

corpus used. We believe that  many of the states from 60 on would be 

collapsed if we used a full corpus of several thousand distinct examples. 

In other words, plainly interchangeable states in the table probably result 

from gaps in our sample data set. Thus, these results are best regarded as 

tentative, subject to future revision, and serve mainly as a demonstration 

that  a large automaton may be mechanically inferred from a very large 

corpus. We plan to carry out these even larger experiments shortly; the 

existing corpus size is unwieldy enough as it stands to demand the full 

resources of a lisp machine. 

The inference system takes twenty times longer to process the larger NP 

corpus before arriving at a result as compared to the smaller auxiliary cor- 

pus - about 30 minutes of execution time compared to a minute and a half. 

While the procedure is still cubic time in the number of input sentences, 

this increased processing load is not so unrealistic, given the increased dif- 

ficulty children have with this richer system (see the next section). 

Just as with the auxiliary corpus, the specifier corpus may be split up in 

certain semantically relevant ways to make learning easier. For instance, 

the partitives - constructions with of, such as a group of some deer 

may be removed. Like the active/passive split of the auxiliary system, 

this makes some semantic sense, since the partitives are meaningfully dis- 

tinct from ordinary specifier sequences and one could argue that  a learner 

can separate partitive from nonpartitive sequences. The resulting smaller 

data set is nearly 1-reversible; unfortunately, being almost 1-reversible is 

not good enough. We plan to continue experimenting with semantically 

defensible partitions of the NP specifier sequences. 

A second kind of corpus division - including only article-noun, possessor- 

noun, or adjective-noun pairs - may be more psychologically relevant. 

There is considerable evidence that  children pass through a two-word stage 

(Brown, 1973). On the other hand, this restriction may in part  be due to 

memory limitations on the speech production side rather than an accurate 

reflection of what children actually know; Gleitman and Wanner (1982) 

summarize this evidence. Therefore, we could legitimately limit the spec- 
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Table 2 (a). P a r t  o f  t h e  2 - reve r s ib le ,  m i n i m i z e d  D F A  for  t h e  N P  spec i f i e r  c o r p u s .  

S t a t e  23 is t h e  s t a t e  r e a c h e d  j u s t  b e f o r e  r e a d i n g  t h e  e n d - o f - s e n t e n c e  

m a r k e r / .  S t a t e  10 is t h e  s t a t e  r e a c h e d  j u s t  b e f o r e  r e a d i n g  t h e  h e a d  

n o u n ,  deer; s t a t e  68 is t h e  f inal  s t a t e .  

STATE TOKEN 

qo A 
ALL 
ANY 

EACH 
EITHER 
ENOUGH 
EVERY 
FRED'S 
MANY 
MUCH 
NO 
ONE 
ONLY 
SEVERAL 
SOME 
THAT 

THE 
THESE 
THIS 
THOSE 
TOO 
TWO 
WE 
WHICH 

ql BIG 
BUNCH 
DEER 
FEW 
GALLON 
GROUP 
HUNDRED 
NUMBER 
SCORE 
VERY 

q2 BIG 
DEER 
OLDEST 
TWO 
VERY 

q3 BIG 
DEER 
OLDEST 
TWO 
VERY 

q4 BIG 
DEER 
FEW 
HUNDRED 
OLDEST 
SEVERAL 
TWO 
VERY 

NEXT STATE [STATE [ TOKEN 

! 
ql ! q5 BIG 

DEER q2 ] 
TWO q3 I 

q4 ' q6 BIG 
q5 ! DEER 
q6 VERY 

q7 q7 BIG 
q8 DEER 
q9 TWO 

qlo I VERY 
ql 1 I q8 BIG 
q6 DEER 

q12 FEW 
q13 GROUP 
q14 MANY 
q6 ONE 

q15 SCORE 
q16 SEVERAL 

TWO q6 [ 
VERY q16 

q17 ] q9 BIG 
qlS DEER 
q~9 HUNDRED 

q2o qlo DEER 
q21 qll BIG 
q22 DEER 

q23 FEW 
q24 OLDEST 

q25 TWO 
q22 VERY 

q26 qt2 A 
q27 THE 

q28 TWO 
q29 q13 BIG 
qlo DEER 
q23 HUNDRED 

ql0 q14 BIG 
q3o DEER 
q31 TWO 
qlo VERY 
q24 q15 BIG 
q32 BUNCH 
q30 DEER 
q31 FEW 
qlo GALLON 

