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1. Introduction: Grammars and Parsers

Modern linguistics has quite generally been taken to encompass the study of what
constitutes knowledge of language and how that knowledge is put to use:

The fundamental fact that must be faced in any investigation of language and linguistic
behavior is the following: a native speaker of a language has the ability to comprehend an
immense number of sentences that he had never previously heard and to produce, on the
appropriate occasion, novel utterances that are similarly understandable to other native
speakers. The basic questions that must be asked are the following:

1. What is the precise nature of this ability?
2. How is it put to use?
3. How does it arise in the individual?
Chomsky and Miller (1963, 271)

It has also been quite widely assumed that the answer to the first question would go a
long way toward providing a firm scientific basis on which to answer questions 2 and
3. The methodological import of this position is plain enough. Assuming that language
use is, in some sense, an ‘‘implementation’’ of the system of linguistic knowledge, and
assuming that the theory of language learning specifies how that system of knowledge
can be acquired, it makes little sense to attempt to characterize either implementation
or learning procedure before understanding, at least in part, just what that knowledge
is. One would even expect (as has turned out to be the case) that a partial answer to
question 1 would provide a great deal of insight into the answers to questions 2 and 3.
This methodological slant should not, of course, be taken as implying that the investi-
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gation of grammar should have little contact with theories of language use or language
acquisition, or, worse yet, that a complete understanding of language ends with the study
of grammar. It simply claims that a proper way to begin the study of language is to start
with a characterization of what that knowledge is—in short, with a theory of grammar.

Researchers working within the framework of generative grammar have taken the
answer to question 1 to consist in a specification of the class of possible grammars. A
member of the class of possible grammars is taken to be a formal characterization of a
person’s linguistic knowledge (or competence). Membership in the class of possible
grammars is limited to just those characterizations that can be embedded in a theory
capable of solving the ‘‘logical problem of language acquisition’’. The solution to this
latter problem consists of a theory that explains how children acquire their language in
a short period of time on the basis of radically degenerate and deficient data.' It has
been intermittently proposed that this research scenario should be inverted: that one
can gain insight into the nature of the system of knowledge that makes up the language
faculty by considering how that knowledge is put to use (or acquired) in real time. In
particular, since different grammatical theories are associated with different parsing
models, some of which will be plausible and others less so, it is argued that one can
exploit a theory of language use to constrain the class of possible grammars by insisting
that a grammar is ‘‘possible’’ just in case it has an associated plausible parsing model.

For instance, one could argue that the class of natural languages (more precisely,
grammars for those languages) be constrained by insisting that parsers associated with
putatively possible grammars reproduce the detailed time complexity of human sentence
processing; that is, sentences that are complex under some measure of psychological
resource complexity (e.g. take a long time for people to analyze) are correspondingly
complex for the processing model (e.g. take a long time for the model to analyze). A
strengthened version of this condition might require that the model preserve an ordinal
ranking of all sentences under the psychological complexity metric.

In this article we focus on proposals that suggest that one can constrain the class
of possible grammars by imposing just such a cognitive fidelity requirement on the class
of possible grammars, a criterion of efficient parsabiliry. It is generally assumed that
people can process sentences quite rapidly. To impose a condition of efficient parsability,
then, is to claim that sentence processing models should reproduce this aspect of human
behavior. This is the requirement advanced, for example, by Marcus (1980, 240-241):

But there is another fact about language behavior that is only slightly less marvelous: that
language works at all. It is far from apparent how the mind, given only the speech waveform,
or even a string of written words, can reconstruct linguistic structure in something like real
time. From this, it seems reasonable to assume that language must be constrained in ways
which make it amenable to efficient generation and recognition.

' The “‘logical problem of language acquisition’* should not be confused with questions about the actual
time course of the acquisition process itself. See Chomsky (1981) and Hornstein and Lightfoot (1981) for
discussion.
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Couched at this informal and general level, such a quasi-functional view seems unten-
dentious: if the ‘‘language faculty’’ is even roughly analogous to other organs of the
body (like the heart), then we might reasonably expect, just as in the case of other
systems of the body, that it has been ‘‘well designed’’ according to some as yet unde-
termined criteria of efficiency. This scenario clearly takes for granted the usual backdrop
of natural selection. Since one of the evolutionary ‘‘design criteria’ could well have
been ease of language processing, it is certainly conceivable that efficient parsability
has played a role in the shaping of the language faculty.

It is another question entirely, however, to take the position that considerations of
parsing efficiency allow us to restrict the class of possible grammars to just those capable
of generating certain mathematically defined classes of languages, because these lan-
guages, and no others, can meet the demand of efficient parsability. Specifically, it might
be claimed that we should deliberately restrict our study to phrase structure grammars
that can generate only context-free languages. This is because there are known efficient
parsing algorithms to recognize (and parse) any language that is context-free; in contrast,
there is no way to guarantee that all context-sensitive languages can be as efficiently
parsed as the context-free languages, and of course broader classes of languages beyond
the context-sensitive need not even have algorithmic recognition procedures.?

Such a line of reasoning appears to provide a simple a priori way to reject the theory
of transformational grammar (TG) as a ‘‘psychologically realistic’” account of the lan-
guage faculty. Since otherwise unrestricted TGs can generate all the recursively enu-
merable languages (Peters and Ritchie (1973b)), and since (modestly restricted) TGs
generate languages that cannot be parsed in less than exponential (2”) time (Rounds
(1975)), we can apparently conclude that there are theories of transformational grammar
that generate languages for which we have no known efficient general parsing algorithms.
Therefore, some researchers conclude, a theory of grammar that happens to generate
only languages for which there are known efficient parsing algorithms has an important
advantage over the theory of transformational grammar. In this view, for instance, if
one restricts attention to the study of systems that generate only context-free languages
(perhaps for independently motivated reasons, e.g. the usual linguistic reasons), then
an important side benefit accrues because the entire class of context-free languages is
already known to have ‘‘efficient’’ parsing algorithms. This is the view that Gazdar, for
one, has advocated (1981, 155):

Suppose, in fact, that the permitted class of generative grammars constituted a subset of
those phrase structure grammars capable only of generating context-free languages. . . . we
would have the beginnings of an explanation for the obvious, but largely ignored, fact that
humans process the utterances they hear very rapidly. Sentences of a context-free language
are provably parsable in a time which is proportional to the cube of the length of the sentence

2 Readers who are unfamiliar with the characterization of classes of languages with respect to weak
generative capacity known as the Chomsky hierarchy are referred to standard textbooks, especially Hopcroft
and Ullman (1979) or Lewis and Papadimitriou (1980).

This content downloaded from 18.7.29.240 on Thu, 1 May 2014 17:50:00 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

168 ROBERT C. BERWICK AND AMY S. WEINBERG

or less (Younger (1967), Earley (1970)). But no such restrictive result holds for the recursive
or recursively enumerable sets potentially generable by grammars which include a transfor-
mational component.

The form of Gazdar’s argument is simple enough:

(1) People parse sentences rapidly.

(2) The sentences of any context-free language can be parsed rapidly.

(3) Gazdar’s phrase structure grammars generate only context-free languages.

(4) Not all languages generated by transformational grammars can be parsed rapidly.

Conclusion: The theory of transformational grammar cannot provide an explanation
of how people parse sentences; in contrast, a theory that can (weakly) generate only
context-free languages can provide such an explanation.?

But is this line of argument valid? We believe not. In the first part of this article we
show that when the relevant formal language theory results are set in their proper real-
world context, they do not choose between phrase structure and transformational gram-
mars in the manner that Gazdar suggests. According to the argument above, what the
property of context-freeness buys is a guarantee that TG cannot meet, that of efficient
processability. But the identification of all and only the context-free languages as the
“‘efficiently processable’” languages is misleading. On the one hand, strict context-sen-
sitivity is not an absolute barrier to efficiency in the manner implied by the argument
above, since many strictly context-sensitive languages can also be efficiently analyzed.
On the other hand, natural languages are patently a restricted subset of some class in
the Chomsky generative hierarchy (the obviously unnatural languages must be excluded,
no matter whether the attainable natural languages turn out to be context-free or not).
Therefore, even if a context-free hypothesis is adopted, additional constraints must still
be imposed, beyond mere context-freeness, in order to characterize all and only the

3 We should be very clear that an argument about the computational benefits accruing from a restriction
to context-freeness need not be the only reason, or even the primary reason, for preferring grammars that
generate only context-free languages. Gazdar (1979; 1981; forthcoming) has argued that his nontransformational
theory of grammar is superior primarily on the standard linguistic grounds, namely, that it accounts for linguistic
generalizations better than the theory of transformational grammar. (However, see Williams (1981) for a partial
reply to these arguments.) In a personal communication, Gazdar has informed one of us that the original
motivation for the theory was a desire to eliminate the transformational component of TG theory entirely.
Only afterwards was it realized that this move, since it permitted the generation of only context-free languages,
might also have computational import. In this context, it is interesting to note (see Chomsky (1981)) that the
generative grammars proposed in Chomsky (1951) were in fact systems that used the indexed phrase structure
mechanisms described by Harman (1963) and Gazdar (1981). In this article we will focus attention on just the
question of efficient parsability, leaving other questions aside.

From here on we shall use the term phrase structure grammar to mean a phrase structure grammar as
described in Gazdar (1979; 1981) instead of the formal language theoretic sense of ‘unrestricted rewriting
system’ (Type 0 grammar). The sort of phrase structure grammar advanced by Gazdar is based on formal
work by Peters and Ritchie (1973a) and Joshi and Levy (1977), who show that these types of grammars are
more faithful to the linguistic notion of ‘‘immediate constituent analysis’’ than are unrestricted phrase structure
grammars.
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natural languages. Since additional characterizing constraints must be investigated even
in the context-free case, it would seem just as legitimate to look at those strictly context-
sensitive (or even strictly Type 0) languages that are efficiently processable, given ad-
ditional constraints. Since there are such languages and candidate additional constraints,
the actual mathematical results do not preclude the possibility of either TG or phrase
structure grammars being able to generate languages for which there are efficient parsing
algorithms.*

In the second part of the article we consider more carefully the application of general
mathematical results to a cognitive domain. We will see that biologically relevant parsing
efficiency need not be primarily determined by general, mathematically defined measures
of efficiency. Therefore, although mathematical efficiency measures may apply in an
abstract, formal sense to rank (context-free) phrase structure grammars as ‘‘better’’ than
transformational grammars, this ranking may be relevant only in formal theory, not in
biological practice. The commonly used mathematical measures of efficiency—including
the one cited by Gazdar—by and large abstract away from the structural features of
parsing algorithms that may actually dominate the efficiency of a procedure in the
biologically relevant sense. In particular, we will see how the size of a grammar (as
embedded in a parsing procedure) can contribute to the efficiency of a parsing algorithm,
and how, because grammar size shrinks with the move to more powerful descriptive
formalisms, there is a possible trade-off between parsing efficiency and descriptive
apparatus.

Our investigation of the use of ‘‘computational complexity’’ arguments to choose
among alternative grammars also calls into question more generally the applicability of
general mathematical results in a narrow cognitive domain. We will see that since parsing
efficiency clearly depends upon the representational format chosen for computation, it
may well be that narrow, highly-tailored representations for the particular grammatical
formats associated with natural languages may allow a correspondingly particular and
nongeneral algorithm to be quite efficient, as opposed to whatever general-purpose
parsing algorithm one might propose. It seems likely that some of the computational
work formerly done by the parser could be shouldered by the narrowness of the restricted
set of representations under consideration. This is in fact the experience of those who
work with programming languages: specific grammars admit specialized recognition
procedures.

As will become clear, we find arguments such as the one sketched above to be
symptomatic of an all-too-common confusion about the role of mathematics in linguistic
theory. For instance, it is worth noting that the Peters and Ritchie result that an unre-
stricted transformational theory can generate all recursively enumerable sets has been
used by some researchers as an argument that transformational grammars cannot be
‘‘psychologically real’’. The reason: since some recursively enumerable sets do not even
have algorithmic parsing procedures, it must be the case that unrestricted transforma-

4 See footnote 10 and Berwick (forthcoming).
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tional grammars can generate languages for which no parsing procedure even exists, let
alone an efficient one. The context-free language/efficient parsability argument is in
effect merely a subrecursive analogue of this more general argument.’

In the broadest sense then, the aim of this article is to shed some light on just what
the proper application of mathematical theory should be to an ultimately biological (and
empirical) science. In this attempt at illumination, we shall touch upon a variety of
related questions that have from time to time been raised in contemporary discussions
of linguistic theory: Just what is the status of so-called ‘‘functional explanations’ in
linguistic theory? Can arguments grounded on notions of parsing efficiency provide
telling restrictions on the form of our linguistic theories?

While our aim is to dispel certain technical confusions about the applicability of
mathematical results to the domain of linguistics, we should stress that we are not
implying that mathematical argument is of no value in the study of language. On the
contrary, when the results of mathematical analysis are evaluated in the proper empirical
context, they can provide (and have provided) insights of enormous depth. The point
of the article, then, is not to furnish a simple, sweeping conclusion that all purely a priori
arguments about language based on mathematical results are invalid, or that thinking
about parsing efficiency is a worthless enterprise. There is no difficulty with admitting
additional valid sources of evidence bearing on theories of language, be it from the
domain of mathematics, reaction time experiments, or observations of child develop-
ment. The problem is that such arguments seem to be far more difficult to make properly,
at least given our current understanding.® In short, the moral of this article is that
mathematical insights culled from the study of formal languages must be tempered with
a sensitivity for the biological and empirical situation to which they are applied. In this
we can do no better than to recall Kripke’s (1976, 416) observation regarding the role
of mathematics and formalization in philosophical thinking:

Logical investigations can obviously be a useful tool for philosophy. They must, however,
be informed by a sensitivity to the philosophical significance of the formalism and by a
generous admixture of common sense, as well as a thorough understanding of both the basic
concepts and of the technical details of the formal material used. It should not be supposed
that the formalism can grind out philosophical results in a manner beyond the capacity of
ordinary philosophical reasoning. There is no mathematical substitute for philosophy.

2. Parsing Efficiency and the Use of Mathematical Results

2.1. Context-free Languages and Efficient Parsability

To begin our study of mathematical arguments and their bearing on parsing efficiency
and linguistic theory, we must first review the basic mathematical results about general

3 See Lapointe (1977) for discussion of the significance of the Peters and Ritchie results; Matthews (1979)
and Chomsky (1980) for a summary. See Berwick and Weinberg (forthcoming b) for a discussion of the Peters
and Ritchie results within the current Government-Binding theory (Chomsky (1981)).

¢ For additional discussion of the difficulties, see Berwick and Weinberg (forthcoming a).
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context-free parsing that have been most used to bolster various arguments about the
difficulty of parsing natural languages.

The efficiency of general context-free parsing algorithms is most often couched as
some function of the size (or length) of the input sentences that the parsing algorithm
must analyze. Why is the efficiency of an algorithm expressed in this way? The intuition
behind this approach is that as the sentences input to some parsing procedure grow
longer and longer, the amount of computational work that must be done to analyze the
sentences should likewise grow, while holding fixed the algorithm that is used. Thus,
the processing complexity of algorithm i given a sentence n words long is typically
denoted as f;(|n|). If computational resources are measured in terms of time, then the
function f; is simply a formula that, given the length of the sentence to be processed
(measured in number of words), tells us how long algorithm i will take to finish its work.
For example, if f; = n° and the measure of computational work is time, then a sentence
10 words long will take four times longer to process than a sentence 5 words long—
doubling the sentence length will quadruple the amount of computational effort that must
be expended.

As implied in the preceding paragraph, computational work itself can obviously be
measured in several ways, the most natural (and well-known) being the number of *‘time
steps’’ taken by a procedure or the (maximum) amount of space used during the course
of analyzing a sentence of a given length. Finally, it should be apparent that because
what counts as a unit time step or a unit of space can vary from one computational
model to another, the exact complexity of sentence processing might vary not only from
algorithm to algorithm, but also from machine to machine, depending upon what brand
of computer one adopts as a model for computation.

It should be no surprise, then, that one desirable feature of a mathematical theory
of computation should be the ability to prove results that are invariant with respect to
the model adopted for computation. Present-day computational complexity theory
achieves this aim by focusing on functional rates of growth that are *‘far enough apart™
to be unaffected by changes in reference machine. If one function can be computed
faster on algorithm A than algorithm B when using, say, a multi-tape Turing machine
as a reference model, and if that difference in speed is large enough, then the superiority
of algorithm A will be preserved when it is switched to another (serial) computational
reference machine, say, a random access machine.”

7 A random access machine, or RAM, differs from a Turing machine in its ability to store numbers in
any one of a finite number of registers, to which it has immediate access. This would seem to be a clear
computational advantage, since such a machine can retrieve or modify these numbers in a constant amount
of time. In contrast, a Turing machine must laboriously scan a storage tape in a strict left-to-right or right-to-
left fashion in order to get to a particular symbol it must retrieve. Given this difference in power, it is an
interesting fact that the class of functions that can be computed in time less than or equal to #’ for some integer
Jon arandom access machine is exactly equal to the class that can be so computed on a Turing machine. (This
class is that set of functions that can be computed in ‘‘polynomial time’’ on a deterministic Turing machine.
Context-free language recognition, because it can be done in cubic time or less on a RAM, is in this class.)