q24 GROUP 
q33 HUNDRED 

q26 MANY 
q32 OLDEST 
q34 ONE 
q35 SCORE 
q37 SEVERAL 

TWO 
VERY 

NEXT STATE 

qlo 
q23 
q35 

qlo 
q23 
q31 
qlo 
q23 
q37 
q31 

qlo 
q23 

q25 
q22 
q32 
q38 

q28 
q39 
q32 
q4o 
qlo 
q23 
q26 
q23 
qlo 
q23 
qlo 
q41 
q42 
q43 
q44 
q45 
q46 

qlo 
q23 
q47 
qlo 
q23 
q46 
q31 
q21 
q22 
q23 
q48 
q49 
q22 
q26 
qso 
qs1 
q52 
q28 
q53 
q35 
q36 
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Table 2 (b). Second part of the 2-reversible, minimized DFA for the specifier 

sequences. 

S TA TE  

q16 

q17 

q18 

q19 

q2o 

q21 

q22 

q23 
q24 

q25 

q26 

q27 
q28 

q29 

q30 

q31 
q32 

T O K E N  

D E E R  

F E W  
M A N Y  
O L D E S T  

O N E  
S E V E R A L  

TWO 
V E R Y  
F E W  

M A N Y  
BIG 

D E E R  

G A L L O N S  

V E R Y  
BIG 
D E E R  

F E W  
H U N D R E D  

O L D E S T  
O N E  
S E V E R A L  

T W O  
V E R Y  

F E W  
H U N D R E D  
M A N Y  

O N E  
S E V E R A L  

T W O  

V ER Y  
D E E R  

O N E  
T W O  

O F  
/. 
BIG 

D E E R  
H U N D R E D  

V ER Y  
OF 
W A T E R  
BIG 
D E E R  

V ER Y  
O F  
OF 

BIG 
F E W  

BIG 
H U N D R E D  
V E RY  
BIG 
BIG 
D E E R  
V ER Y 

N E X T  S T A T E  I S T A T E  T O K E N  

q23 q33 BIG 
q3a H U N D R E D  

q54 O L D E S T  
q~5 V ER Y 

q38 q34 D E E R  

q56 H U N D R E D  

q42 O L D E S T  

q57 V ERY  

q26 q35 BIG 
q32 D E E R  
qlo H U N D R E D  

q23 V ERY  

qss  q36 BIG 
q29 F E W  
qlo O L D E S T  

q23 q37 D E E R  
q24 H U N D R E D  

q26 VERY  

q6o q3s H U N D R E D  

q38 q39 D E E R  
q61 H U N D R E D  

q62 q40 F E W  
q36 M A N Y  

q63 q41 BIG 
q64 D E E R  

q65 T W O  

q38 V ERY  

q39 q42 BIG 
q46 D E E R  
q66 H U N D R E D  

q23 , q43 BIG 
qlo O L D E S T  

qlo 
q67 [ q44 F E W  
q68 H U N D R E D  

ql0 I q45 F E W  
q23 I HUNDRED 

q69 q46 H U N D R E D  

q36 q47 BIG 
qss D E E R  

q23 I F E W  
ql0 O L D E S T  

q23 I S E V E R A L  
q36 VER Y 

q7o q48 D E E R  
qlo ! H U N D R E D  

qto q49 OF 
q33 q50 BIG 
qlo D E E R  
q59 F E W  
q29 H U N D R E D  

qlo VER Y 

qlo 
q23 
q29 

N E X T  STATE 

ql0 

q69 
q71 
q36 

q23 
q47 

q72 

q36 
ql0 

q23 
q59 

q29 

ql0 
q33 

q74 
q23 

q59 
q29 

q77 
q23 
q47 

q33 
q76 

ql0 
q23 

q35 

q29 

ql0 
q23 

q59 
ql0 

q74 

q25 
q26 

q49 

q26 
q59 

ql0 
q23 
q26 

q72 

q32 

q36 
q24 

q69 

q59 
ql0 

q23 
q77 
q26 

q29 
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Table 2 (c). Thi rd  par t  of  the  2-reversible, min imized  DFA for the  specifier 

sequences. 