Thus, moving to a RAM buys no more power in terms of the class of functions that can be computed in
polynomial time. This result makes precise the sense of ‘‘far enough apart’’ alluded to in the text. If algorithm
A runs in polynomial time (say, n*) and algorithm B in exponential time (2"), then A will be superior to B on
any ‘‘reasonable’’ model of a serial computer, be it Turing machine or RAM.
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The price paid for this ability to state complexity results independently of machines
is the usual price of abstraction: the complexity metric may be a dull knife, unable to
draw the requisite distinctions in the cognitive domain. We shall see that this is at the
root of many of the difficulties surrounding the use of computational complexity results
in linguistic theory. However, there does not seem to be any way around this part of
the problem; if one is aiming at theorems that remain theorems even when the underlying
machine is subject to gross changes, then one must be willing to forego theorems that
can be proved only with respect to particular brands of computer, including, perhaps,
the human ‘‘computational machinery’’.

What about the particular case of parsing context-free languages? An amount of
time proportional to roughly the cube of the number of input words is known to be
sufficient to parse any context-free language (on a computer model like a random access
machine) (Earley (1968; 1970)).% Note that cubic time is known to be sufficient but is
not known to be a necessary bound on the amount of time required. Indeed, all known
context-free languages are recognizable in only an amount of time that is proportional
to simply the number of words in the input string (i.e. a linear function of the input
length, or simply & X n, where k = some constant and n = the length of the input
sentence in words).® Further, even if the cubic bound were shown to be necessary for
some context-free language, it does not then follow that all context-free languages would
take that much time to parse; only some ‘‘hardest’’ language need take that much time.
Similarly, it is known that an amount of time proportional to an exponential function
of the length of the input string, £”, is sufficient to parse any context-sensitive language,
but this too is an upper bound; many context-sensitive languages do not require that
much time for parsing.'®

8 See the previous footnote for a brief description of a random access machine. This result is also proved,
for example, in Hopcroft and Ullman (1969) or Harrison (1978, 430-437). Slightly ‘‘better’’ functional speed-
ups are possible, reducing the n> time to nearly n?>. (The best result as of 1980 was n> 2.

° Recall that we are assuming all other potential sources of variation—e.g. the grammar—to be constant.

' The two examples of strictly context-sensitive (non-context-free) languages most often cited in the
literature—a"b"c" and ww—are both recognizable in faster than linear time: whether or not a given string
(sentence) is in either of these languages can be determined by using an algorithm that takes only a bounded
number of steps (fixed in advance) between the reading of each symbol of the input sentence, that is, in real
time. (See Rosenberg (1967) and Galil (1978).) However, it is important to keep in mind the distinction between
recognizing a language (= determining simply whether or not a string is in the language generated by some
grammar for that language) and parsing a language (= finding the derivation tree by which the sentence can
be generated with respect to some particular grammar). In other words, a parser has to do more than a
recognizer—it has to recover the correct labeled bracketings for sentences. A recognizer need only determine
whether or not the string is in the language generated by a grammar, and may use whatever means at its
disposal for this task. The notion of recognition is weaker, because it can be readily shown that there are
some languages that can be efficiently recognized but not necessarily efficiently parsed according to the rules
of a given grammar. For example, consider the following grammar: S — A; A — aAa; A — a. This grammar
generates a language consisting of strings of odd numbers of as. This language is clearly a finite-state language
(see, for instance, Hopcroft and Ullman (1979)), and therefore it can be efficiently ‘‘processed’’ if the only
demand is recognition. However, if the requirement is to recover the labeled bracketings that the above
grammar would assign to such strings, then a deterministic push-down automaton incorporating this particular
grammar will not suffice. (The example is from Knuth (1965); a grammar that can be so incorporated into a
deterministic push-down automaton is called an LR(k) grammar.) Some other grammar can be used by a
deterministic push-down automaton to parse the strings of this language (that is, such a machine can assign
labeled bracketings to the strings of this language according to this new grammar (Knuth (1965))). But this
other grammar is not structurally identical to the first—it does not preserve the ‘‘tree shapes’’ of the original
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It is important to keep in mind just what these sorts of results show when applied
to the case of natural languages. In its usual mathematical formulation, the ‘‘efficiency
rating’’ of a given class of languages is determined by the ‘‘worst case’’ language for
that class, that is, the language in the class that requires the most time to parse. Formally,
if we let P; be the parsing time with respect to language i, index i ranging over some
class of languages L, then the parsing complexity of the class L—call this property P—
is max(P;). For example, if we say (counterfactually) that the class of context-sensitive
languages is of exponential time complexity, this means that at least one context-sen-
sitive language requires exponential time; many of the other (strictly) context-sensitive
languages in the class might require much less time (and indeed this is the case, as noted
in footnote 10). This is the reason for the ‘‘sufficiency vs. necessity’’ distinction noted
above. If such ‘“‘worst case’’ theorems about mathematically defined classes of languages
are to be applied directly to the class of possible natural languages (NL), then we must
assume that the particular language used to demonstrate property P is itself in NL. This
requirement is a sensible one to enforce, since, after all, we are clearly aiming to use
property P as a (partial) characterization for what it means to be a natural language, and
the proposed property would not be a very appropriate one if no natural language
possessed it. A characterization based on parsing efficiency obviously is successful
insofar as it helps us to characterize all and only the natural languages.

With this background in mind, consider again the argument to restrict the study of
language to the study of rule systems that generate only context-free languages, because
efficient general parsing methods exist for any context-free language. On this view, the
property of ‘‘efficient parsability’’ (EP) that all context-free languages enjoy is a partial
characterization of what it means to be a natural language. Languages that do not have
property EP are simply not natural languages. A Chomsky hierarchy diagram of this
situation is given in figure 1. The class NL has been identified with the class EP, and,
since all members of the class of context-free languages (CFL) are also efficiently pars-
able under our current definition of ‘‘efficient’’, CFL is identified with EP as well.
(Depending upon whether additional characterization constraints are imposed on the class
NL, NL might be a proper subset of the CFL class, a matter to which we return shortly;
we also ignore the question of just where the class NL is bounded from below.)

grammar. This being so, then if, say, semantic interpretation ‘‘runs off of the bracketing provided by Grammar
1, the parse with respect to the Grammar 2 might not preserve the semantic properties of the first grammar.
It may however still be possible to find an ‘‘efficient’” procedure to translate between the parse trees provided
by Grammar 2 and those of Grammar 1, thus preserving the semantics of the first grammar. (Familiar examples
include the ‘‘readjustment rule’’ discussed by Chomsky and Miller (1963) and Langendoen (1975) for translating
between center-embedded and right- or left-recursive trees, or Kuno’s Harvard Syntactic Analyzer (1966) that
translated context-free grammars into a non-left-recursive form so that they could be efficiently parsed top-
down.) Formal research into this possibility goes under the heading of the theory of covering grammars. See
Nijholt (1980) and Berwick and Weinberg (forthcoming a) for a more extensive discussion of covering grammars
and their implications for the study of the relationship between grammars and parsers.

Given the distinction between recognition and parsing, the relevant formal result for the purposes of the
discussion in the text is that Knuth’s LR(k) condition can be imposed on grammars for non-context-free
languages (e.g. strictly context-sensitive and even strictly Type 0 languages) so as to obtain parsing procedures
that execute quite efficiently. (Specifically, in time proportional to the lengths of derivations of sentences; in
the a"b"c" case, the time is at worst quadratic in the length of the input.) See Walters (1971) for these results,
and Berwick (forthcoming).
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context-sensitive

finite state
languages

Figure 1

Strictly interpreted, though, this particular ‘‘state-of-the-world’’ diagram is mis-
leading. ‘“EP’’ is not a property unique to the context-free languages, since many strictly
context-sensitive languages share the property of efficient parsability. So, given that our
sole criterion is for the moment efficient parsability, we should include the strictly
context-sensitive languages with property EP in our diagram, expanding the class NL

beyond the strictly CFL boundary:

context-sensitive

context-free

finite state
languages

Figure 2
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Pursuing the parsability characterization, recall that the parsability theorems also
tell us that any context-free language is efficiently parsable. Hence, all the unnatural
languages that are context-free are also in the class EP, no matter how bizarre. On this
account, mirror-image languages (generating only palindromes, like abbaabba) are also
candidate natural languages, because they too are context-free and hence easily ana-
lyzed. Since these sets of strings are apparently not natural languages, it is clear that
some context-free languages must be ruled out as natural languages based on criteria
other than that of efficient parsability.'' Thus, we must alter our diagram once more,
redrawing the class NL so that it excludes some members of the class of context-free
languages, and yet runs outside that class. Let us also assume that natural languages
exceed the weak generative capacity of finite state (right- or left-linear) grammars. Our
hierarchy diagram now looks like figure 3 (p. 176).'?

What has the efficient parsability criterion bought us in this case, then? We can say
for certain only that the class NL cuts across the context-sensitive and context-free
language classes in some as yet undetermined fashion. But this is precisely what has
generally been observed since the earliest mathematical work on the subject: the class

'! For example, we might insist that the theory prohibit rules of the form S — ASA, S — BSB, S —
empty, perhaps for reasons that can be independently maintained under some version of X-bar theory. Then
at least the obvious context-free grammar for generating the palindrome languages would not be admissible.
This example incidentally demonstrates that, if one takes seriously the view that what matters about grammars
is their strong generative capacity (the structural descriptions, or labeled bracketings, that they can produce),
then what is important for cognition is not so much the recognition time of a language (a process that may,
but need not, ignore a particular grammar that weakly generates the language so as to use another grammar
that is more amenable to efficient recognition) but rather parsability with respect to a particular grammar of
interest that generates that language. For instance, as footnote 10 points out, it may be irrelevant that the
string a” for odd # can be recognized by a finite state device (hence in real time) if the underlying grammar
is, for independent reasons, known to be of the form S — aSa, S — a. In short, it is the notion of grammar,
in the sense of a system that pairs surface strings with labeled bracketings, that is crucial for parsing; the
notion of language, in the sense of some set of strings, is derivative and not of interest independent of the
grammar.

In one sense it is easy to see how this focus on the complexity classes for string recognition (and a
corresponding attention to the notion of language as opposed to grammar) may have arisen. In the formal
study of recognition complexity, the underlying set of possible grammars that generate a language of interest
can ordinarily be freely varied so as to achieve the fastest possible recognition time for that language. But
presumably the same freedom is nor available in the study of natural languages. Rather, the situation is
reversed: it is the grammar that is subject to constraints, and parsing efficiency must be evaluated with respect
to that grammar, whatever its constraints turn out to be. These constraints might include: restrictions drawn
from X-bar theory; compatibility with logical form or semantic interpretation rules (cf. the discussion of
covering grammars in footnote 10) so as to provide the ‘‘right’ input for semantic interpretation rules; a
demand that grammars be projectible given the *‘right’’ conditions of exposure to data, and so forth. Of course,
the set of surface strings the grammar generates does matter to parsing complexity, but the notion of grammar
as (string, bracketing) pairs subsumes the contribution that the set of strings makes to the computational issues
at hand. For further discussion of the grammar—parser relationship, see Berwick and Weinberg (forthcoming
a).

"2 Note that Gazdar (1981) also assumes the class NL to be a proper subset of the class of context-free
languages, as evidenced by the quotation at the beginning of this article. The intent of his restriction is
presumably to rule out the ‘‘unnatural’’ context-free languages, perhaps using the criteria suggested above.
According to Gazdar’s argument, a powerful reason that the restriction to just the CFL languages pays off is
that of parsability. However, as we have just seen, since we must in any event look at a restricted class of
languages, one not coinciding with any of the Chomsky hierarchy classes, it makes little sense to exclude in
an a priori fashion just those non-context-free languages that are also efficiently parsable, simply because they
do not happen to meet some other mathematical condition.
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context-sensitive

finite state
languages

Figure 3

of natural languages is suspected to be some subset of the class of context-sensitive
languages, including, perhaps, some non-context-free languages. Even this much is not
certain, however; it is an open question whether there are natural languages that are,
for example, nonrecursive or even nonrecursively enumerable (see Hintikka (1974) and
Chomsky (1980) for discussion).'® In this case, then, the imposition of the parsability
criterion has told us nothing new at all; if our goal is to obtain as narrow a characterization
of the class of natural languages as possible, then requiring that all natural languages
possess property EP does not advance us beyond what has been suspected since the
early 1960s.'

'3 See Postal (1964) for putative examples of strictly context-sensitive constructions in natural languages,
and Gazdar (1979) for contrary evidence; the matter still seems unresolved. Even in the case of Type 0
languages, it is possible to add ‘‘locality restrictions’” of the sort observed in current transformational theory
and obtain a language that is efficiently parsable. Figure 3 would have to be correspondingly modified so as
to show the ““NL’’ class cutting across the Type 0 boundary. Such languages need not be context-sensitive,
yet they may still be efficiently parsable. (Since these languages are algorithmically parsable, they obviously
must be recursive, however.) We conjecture that the ‘‘locality principles’’ of current transformational theory
conspire to guarantee that TG languages are processable by a bounded lookahead machine of the type designed
by Marcus (1980). For example, it can be shown that a Marcus-type machine can parse a”b"c” in at worst
quadratic time. Note that these locality principles do not entail a restriction to strictly context-free languages.
See Berwick (forthcoming) for details. See Matthews (1979) and Chomsky (1980) for discussion of the issue
of recursiveness vs. nonrecursiveness.

'* It might be argued that the banality of the conclusions that can be drawn from this formulation of the
efficient parsability criterion follows from the weakness of the definition of *‘efficient’’. Perhaps we could
provide stronger constraints on parsing time, and these would prove to be more telling ones. Suppose, for
example, that we restricted the notion of ‘‘efficiently parsable’ even further, demanding that parsing time be
a linear function of the length of input strings. But this will leave us in roughly the same position as before,
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Summarizing the discussion, the problem with identifying context-free languages
with the class of natural languages is that this characterization is at once too broad and
too narrow. It is too broad in that it includes too many languages: not all context-free
languages are natural languages. But it is also too narrow: if the efficient parsability
argument is only that natural languages be efficiently parsable, then there would seem
to be no reason to exclude (by fiat) that subset of strictly context-sensitive languages
whose members are also efficiently parsable. In short, the fault lines of ‘‘efficient pro-
cessing’’ do not fall neatly into place along the context-free/context-sensitive/Type 0
language boundaries.

. . . the characterization of families of languages by means of resource bounds for parsing
or recognition will not necessarily yield known families specified by other means.
R. Book (1973, 15)

2.2. The Relevance of Computational Complexity to Linguistic Study

The preceding discussion raises the first important point about the use of mathematical
results in cognitive science. What the previous arguments have shown is that one cannot
simply assume that a class of languages derived via a consideration of purely mathe-
matical properties will correlate in a neat one-for-one fashion with the class of natural
languages; a mathematically relevant class need not be coextensive with a cognitively
relevant one. In the case above, the mathematical property of context-freeness could
not be shown to be coextensive with the (assumed) cognitively relevant property of
efficient parsability. We might summarize this problem as follows: mathematical rele-
vance need not imply cognitive relevance.

A further question of cognitive relevance arises with the mathematical results be-
cause of the way in which results in the complexity literature are couched. The typical
measure of complexity used in the theorems most often cited to back up efficient pars-
ability arguments is the notion of asymptotic complexity, and it is not clear whether

since some strictly context-sensitive languages as well as some obviously unnatural languages are recognizable
in linear time or less.

It is true that stronger recognition time constraints in conjunction with restrictions on the assumed
underlying reference machine can be quite potent in eliminating certain classes of languages. For example, if
we impose a linear time recognition constraint (recognition can take only time k n, where n = the length of
the input sentence) and in addition limit the machine to only one tape, then the string sets so recognizable are
regular (from Hennie (1965)). Furthermore, there are some languages that are known to be recognizable in
real time on one kind of reference machine (a random access machine) that are not recognizable in real time
on a Turing machine. Not surprisingly, if one adopts this finer-grained complexity analysis, one can distinguish
between various brands of machines. The problem then becomes one of justifying the machine restriction and
the grain size of the complexity analysis. What evidence can be adduced that people are one-tape Turing
machines, as opposed to random access machines, or two-tape Turing machines, or even k-tape Turing
machines? What evidence is there that people process sentences in real time, as opposed to, say, linear time?

In short, given this lack of understanding of constraints on the human ‘‘computational machinery”’, it
seems that even under the most stringent restrictions of time efficiency it still remains true that the non-
context-free language constructs generally hypothesized to be operative in natural language are recognizable
(see footnote 10). Thus, even under quite restricted senses of ‘‘efficient’’, it appears that an a priori identification
of the natural languages to some subset of the context-free languages cannot be maintained.
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asymptotic complexity is a biologically relevant measure of computational complexity.
Let us run through an example of the use of asymptotic complexity measures to see just
what is at stake here. Recall that any context-free language can be recognized in time
proportional to n*, where n is the length of the input sentence in words. (One might
want to include grammatical formatives in this count as well.) The ‘‘exact’’ recognition
complexity would therefore be k times n*, where k is a constant of proportionality.
Suppose we wish to compare the time complexity for this algorithm against some other
procedure of time complexity, say, k* f(n). For instance, f(n) might be n%. As n ap-
proaches infinity the ratio of the two complexities k n*/k* f(n) will in the limit be
dominated by the functional terms alone, and hence could be expressed more simply
as just n3/f(n)."> This is because the constant factors, though possibly large, are fixed.
In contrast, the two functional terms—n> and f(n)—get larger as the input sentence
length, n, increases. Eventually, no matter how large the constant terms were to begin
with, the n’/f(n) factor will be many thousands of times larger (or smaller) than the
constants, and thus the constants will play no role in the comparison of one complexity
formula against another. Hence the term asymptotic complexity for this kind of evaluation
measure of computational efficiency.