STATE TOKEN 

q51 BIG 
D E E R  

OF 
ONE 
SEVERAL 
TWO 
VERY 

q52 BIG 
DEER 
HUNDRED 
VERY 

q53 BIG 

DEER 
FEW 
HUNDRED 
VERY 

q54 BIG 
DEER 
HUNDRED 
VERY 

q55 BIG 
D E E R  

H U N D R E D  

ONE 

T W O  

VERY 

D E E R  

H U N D R E D  

OLDEST 

VERY 

q57 F E W  
MANY 
OLDEST 

q58 WATER 
q59 BIG 

D E E R  

F E W  

VERY 

q6o BIG 
VERY 

q61 BIG 
DEER 
FEW 
H U N D R E D  

VERY 

q62 BIG 
DEER 
FEW 
HUNDRED 
VERY 

q63 BIG 
DEER 
F E W  
H U N D R E D  

VERY 

NEXT STATE [STATE [ TOKEN 

ql0 q64 BIG 
q23 DEER 

q78 F E W  

q38 VERY 

q79 i q05 BIG 
q35 D E E R  

q29 F E W  

qm VERY 
q23 q66 F E W  

q75 q67 ALL 

q31 D E E R  

qlo SOME 
q23 q68 final s tate  

q77 q69 BIG 
q47 D E E R  

q29 F E W  
qlo OLDEST 

q23 VERY 

q27 qT0 DEER 

q29 SOME 

qlo qT1 BIG 
q23 DEER 

q26 F E W  
q38 H U N D R E D  

q35 ONE 
q29 l T W O  
q23 VERY 

q47 q72 BIG 
qso DEER 
q29 F E W  

q33 SEVERAL 

q76 VERY 

q74 q73 OLDEST 

q23 ! q74 BIG 
qlo DEER 
q23 H U N D R E D  

q26 ONE 

q36 SEVERAL 

qlo T W O  

q29 i VERY 

ql0 I q75 BIG 
q24 I D E E R  

q8~ FEW 
q47 : VERY 

q29 q76 BIG 
qlo D E E R  

q23 H U N D R E D  

q26 O LD EST  

q59 VERY 

q29 ~ q77 BIG 
qlo i VERY 
q23 q78 T H E  

q77 q79 BIG 
q69 D E E R  
q36 H U N D R E D  

VERY 
q8o H U N D R E D  
qs 1 H U N D R E D  

NEXT STATE 

qlo 

q24 

q26 

q36 

ql0 

q23 

q78 

q29 

q33 

ql0 

q23 

ql0 

ql0 

q23 

q26 

q72 

q36 

q23 

ql0 

ql0 

q23 

q26 

q26 

q38 

q35 

q29 

ql0 

q23 

q26 

q79 

q29 

q74 

ql0 
q24 

q26 

q38 

q79 

q35 

q29 

ql0 

q23 

q26 
q36 

ql0 

q23 

q26 

q80 
q29 
ql0 

q36 
qlo 
qlo 

q23 
q47 

q29 
q26 

q69 
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ifier corpus to just two-word sequences, eliminating the partitives and the 

quantifier sequences altogether, by assuming some kind of processing load 

that initially filters out multiword sequences from consideration. 

This yields a 0-reversible automaton that collapses two-token sequences 

together: the, big, red, Fred's are all put into the same word class. While 

this overgeneralizes the adult grammar, it matches the child grammar quite 

closely. A possible developmental sequence would then be to add in the 

partitive and quantifier sequences, incrementally. The end result would 

be the 2-reversible machine described above, but one that is built in two 

distinct stages. As we discuss in the next section, an initial pass over 

thousands of sample sentences in the Brown corpus data base at least 

casually confirms this hypothetical developmental sequence. Pinker (1984) 

also presents evidence in favor of this view. 

4. Formal  induct ive  inference in language  acquis i t ion 

Our two test cases show clearly that formal inductive inference can play 

a role in syntax acquisition. In this section we consider the implications of 

our tests for models of human syntax acquisition and development. 

Our first general observation is that, contrary to some expectations, for- 

mal inductive inference need not "run wild" or take extraordinary com- 

putational time with full-scale natural language examples. Second, the 

learning procedure can work incrementally with just the positive exam- 

ples it is given. Some have objected to applying formal inductive inference 

to natural language because certain sentences, like the auxiliary verb se- 

quences could have been being given, are too rare. But we note that the 

inference method correctly infers the very longest (and rarest) auxiliary 

sequences from the shorter ones. It also learns the two-word NP specifier 

sequences quite easily, while having to work harder at the multiple-word 

sequences. This apparently accords with human performance (see below). 