Evidently if asymptotic complexity is used, the constant terms in front of functional
forms may be dropped for comparative purposes: we say that an algorithm runs in time
n® or in linear time, without specifying the constant of proportionality; conversely,
whenever such terminology is used, it has been tacitly assumed (unless stated otherwise)
that the notion of asymptotic complexity is the relevant one.

Why would anyone adopt such a rough measure, one that can only distinguish
between gross functional form differences? The reason is that the constants in front of
the functional forms—the k and £* in the example above—are parameters that are
independent of the length of the input sentence but highly dependent on such ‘‘details”’
as the size of the grammar (total number of symbols required to write down the grammar);
the representation of the grammar as a data structure (as a list, an array, a special look-
up table); how rules are accessed and manipulated by the control structure of the parsing
procedure; and the primitive operations available in the instruction repertoire of the
assumed underlying machine. In short, the constants in front of the functional forms
depend upon all those idiosyncratic ‘‘details of implementation’’ that vary from particular
machine to particular machine. The use of an asymptotic measure is intended to deal
with precisely this problem; by comparing procedures only in the limit of input lengths,
we have abstracted away from such details of implementation.

From one standpoint then, the use of asymptotic complexity measures is widely
considered to be an appropriate solution to the problem of how to deal with variation
in computational models. A mathematical theory of computation would not be of much
use if its results could be invalidated simply by purchasing someone else’s computer.

'S Except, of course, in the case where fln) = n’, where the ratio of the functional forms is 1 for all
values of n. In this case, the constant terms will still predominate.
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Invariance over changes in computational model is a desirable property of the theory
of computational complexity, just because there is large variation in the choice of ref-
erence model computers.

Turning now to the domain of cognitive science, it is much less clear that asymptotic
measures are equally appropriate. The problem is that in the case of human sentence
processing we are studying one particular machine (though which one we do not know),
and if we assume that the ‘‘design’’ of this machine has been optimized at all, then it
has been optimized with respect to that machine, i.e. to the particular case of whatever
computational machinery we do possess, and not necessarily with respect to some
abstract mathematical measure of complexity that considers all possible machines of a
given type.'® In particular, consider the claim that an algorithm that runs in time n? is
“‘better’’ than one that runs in time 2”"—this being, roughly, one of the senses of ‘‘more
efficient’” that an advocate of context-free parsing would rely upon. This comparison
uses the notion of asymptotic complexity, and therefore, the domination of n* over 2"
is guaranteed only asymptotically, in the limit as the length of sentences input to either
procedure approaches infinity. But if sentences long enough to ensure the domination
effect never arise in actual, biologically relevant sentence processing, then the theoretical
difference in parsing times may simply never amount to a practical difference. All those
features ignored by adopting an asymptotic complexity measure may be precisely those
that are most important for the range of problems that the organism must actually solve.

The difference could not be more plain. Asymptotic measures (including the usual
worst case analyses cited in the literature) ignore the range of input sentence lengths
and the constant factors in front of the functional forms that specify the computational
complexity of an algorithm. In contrast, cognitive measures must focus on the particular
range of input sentence lengths that is actually encountered in biological practice, for
the “‘constant’ values in front of the functional forms are proxies for the mental rep-
resentations that parsing algorithms presumably are to use.!” Note that these detailed

!¢ There is no reason to suppose that parsing has been **optimized”’ according to our sense of machine
design, of course; worse yet, evolution is known to be opportunistic, not optimizing. This is not just idle
speculation: as researchers in evolutionary biology know, there are many examples of evolutionary ‘‘designs”’
that are quite inefficient by certain engineering standards but nonetheless survive because there is now no
way to ‘‘rechannel’’ whole enzymatic systems into new ways of doing things. For instance, the photosynthetic
machinery of plants is apparently ill-designed because the oxygen generated as a by-product acts as a competitor
for the enzyme sites used in the fixing of carbon dioxide. Wheat would grow 20% more if the oxygen content
of the air was 2% instead of 20% (Moore (1981)). Certain plants have evolved clever ways to side-step this
defect by getting rid of the excess oxygen, but there is apparently no way at this late date to redirect the
enzymatic pathways to a completely different system. The reason for the difficulty is apparently that the
photosynthetic system evolved hundreds of millions of years ago, when the oxygen content of the atmosphere
was in the 2% range. It is important to keep in mind, whenever casual evolutionary arguments are offered as
“functional explanations’’ for one or another aspect of some cognitive faculty (or, for that matter, any biological
competence), that the systems of an organism cannot be evaluated in isolation from one another: for example,
it cannot be assumed without additional argument that the syntactic parsing machinery (if such exists) has
been “‘optimized’’ independently of other cognitive subsystems or even independently of the entire organism
of which it is a part.

17 1t might of course still turn out that asymptotic measures are appropriate. But this cannot be determined
in advance of empirical investigation.
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problems are not those that are encountered when we consider the efficiency of algo-
rithms at the most abstract level; they arise only when we start to address the question
of how a grammar might be actually put to use in the human language faculty—when
we start to consider the dimensions of empirical significance, to use a term of Chomsky’s.
We shall call the first problem—that of determining whether asymptotic theoretical
complexity differences occur in practice—the Relevant Range problem; the second we
call the Implementation problem.

Let us consider first the Relevant Range question and its quasi-biological import,
ignoring for the moment the question of the constant values in front of the functional
forms in asymptotic complexity measures. In particular, let us assume the constants in
front of the functional forms to be equal, say, 1. Then the value of an exponential form
like 2" would not begin to exceed a polynomial form like »n* until » is greater than 9. In
other words, given the operative assumptions, only sentences 10 or more words long
would serve to distinguish between a parsing method that runs in time 27 and one that
runs in cubic time.'® In other words, given the assumptions above, an argument based
on algorithmic superiority is only valid if we add the assumptions that: (1) sentences of
the break-point length or greater actually occur in practice; (2) it actually matters that
one procedure can parse a single sentence 11 words long in half the time of another—
presumably for reasons of expressive power; and (3) the language faculty has been
‘*shaped’” by natural selection primarily on the basis of the selectional advantage con-
ferred by more efficient sentence processing (leaving aside the question of whether or
not this is indeed the primary ‘‘role’’ of the language faculty). However, it is actually
difficult to see under what conditions this alleged parsing advantage could arise in
practice. Not only are we forced to envisage a case where the speedier parsing of a long
sentence matters, and matters in some selectional sense, but also this difficult-to-parse
sentence can have no two-sentence expressive substitute (for otherwise, it would come
under the functional umbrella of the ‘‘slower’” exponential procedure as well).'®

'® For example, with n = 9, n® = 729, but 2" = 512, so the exponential form is still ‘‘better’’; whereas
with n = 11, n® = 1331, but 2" = 2048, and the exponential form takes almost double the time of the
polynomial. It must be stressed that we do not mean to imply that the rough trade-off described above
accurately depicts what is the case in human sentence processing. Rather, the trade-off scenario is meant to
be illustrative, showing how the range of sentence lengths that the cognitive machinery actually deals with is
what is crucial to the practical functional evaluation of an algorithm, and not necessarily its asymptotic
behavior. The trade-off discussed above is unrealistic because, among other things, if the measure of length
includes grammatical formatives, then the ‘‘break-point’’ where an exponential time method would begin to
take longer than a cubic time method might be different. As we shall see below, whether anything of functional
import hinges on the inclusion of formatives in the length count depends in part on the size of the constants
in front of the functional forms, and since this cannot be determined in advance of a detailed formulation of
the complexity of human sentence processing, it would seem premature to advance any detailed argument
along these lines.

' It might be an interesting exercise to examine the actual range of input sentence lengths in spoken (and
even written language); one’s initial impression, in fact, is that the bulk of sentences are shorter than the 10-12
word length break-point that conceivably separates cubic from exponential time. However, this simple break-
point is almost certainly not correct, since it ignores the effect of constant multipliers in front of the relevant
functional forms.

Moreover, it is well known that it is not so much length as it is structural factors such as degree of nesting
(or more potently, degree of center-embedding) that contribute to sentence processing difficulties (Chomsky
(1965)).
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Thus, the distinction between, say, cubic time and exponential time procedures is
possibly of no import in biological practice, depending upon the range of sentence lengths
that actually mattered in the evolutionary ‘‘design’’ of language. This is a potential
outcome even in the restricted case where (as we assumed) the procedures to be com-
pared had time complexities of n* and 2"—that is, identical constant terms of ‘1’
entering into the calculation of their execution times. If we were to weaken this as-
sumption to include a broader class of cases where the constant factors in front of the
functional forms like n*® or 2" can vary radically, then it is obvious that the range of
input sentence lengths over which an exponential time bound may actually be of practical
superiority to a cubic time bound could be vastly greater. For instance, suppose an
exponential time algorithm executes in exactly 2” time steps while a competing cubic
time algorithm is known to take 1000 n> steps to do the same processing job. Then the
exponential algorithm will be superior to the cubic one for sentences 20 words or fewer
in length.?°

Evidently the constant factors that are quite properly ignored in asymptotic com-
plexity analyses may actually be crucial to the analysis of complexity in a cognitive
setting.?! As a case study of this possibility, let us examine more carefully the complexity
of general context-free parsing. Recall that for any context-free language the time to
parse a sentence of length n is k n>. The constant k, as mentioned, is a function of many
other factors, including the size of the grammar, |G|; thus the ‘‘true’’ complexity is
something like k* f(|G|)n>. Clearly, if the size of the grammar is very large compared
to the typical range of input lengths, then it is the grammar size that dominates the
overall complexity of the procedure.??

0 In general, if the constant factor for the cubic method is ¢ times larger than the constant factor for the
exponential method, then one can expect the exponential method’s superiority range to be extended by logzc
words (logz 1000 is approximately 10).

Presumably, part of the job of the cognitive psychologist is to try to find out whether people use cubic
time or exponential time algorithms. What would seem to distinguish between these alternatives is which
algorithm supports the right counterfactuals—that is, the ability to formulate statements such as, ‘“‘If we
increase sentence length by, say, one word at the point where exponential methods begin to take longer than
cubic methods—does the time for analysis rise rapidly (thereby lending credence to the internalization of an
exponential time method) or does it increase only modestly (a cubic time method)?”’ The problem is that the
crucial test points may be well outside the range of psycholinguistic access: if the relevant (simple) sentences
are, say, thirty or more words long, then other cognitive factors like attention span, memory, and the like may
intervene so as to render such test cases problematic. On the other hand, it may well be that suitable test
sentences can be constructed. This is a matter that can only be settled by empirical work.

21 There is another familiar result in complexity theory that might be interpreted to mean that constant
factors ‘‘don’t matter’’ in the analysis of algorithms, and hence that grammar size may be safely ignored in
the determination of parsing efficiency (see Hopcroft and Ullman (1979)). This is the theorem that states that
any algorithm that runs in time k f(n) can be recoded so as to make the constant k as close to 1 as desired
(f(n) must be a linear time function or larger). Since grammar size |G| is just another ‘‘constant’’, this result
would seem to indicate that one can recode an algorithm and eliminate the effect of grammar size.

However, a more careful analysis of the implicit assumptions of this theorem shows that it is actually
inappropriate to invoke it for the analysis presented in the text. The reason is that the theorem demands an
ability to manipulate what are assumed to be the underlying **primitive operations’ of the reference computer
model. Intuitively, what this amounts to is that instead of being able to examine and execute one rule per time
step or one input token, by recoding k symbols into new ‘‘complex symbols’ one is now permitted to examine
and execute C rules or read C tokens at a time, where C is a constant that depends on the constant k
(incorporating grammar size). Thus, one must change the basic ‘“‘unit operations’” of the finite state control
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To say anything more specific, we must talk about a specific algorithm. Consider
the ‘‘standard’’ cubic-time context-free recognition algorithm, Earley’s algorithm (1968;
1970).* Earley shows that the time his method takes on an input sentence of length n
is k |G|*n®—proportional, that is, to the square of the size of the grammar and the cube
of the length of the input sentence.?* Roughly speaking, the bigger the grammar, the
more time the algorithm spends running through its list of potential recognition rules,
deciding which one is applicable next. Which factor, grammar size or sentence length,
dominates the time complexity for processing sentences? The outcome of the analysis
clearly depends upon the relative size of the grammar compared to the range of sentence
lengths. If the grammar is of a size adequate to describe natural language, then we might
expect there to be many hundreds of rules; however, the sentences input to the recognizer
will almost invariably be at the most 20 words long. (For example, if |G| = 500 and
n = 10, then the recognition time complexity according to the Earley algorithm is
2.5 x 10®). Neglecting the constant k, in a logarithmic scale the grammar size |G|
contributes about two-thirds to the total complexity product, with input sentence length
supplying the remainder.?® In short, grammar size can dominate processing complexity
for a ‘‘relevant’’ grammar size and a relevant range of input sentence lengths.

of the Turing machine. This alteration of underlying primitive operations is permissible in the case of Turing
machines since we can program them at our whim. It is much less clear what one is allowed to do in the
cognitive analogue. As pointed out above, it is probably the case that the underlying computational machinery
is more or less fixed (though we do not know what the ‘‘primitive operations’’ are). Consequently, it would
not seem valid to allow recoding of the sort required by the linear speedup theorem. The conservative approach
is to assume that the constants matter.

As a final postscript on this issue, it is worthwhile to point out that the trade-off between constant factors
and asymptotic complexity arises even in the realm of computer science: it is widely known that the asymp-
totically “‘fastest’ context-free recognition algorithm involves such large constant factors that it is impractical
for actual use (this is Valiant's method; see Harrison (1978)).

2 This fact has been noted by many researchers in computer science; for an excellent analysis of the
issues, see Pratt (1975), as well as Graham, Harrison, and Ruzzo (1980).

3 Earley’s algorithm is based on the “‘tabular’’ parsing methods of Cocke and Schwartz (1970), Kasami
(1965), and Younger (1967). Numerous variants of Earley’s method have been proposed. These include chart
parsing (Kay (1967)) and well-formed substring table methods such as the one in Kaplan (1973).

It is interesting to compare this complexity result with that of the older Cocke~Kasami—Younger (CKY)
algorithm (Younger (1967)) (see also Hopcroft and Ullman (1979)). The CKY algorithm runs in time that is
proportional to the size of the grammar (not its square) and the cube of the length of the input sentences. Why
then isn’t the CKY method superior to the Earley algorithm? The reason is that the CKY method works only
on grammars in Chomsky normal form, i.e. grammars that produce only binary branching trees except for
preterminals, with rules of the form A — BC or A — a. It is easy to show (as observed in Ruzzo (1978)) that
the Earley algorithm is essentially a method for converting an arbitrary context-free grammar into Chomsky
normal form. The conversion involves ‘‘splitting’’ the righthand sides of rules of the form A — BC . . . D into
binary branching form by introducing new nonterminal names and expansion rules that incorporate *‘complex
symbols’’ formed by all the possible ways of dividing a righthand side up into two sets of nonterminals; for
example, A — BCD becomes A — .(BCD), A — (B).(CD), A — (BC).(D), A — (BCD). In the worst case this
expansion squares the size of the grammar. On the other hand, the best-known algorithm for converting an
arbitrary grammar into Chomsky normal form in the worst case also squares the size of the grammar. Thus,
given an arbitrary context-free grammar and considering only the factors of grammar size and input length,
the CKY method and the Earley method are on an equal footing.

** Input sentence length will not dominate the complexity equation until n = approximately 63 (63* =
250047).
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We might also consider whether directly reducing the size of the grammar has a
telling impact on the overall efficiency of an algorithm. The potential advantages of a
succinct representation is a familiar theme for the linguist (more compact grammars are
generally assumed to capture generalizations better than their bloated relatives, and are
often taken to be more easily learnable as well). From the preceding paragraph we see
that the linguist’s intuition also has some computational support: if grammar size can
be reduced ‘‘easily enough’’, then this kind of reduction may be more advantageous
than a reduction on the exponent of input sentence length from cubic to quadratic. As
an illustrative example, consider a case where the size of the grammar |G| = 500, and
the maximum length sentence analyzed is 10 tokens long. Now suppose that one is faced
with a new alternative grammar, grammar B, that is a bit more than triple the size of
the old grammar (|G4| = 1600), but runs in only quadratic (n?) time in the length of
input sentences. In this situation, the first grammar will take time k X 2.50 x 108 to
process an input sentence of length 10, whereas grammar B, although processed by an
asymptotically faster algorithm than grammar A, will take time k x 2.56 X 108. Given
this particular set of assumptions about the range of input sentence lengths and algo-
rithmic complexity functions, the more succinct grammar is more efficiently processed.?®