4.1 Auxiliary system inference: Discussion 

The auxiliary system has often been regarded as an acid test for a theory 

of language acquisition. Given this, we are encouraged that it is in fact 

learnable via an n 3 method. This success derives from the systematic 

sequential structure of the English auxiliary system. In an idealized form 

(ignoring tense and inflections) the regular expression 

[DO I [<modal> ] [HAVE] [BE]] [BEpassive] GIVE 

generates all English verb sequence patterns in our corpus. 17 

17The double be form now including tense shows up in sentences such as I could be 
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Basically, zero-reversible inference attempts to simplify any partial, dis- 

junctive permutation like (alb)zlay into an exhaustive, combinatorial per- 

mutation like (alb) (xly). Since except for do the active auxiliary verb forms 

in fact pattern this way, zero-reversible inference almost works for active 

auxiliary sentences. However, one must move to 1-reversible inference to 

acquire a correct automaton. 

Rather than raising k, one could instead chop the corpus into finer pieces, 

as briefly mentioned earlier. For example, a more realistic model of pro- 

cessing English verb sequences might have an external, more linguistically 

motivated mechanism that forces the separate treatment of active and pas- 

sive forms. If do exceptions were recognized as separate forms and the 

infrequent . . .  be being . . .  cases were similarly excluded from the immature 

learner, one could apply simpler and faster zero-reversible inference to the 

remaining active and passive forms without overgeneralizing, is In such a 

case the active system can be induced from 18 examples out of 44 variants 

and the passive system from 14 out of 22. The entire active system is 

learnable once examples of each form of each verb and each modal have 

been seen, plus one example to fix the relative order of have vs. be, and 
one example each to fix the order of modal vs. have or be. 

The . . .  be being . . .  cases are systematically related to the rest, but also 

have a natural boundary: as mentioned above, the very rarest sequences 

like could have been being given may be successfully acquired from just a 

few shorter examples such as could have been given and been being given, 

even if the rare sequences are not actually seen. This seems consistent with 

human judgments that such phrasing is awkward but apparently legal. 

4.2 Developmental evidence for reversible inference 

How do our results compare with what is known about child language 

development? Children evidently never make mistakes on the relative or- 

der of auxiliaries, which is consistent with the reversibility model, but they 

do mistakenly combine do with tensed verb forms (Pinker, 1984). In con- 

trast, children never make mistakes with auxiliary sequences and modals in 

straight declarative form; Pinker (1984, p. 272) notes that "no errors with 

auxiliary ordering have been observed in children's spontaneous speech," 
but that auxiliary repetition errors are observed in question formation, e.g., 

Will it will rain. No such repetition errors have been reported in declara- 

tive sentences (Pinker, 1984, p. 395). We have confirmed these results by 

being given bread. These axe quite rare, but  acceptable. 

lSGiven that the appearance of do in declarative sentences is also fairly rare, one might 

prefer a 0-reversible system that handles do support as an exception, rather than opt for 

a 1-reversible inference that is flawless but  a slower learner. 
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examining thousands of examples from one computer data base of child 

utterances, the Brown corpus. 

The NP specifier inference is also supported by developmental evidence. 

Children rarely or never make mistakes with article-noun, possessor-noun, 

or adjective-noun combinations, a success supported by the 0-reversibility 

of the corresponding inferred automaton. For instance, Brown (1973) re- 

ports that at what he calls Stage I and Stage II speech, over 30 sentences 

with adjective/or determiner+Noun combinations were recorded for one 

child, including 15 examples of article+D Noun and many examples of 

possessor+Noun (adjective+Noun being less frequent). Examples like more 

milk, another book, or big book are frequent (Pinker, 1984, p. 149). 

Multiword specifier sequences are also produced by age 3 or so, such as 

read dat cowboy book (Pinker, 1984, p. 133); errors occur when children 

miscategorize words, as in another one pencil or more some milk (Pinker, 

1984, p. 113). This greater difficulty in categorizing multiple word se- 

quences is directly reflected in the non-0-reversibility of the corresponding 

automaton for such examples: since they are 2-reversible, inference time 

is correspondingly greater and the window required for correct inference 

and induction of the word classes is greater. We could argue that compu- 

tational burden is simply greater in such cases, since 2-reversible inference 

is required to determine the correct categorization. 