Clearly, an exact trade-off between grammar size and exponent on input sentence
length cannot be calculated without a specific set of grammars in hand. Moreover, it
would be a pointless exercise to show that succinctness is a potential advantage if one
cannot reduce grammar size at all. In this regard it is important to observe that it appears
generally true that as one moves from weaker to more powerful rule systems, one can
express languages more succinctly. This informal suspicion also has some formal math-
ematical backing. Meyer and Fischer (1971) have shown that as one moves up in ex-
pressive power from deterministic finite-state automata, to nondeterministic finite-state
automata, to push-down automata (context-free languages), to context-sensitive lan-
guages and beyond, there are always languages lower down in the hierarchy that can
be expressed more succinctly via the more powerful rule systems higher in the hier-

26 If the relevant range of input sentence lengths is 10 or less, then even a reduction from a cubic to a
linear time function of n will not necessarily outweigh the gains of succinctness. For example, suppose that
we can obtain a linear algorithm at the price of expanding the number of grammar rules to 6000 or so (a
twelvefold increase). Then the complexity of the new grammar with the new, ‘‘faster’ algorithm and a
maximun; input sentence length of 10 will be 3.6 x 10%, whereas under the old **slower’’ algorithm it was only
2.5 x 10°

More generally, assuming the Earley algorithm as a basic functional form, if Go = the size of one grammar,
and G, = the size of another grammar, then efficiency %ains from succinctness outwei%h gains from a reduction
of the exponent on input sentence length from »’ to n* if Gi/Go > square root (n’/n*). In the example in the
main text, with j = 3 and k = 2, this will occur when the ratio of grammar sizes exceeds the square root of
n; for n = 10, this is approximately 3.16, and 1600/500 = 3.2 > 3.16.

We should emphasize that these examples are meant to be purely illustrative in nature. However, order
of magnitude blow-ups in grammar size of the sort described here are not atypical. As we shall see below,
even exponential expansions in grammar size are theoretically possible if one opts for a ‘‘weaker’’ formalism
instead of a stronger one.
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archy.?” For example, the gain in economy of push-down automata over finite automata
for describing finite (and trivially regular) sets can be exponential; the gain in using
deterministic push-down automata to describe infinite regular sets can be even better;
and, perhaps surprisingly, the amount of ‘‘compaction’’ achieved by using a nondeter-
ministic push-down machine to describe an infinite regular set can be arbitrarily large.
(Succinctness gains can also be unbounded as one moves from context-free to context-
sensitive languages, and from context-sensitive languages to arbitrary recursive lan-
guages.)

Thus, although a set of strings may be perfectly well describable (in the weak
generative sense) by a system of low expressive power, it may actually be advantageous
in terms of parsing efficiency to capture the structure of that set by a more powerful
formalism. The reason is simply that if in one formalism parsing time is some linear
function of the length of the input and the size of the grammar (i.e. is proportional to
k x |G|n), and if one can move to, say, a context-free formalism and reduce the size
of the grammar exponentially, then the price of using the n* context-free parsing algo-
rithm could be well worth it: a reduction in the size of the grammar could more than
make up for the increase due to the exponent change from # to #3.2® Note that this
advantage of succinctness is quite different from the usual linguistic claim that a more
compact grammar is more easily learnable; we are claiming that it is possible that a more
compact grammar, expressed by a more powerful formal system, is more efficiently
processed as well.??

27 On the other hand, it can also be shown that there exist languages for which there is no gain in
succinctness by moving to a more powerful descriptive formalism. The question of interest for linguistics is
whether the use of more ‘‘powerful’’ descriptive machinery, e.g. transformational grammar, permits more
succinct descriptions of natural language. This was one of the arguments made for transformational grammar
in Syntactic Structures.

In this regard, it is interesting to note that the Meyer—Fischer results apparently can be applied in certain
linguistically relevant cases. For example, Meyer and Fischer show that a deterministic push-down automaton
with n states and s push-down symbols can be exponentially smaller for representing certain finite (hence
trivially regular) languages than any finite-state automaton that generates the same language. It can be easily
demonstrated that this potential exponential compaction is actually achieved in the case of languages that have
self-embedding constructions of finite depth: as is well known, a finite automaton can generate languages with
a fixed, finite bound on allowable self-embeddings (Chomsky and Miller (1963)); however, this equivalent
finite-state automaton will have an exponentially larger number of states than the minimal push-down automaton
for the same language. Since this case actually arises in the study of grammars for English, one can conclude
that the Meyer-Fischer succinctness results apply to linguistically relevant examples.

28 Here we assume on-line recognition, so that at least n time steps are required merely to read an input
of length n. On this assumption, recognition cannot take less than time n.

2% More pertinent succinctness results have been obtained. Joshi, Levy, and Yueh (1980) show that there
are context-free languages whose context-sensitive phrase structure grammars are more compact, by any
factor k that one desires, than any equivalent context-free grammar for those languages. They further show
that this sort of context-sensitive phrase structure grammar can be incorporated into the Earley parsing
framework, though with a modified polynomial bound, thus demonstrating that substantial efficiency gains are
in some cases possible by moving from a context-free phrase structure system to context-sensitive phrase
structure rules. (This result is actually a particular subcase of the more general Meyer—Fischer theorems.)

It remains to be seen whether the formal devices that Gazdar introduces (slashed categories as complex
symbols and metarules) actually lead to efficiency gains for parsing; this would depend upon just how much
larger a slashed category grammar is than an equivalent TG, the computational bookkeeping required, and so
forth. The one worked-out example of such a context-free grammar the authors are familiar with is the slashed
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Analyzing the complexity of a parsing procedure as some joint function of grammar
size and sentence length is but the first crude step in a more detailed comparison of
parsing procedures. The unanalyzed grammar size term itself covers a multitude of
implementation details. Besides reducing the sheer size of the grammar, one could also
try to discover alternative representational formats for the grammar rules that are more
easily coupled to the demands of parsing routines; perhaps one could reduce the exponent
on the grammar size contribution from quadratic to linear. The success of this effort in
turn depends upon both the exact form of the grammar and available representational
formats—what primitive operations and structures the brain actually has available (or
can ‘‘quickly’’ simulate). This is an important correlative (and almost inevitable) effect
of moving away from abstract analysis and toward more fine-grained efficiency analysis:
our comparisons become more attuned to the relevant cognitive details, but we lose the
ability to say that our comparisons will remain fixed over all possible variations in
primitive machine operations. If the human cognitive machinery does not have the
requisite unitary operating characteristics that we have assumed for our low-level, de-
tailed efficiency analysis, then the comparison is simply beside the point. For instance,
if we have concluded that algorithm A is faster than algorithm B on the assumption that
the primitive instruction set of the underlying computational machinery includes a unit
operation to multiply two numbers together, but the actual machinery provided includes
only addition operations, then it may well be that the superiority of algorithm A is merely
academic. Similarly, detailed complexity analyses of variations in one or another parsing
algorithm that are based upon differences in the microstructure of computer organization
seem problematic without independent verification that the relevant differences in com-
puter organization are reflected in the cognitive domain. A careful complexity analysis
must ride a thin line between over-abstraction and over-specialization.

The fact that one can arrange for the ‘‘internalization’’ of grammar rules in a wide
variety of formats—as matrices, linked lists, or more complicated arrangements—would
be of little interest for efficiency analysis if it were true that modifications of this kind
had little impact on overall parsing efficiency. As it turns out, however, variation in
‘‘data structures’’ can have a significant practical effect on the efficiency of an algorithm.
Quite often, merely changing the way in which rules are accessed can make order-of-
magnitude differences in algorithmic efficiency. To take a concrete example, Ruzzo and
his colleagues (Ruzzo (1978), Graham, Harrison, and Ruzzo (1980)) have shown that
the Earley algorithm can be made more efficient by a combination of actual changes to
the algorithm plus a palette of ‘‘implementation’ techniques. These include shifts to
alternative representational formats for storing grammar rules (and how those rules are
““looked up’’ as the parse progresses); alternative primitive machine operations (whether

category grammar of Harman (1963). Harman claimed that this grammar generated the same language as the
TG of Syntactic Structures, using about the same number of rules. An up-to-date comparison might yield
different results. Recall that the TG of Syntactic Structures had separate rules for each superficially *different’
transformation; in the current Government-Binding theory there is only one movement rule. In any case, it
does not immediately follow that conversion to the slashed category notation is computationally advantageous.
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parallel operations are available for certain tests); and whether ‘‘preanalysis’’ of the
grammar is permitted (so as to compute in advance commonly used derivation steps).
As Graham, Harrison, and Ruzzo point out, these changes can speed up the same
algorithm ten times or more, and may well dominate the algorithm’s execution time for
practical-sized inputs. Thus, ‘‘implementation details’’, far from being safely ignored,
may actually be crucial in the practical evaluation of an algorithm’s complexity. Im-
portantly, Graham, Harrison, and Ruzzo point out that some of these format ‘‘tricks”
are not available if one uses the original Earley algorithm.°

Since different representational formats can make for quite significant differences
in parsing efficiency in the case of context-free parsing, it seems reasonable to conclude
that the proper practical evaluation of an algorithm is a sophisticated task. It requires
careful attention to alternative data structures and the underlying organization of the
computer that has been assumed. In the cognitive domain the task is even more difficult,
since the attendant computational assumptions are more likely to be lacking independent
support. For example, if the primitive parallel operations demanded by the most efficient
of the Graham, Harrison, and Ruzzo techniques have no analogue in cognitive machin-
ery, then we cannot exploit the efficiency gains of this method.?' In short, we again
discover that we must have a theory of implementation and some specific knowledge
of the computational capabilities of the brain.