As mentioned, we have also examined thousands of examples from the 

Brown corpus data base ourselves. This initial survey shows fewer than one 

or two errors in NP specifier order when there are only two words in the 

specifier sequence (out of about a thousand examples with those specifiers). 

In contrast, there are many dozens of errors with partitives and quantifiers 

(out of a few hundred examples). This pattern suggests that human learn- 

ers might in fact proceed in the tentative way that we did, by boosting k 

in stages: if the learner first assumed a 0 or 1 reversible target language, 

they would then get the two-word NP specifier sequences correct, but not 

the partitives and complex quantifier sequences; they would overgeneralize 

these. 19 If they were then able to apply a principle of indirect negative 

evidence, and assume that if some example were not encountered after a 

certain length of time it must not be a positive example, they could boost k 

and try again, this time succeeding if k were set to 2. Additional evidence 

for the validity of this incremental, developmental model of NP specifier 

acquisition comes from the relative ease with which the auxiliary system 

is acquired relative to the NP specifier system: since the auxiliary system 

19Recall that we used this incremental method to first fix the reversibility of the 
language in question before applying the actual positive-example inference algorithm 

itself. Here we are suggesting that this incremental procedure might be relevant to 
human acquisition. 
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is 1-reversible, it takes less time before an incremental learner would suc- 

cessfully acquire the auxiliary automaton,  as compared to the NP specifier 

automaton.  

To summarize, an incremental k-reversible inference model mirrors the 

ease with which children learn auxiliaries and 2-word NP specifier se- 

quences, as well as the greater problems and miscategorizations they make 

with multiple-word NP specifier sequences. 

4.3 Reversible inference and other language acquisition models 

How does our model of k-reversible inference fit into the larger picture 

of language acquisition? We see it as one way to combine a domain inde- 

pendent inference mechanism with domain dependent constraints, such as 

a division into auxiliary verbs, active/passive forms, or two-word specifier 

sequences. In this view, both  domain-dependent and domain-independent 

constraints have their own role to play, and contribute jointly to the suc- 

cess of the acquisition procedure, k-Reversibility guarantees cubic-time 

learnability, while the language domain itself guarantees that  the corpus 

fragments are k-reversible for small values of k. 

We do not believe, however, that  k-reversible inference suffices for lan- 

guage acquisition. Rather, we would prefer to claim that  language acqui- 

sition is nonuniform and susceptible to a variety of acquisition strategies, 

and that  k-reversibility is one of these. We can compare it, in fact, to 

Pinker's procedure P6 (1984, p. 68), that  states in part: 

If 2 [np] expansions are identical except for one position that contains 

one annotated category in one rule, and another annotated category in 

the other, collapse expressions by placing the noncommon ones in braces 

... if 2 expansions are identical, except for one position that contains 

one annotated category in one rule and an additional annotated category 

in the other, collapse expressions by placing the additional annotated 

category in parentheses. 

To unpack this a bit, Pinker's P6 procedure would lead to the following 

examples of rule collapsing: 

Given: NP -~ X Y  

Yields: NP ~ U Y 

NP --* U Y  

Given: VP ---+ V N P P P [  V N P  

Yields: VP ---+ V NP (PP) 
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P6 aims at the same kind of similarity collapsing as 1-reversibility, be- 

cause it collapses identical contexts, but it is not so systematic or formal- 

ized. However, P6 does not say how word classes would be determined to 

be equivalent in the first place. Pinker's quote cited earlier on how to fix 

noun subclasses hints at something very like 1-reversibility. In the end. 

though, Pinker uses semantic equivalence to establish categories for differ- 

ent verbs or nouns. In contrast, our results show that such regularities, be 

they syntactic or semantic, can be inferred from distributional evidence in 

highly restricted subdomains, by assuming a k-reversible target class. 

Wolff~s (1978, 1982) SNPR system also aims at something similar to 

reversible induction. Given the word sequences Mary eats pies and Mary 

bakes pies, Wolff would define a new class X={eats, bakes} corresponding 

to substitution in identical contexts. However, Wolff's procedure is prob- 

ably less constrained, since it does not require the target language to be 

reversible at all. 