A stronger case for a particular algorithm’s superiority could be made if we were
able to show that its efficiency was preserved for input sizes of practical interest over
many (in the best case all) conceivable implementations. Then we might be more con-
fident that, no matter what particular ‘‘implementation’’ the brain had picked, our al-
gorithm would still be superior (though it of course still does not necessarily follow that
the brain would pick that particular algorithm). It is this property of invariance over
implementation that lends at least some credibility to the distinction between procedures
that run in some polynomial function of the length of their inputs (such as n3, as in the

30 Some storage representations admit efficient *‘preprocessing’’ operations on the (presumably now fixed)
grammar that are simply not available in other formats. For instance, given a (fixed) grammar, we might
compute in advance of the parse of any input sentence a table that tells us which nonterminals can be derived
from other nonterminals (for example, in the grammar S = AB; A = C, we would store the ‘‘lemma’’ that
S can derive A, B, or C; and that A can derive C). These finite-step ‘‘lemmas’’ can possibly shorten parsing
work later on, if they can be integrated in an efficient manner into the parsing algorithm as a whole. It turns
out (although we cannot demonstrate this fact here) that trade-offs between preprocessing operations, alter-
native grammar representations, and different parsing algorithm organizations can be quite subtle.

To get some idea of the subtlety of ‘‘real’’ implementations, see the variants proposed by Graham,
Harrison, and Ruzzo (1980, 437, 440, 441, 442 (figures 4, 6, 7, and 8 of the original article)). Each variant
provides a slightly different way of stating which rules are related to which other rules (given a particular
input sentence), and of organizing the actual parse of a sentence. Without grasping in detail just what these
different formats are supposed to do, one can still note that they entail quite different ways of storing and
manipulating rules of the grammar, and hence make quite different assumptions about just what “‘primitive
operations’’ are available in the cognitive machinery.

3! Since we are looking only at parsing efficiency, let us say that there is a *‘cognitive analogue’’ of the
parallel operations if the cognitive machinery can simulate the requisite operations while preserving the ‘‘unit
time’’ execution character of the parallel operations. That is to say, the simulation must be ‘‘fast enough’’.
For further discussion of the impact of parallel computational machinery on the usual sort of serial machine
complexity analyses relevant to linguistics, see Berwick and Weinberg (forthcoming a).
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case of context-free recognition) versus those that take some exponential amount of
time. It is easily shown that all ‘‘natural’’ models of serial computation—Turing ma-
chines, random access machines, and others—can simulate each other in polynomial
time.3? Therefore, we know that procedures that take polynomial time under some
particular model of computation (say, a Turing machine) will still take polynomial time
under any other natural model (though the exponent may be larger or smaller). For
instance, Earley’s algorithm takes n* time on a random access machine, but n* time on
a Turing machine (under the straightforward simulation of one machine by the other).
The important point is that the asymptotic superiority of polynomial over exponential
algorithms will be maintained across all ‘‘natural’’ machine implementations.

Unfortunately, as we have seen, this invariance is again an asymptotic property,
and hence its relevance for cognitive science is not clear. It seems just as likely that it
is the constant multipliers that dominate the usual execution time of parsing algorithms
for natural language. Consequently, we suggest that the proper analysis of parsing al-
gorithms will have to wait upon the as yet undeveloped theory of implementation or
perhaps even some hard (but still abstract) information about the computational abilities
of the language faculty/brain (cf. the case of Marr’s research on visual processing cited
in Marr and Poggio (1979)).

3. Conclusions

In this light, let us summarize the examination of the efficient parsability assumptions.
The view that context-free languages form a privileged class because of the claim of
parsing efficiency requires both a functional and a mathematical argument. The math-
ematical argument that has appeared in the literature rests on the direct use of com-
putational complexity results without, apparently, either a proper consideration of the
domain of application of the relevant theorems or a proper evaluation of the efficiency
condition in a realistic biological setting. In short, there is a distinction to be drawn
between relevant cognitive complexity and the mathematical complexity of a language.
As noted above, it is relevant cognitive complexity that is actually of interest to linguists
and psychologists. However, this measure must apparently be couched at a level of
detail that incorporates many implementation factors that the usual theory of mathe-
matical complexity abstracts away from. In particular, to determine relevant cognitive
complexity one must determine the range of inputs that will be encountered, the size
of the grammar, its internal representation, and the basic architecture of the machine
actually instantiating a parsing algorithm that makes use of the grammar. As we have
tried to show in this article and in Berwick and Weinberg (forthcoming a), there seems
to be so much possible variation in these implementation details alone—at least given
our current inability to posit constraints on the architectural features of the human
cognitive machinery—that the same grammar can be incorporated into algorithms with

32 That is, one brand of machine—say, a Turing machine—can simulate what another brand of machine
does, while using, say, n® “‘extra’ time to do the simulating. (See Machtey and Young (1978).)
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vastly different time complexities. Furthermore, a language that is quite ‘‘high up’’ in
the Chomsky hierarchy—e.g. a strictly context-sensitive language—may in fact be
parsed more rapidly than languages lower down in the hierarchy—e.g. faster than some
context-free languages—if the gain in succinctness is enough to offset the possible
increase in parsing time.

There is, of course, nothing in principle that prevents the theory of language use
from serving as a domain of evidence constraining the class of possible grammars. The
preceding discussion suggests, however, that parsing efficiency criteria as typically
defined in a mathematical sense, and in particular the Chomsky hierarchy, are not much
of a criterion at all: the entire class of context-free languages, plus many other languages
that are strictly context-sensitive, are efficiently parsable. Indeed, it seems likely that
when the factors influencing the implementation of algorithms are taken into consid-
eration (including the possibility of parallel hardware), and when one realizes that it is
only of interest to consider sentences of ‘‘practical’’ size, then it actually seems likely
that almost any language is efficiently parsable. Consequently, attention to the criterion
of efficient parsability alone, at least in the mathematical sense as it is usually developed,
can do little to advance us toward our goal of constraining the class of possible gram-
mars.>® This apparent fact was noted in Chomsky (1965, 62), where the difference
between mathematical and biological relevance is also pointed out:

Thus one can construct hierarchies of weak and strong generative capacity, but it is important
to bear in mind that these hierarchies do not necessarily correspond to what is probably the
empirically most significant dimension of increasing power of linguistic theory. This dimen-
sion is presumably to be defined in terms of the scattering in value of grammars compatible
with fixed data. Along this empirically significant dimension, we should like to accept the
least ‘‘powerful’’ theory that is empirically adequate. It might conceivably turn out that this
theory is extremely powerful (perhaps even universal, that is, equivalent in generative ca-
pacity to the theory of Turing Machines) along the dimension of weak generative capacity,
and even along the dimension of strong generative capacity. It will not necessarily follow
that it is very powerful (and hence to be discounted) in the dimension which is ultimately
of real empirical significance. . . . It is important to realize that the questions presently being
studied are primarily determined by feasibility of mathematical study, and it is important not
to confuse this with the question of empirical significance.

It seems not unreasonable to suppose that the domain of ‘‘empirical significance’” might
require finding criteria above and beyond that of efficient parsability that would serve
to restrict the class of possible grammars. One possible criterion derives from research
into the class of grammars that are learnable, a class that is extremely small (see Chomsky

33 We leave open the question of whether resource complexity more generally is an appropriate measure
for the ‘‘finite-sized’’ problems that the brain computes. It may well be that the alternative measures of
program size or Kolmogorov complexity are more suitable (see Gewirtz (1974)). The theory of program size
complexity attempts to find the shortest program it takes to compute some function, irrespective of the amount
of time or space it may take to do the actual computation. There are obvious connections between the notions
of shortest program and simplest theory, as classically described by Goodman and others and used by Chomsky,
that deserve further study.
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(1981, chapter 1) for discussion). We might restrict the class of possible parsers to those
that incorporate more or less directly grammars drawn from the class of learnable
grammars. Our task would then be to show that this class of parsers met the demand
of efficient parsability.** As this would take us far beyond the scope of this article, we
will leave it as a topic for future research.
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