5. Conclus ion  

To conclude, k-reversibility is essentially a model of simplicity, not com- 

plexity. It basically induces the substitution classes that are the building 

blocks of larger sentence structures. In the linguistic subdomain for which 

k-reversibility is defined - regular grammars it functions to induce the 

classes that fill "slots" in a regular expression, based on the similarity of 

tail sets. Increasing the value of k is a way of requiring a higher degree of 

similarity before calling a match. 2° 

When applied to idiosyncratic fragments of English syntax, k-reversible 

induction is a psychologically plausible and computationally feasible learn- 

ing procedure. Further, the greater difficulty of NP specifier acquisition 

implied by its 2-reversibility is mirrored by a corresponding difficulty in 

child language development. More generally, in at least two areas of En- 

glish syntax, just where linguistic constraints are so weak that the trivial 

parameter-learning procedures discussed by linguists fail, the formal con- 

straint of k-reversibility succeeds. Thus, by combining two different kinds 

of language acquisition mechanisms - the domain-independent model of k- 

reversibility and the domain-dependent model of syntactic phrase structure 

- we can arrive at a more powerful overall language acquisition procedure. 

2°See Gonzalez and Thomason (1978) for other approaches to k-tail inference that are 

not as efficient. 
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A p p e n d i x :  T h e  A u x i l i a r y  D a t a  

In this section we list the 92 auxiliary verb specifier sequences used for 

the automaton induction experiments. The full set of 735 noun phrase 

specifier sequences is available on request from the first author. 

Judy gives bread 

Judy is giving bread 
Judy has given bread 

Judy has been giving bread 

Judy gave bread 

Judy was giving bread 

Judy had given bread 
Judy had been giving bread 

Judy does give bread 

Judy did give bread 

Judy can give bread 

Judy can be giving bread 
Judy can have given bread 
Judy can have been giving bread 

Judy could give bread 

Judy could be giving bread 
Judy could have given bread 

Judy could have been giving bread 

Judy may give bread 
Judy may be giving bread 

Judy may have given bread 
Judy may have been giving bread 

Judy might give bread 
Judy might be giving bread 
Judy might have given bread 
Judy might have been giving bread 

Judy must give bread 
Judy must be giving bread 
Judy must have given bread 
Judy must have been giving bread 

Judy shall give bread 
Judy shall be giving bread 
Judy shall have given bread 
Judy shall have been giving bread 
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Judy should give bread 

Judy should be giving bread 
Judy should have given bread 
Judy should have been giving bread 

Judy will give bread 

Judy will be giving bread 

Judy will have given bread 
Judy will have been giving bread 

Judy would give bread 
Judy would be giving bread 
Judy would have given bread 

Judy would have been giving bread 

Judy is given bread 

is being given bread 

Judy has been given bread 
Judy has been being given bread 

Judy was given bread 
Judy was being given bread 

Judy had been given bread 
Judy had been being given bread 

Judy does get given 

Judy did get given 

Judy can be given 
Judy can be being given 
Judy can have been given 

Judy can have been being given 

Judy could be given 

Judy could be being given 
Judy could have been given 

Judy could have been being given 

Judy may be given 
Judy may be being given 
Judy may have been given 

Judy may have been being given 

Judy might be given 
Judy might be being given 
Judy might have been given 
Judy might have been being given 

bread 
bread 

bread 

bread 
bread 

bread 

bread 

bread 
bread 
bread 

bread 

bread 
bread 
bread 

bread 
bread 
bread 
bread 
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Judy 
Judy 

Judy 

Judy 

Judy 

Judy 
Judy 
Judy 

Judy 
Judy 

Judy 

Judy 

Judy 
Judy 
Judy 

Judy 

Judy 

Judy 
Judy 

Judy 

must 
must 

must 

must 

shall 

shall 
shall 
shall 

should 

should 

should 

should 

will 
will 
will 

will 

would 

would 
would 

would 

have 

have 

have 
have 

have 

have 

have 
have 

have 
have 

be given bread 
be being given bread 

been given bread 

been being given bread 

be given bread 

be being given bread 

been given bread 
been being given bread 

be given bread 
be being given bread 

been given bread 

been being given bread 

be given bread 
be being given bread 

been given bread 
been being given bread 

be given bread 
be being given bread 

been given bread 
been being given bread 


