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NATURAL LANGUAGE, COMPUTATIONAL
COMPLEXITY, AND GENERATIVE CAPACITY

Robert C. BERWICK
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Abstract. We show that the logical expressions of natural languages are strictly context-
-sensitive. However, even though contexi-sensitive languages are intractable in general, this
weak generative capacity result does not necessarily imply any computational difficulty.
Given a finite nurnber of names, such expressions are still efficiently decidable (in polynomial
time). We show this by providing an explicit algorithm for computing logical form binding
in these cases. More broadly, such a result shows that the computational complexity of
natural languages should be studied directly, rather than indirectly through the mechanism
of weak generative capacity.

FerecTReRmsiil HIBIK, BHYUCINTEELHAE CTHOXHOCTL B MeHePATHBAAY CAOCOGHOCTS
Pobept C. Bepeuk

Pestome, TToKa3aHO, Y0 JOTHYSCKHE BEIPAXKEHHA eCTECTBCHHLIX S3BIKOB CTPOFQ KOHTEK-
CTHO-33BHCHMEL ONHAKO, HECMOTDS BA TC, 970 KOHTCKCTHO-33BHCHMBIC H3BIKH HPAKTHIEC-
KH HEpPa3PEIHHMEL, 3TOT PE3YJIbTAT CNaboil reRepaTHBHOM criocoGHOCTH He BIIeYeT 3a coboil
OGAIATENBHC BRIYKCIHTENBHEIE TPYIHOCTH. ECIH 3a7an0 KOHETHOS KOJHISCTRO HA3BAHMA,
TAXHEe BHIpAXEHH Bee eilie ¥hEXTHBHO paspemuMel (B NOJHAOMMANEHOM BPEMEHY). 310
MOKa3a40 HYTEeM MPENOCTaBIeHHA FBHOTO AJTOPHTMA JTisH BRIYACIICHHA CBA3H JIOTHYECKHX
topm B 3THX Ciiyuaax. Boobme rosops, Takoll pe3syneETAT TOKA3HIBAET, YTO BLIYHCITHTEB-

" HYI0 CHO¥KHOCTH GCTECTBEHHAIX S3RIKOR CISAYeT A3YIATE IyHIIE MPAMO, 9eM KOCBEHHO Yepes
NOCPEACTBO MeXaHRIMA ¢naboit reHepaTHBHOMN cnoco0HOCTH.
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1. INTRODUCTION

What constitutes knowledge of langunage? At heart, it is an ability to pair sound and
meaning, ultimately an information-processing task. Modern computational complexity
theory can provide powerful insights into the structure of this problem by providing an




424 R. C. Berwick

algorithm-neutral analysis of information-processing structure. This paper investigates
the computational complexity of syntax and semantics by examining particular computa-
tional problems posed by natural languages rather than their generative capacity.
This approach has several advantages. Many linguistic theories distinguish different
representational levels for describing the syntax and semantics of natural languages, for
example, the levels of surface structure (SS) and logical form (LF) in current theories.’
Questions naturally arise as 1o the generative power of such multi-level systems. While

there has been some vreliminary and suocestive research in thic araa feas cactinn A) tha
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results have engendered controversy and confusion: How can one compare theories that
set different boundaries between syntax and semantics? What is the expressive power of
logical form? If logical form is non-context-free, then do these results imply anything
"about the nature of linguistic theories or sentence processing? _

A complexity approach helps here because computational complexity theory mea- -
sures the intrinsic difficulty of solving an {(information-processing) problem no matter
how its solution is obtained, for example, the problem of arranging a list of » names into
alphabetic order. Inherently then, complexity theory studies problem structure: it classi-
fies problems according to the amount of computational resources (for example, time,
space, or electricity) needed to solve thern on some abstract computer model, typically
a deterministic Turing machine. Complexity classifications are invariant across a wide
range of primitive machine models, all choices of representation, algorithm, and actual
implementation, and even the resource measure itseli.

- In contrast, a generative capacity analysis can only tell us indirectly about computa-
tional complexity. To underscore this point, in this paper we show that the well-formed
logical expressions of English, and presumably most, perhaps all natural languages, are
non-context-free.” More interestingly, this weak generative capacity result apparently
pouses o computational hurdle for processing. Section 3 sketches efficient (polynomial
time) algorithms for disjoint reference and nonvacuous quantification (Details are given
in appendix B. An algorithm for the no-free-variables-constraint is analogous and is
omitted). ‘ ‘

These results hold under certain routine assumptions regarding logical form: that
well-formed LF sentences are roughly of the sort described by Cromsky [6], HIGGIN-
BOTHAM [10] and others, crucially obeying a disjoint reference (DR) constraint following
LasNik [13], and that coreference is indicated by coindexing.® The structure of the

! Note that even in theories that do not pesit an explicit level of logical form generally contain
interpretation rules that pair structural descriptions and interpretations (in some language), and this
pairing may itseif be regarded as a language.

ZMore precisely, we exhibit a regular set F, a2 homomorphism A, and a general sequential
mapping g such that (g(F ~ k (well-formed English LF expressions)) is a demonstrably non-context-
free language. Since context-free languages are closed under homomorphisms, general sequential
mappings, and intersection with regular sets, it may be concluded that English LF expressions
themselves are non-context-free. _

*The disjoint reference constraint bars coindexing between names or epithet NPs in a c-com-
manding domain, €.g.,

(1} = Reagan, thinks that [the aging actor], is losing touch.
For the argument to go through we could restrict ourselves to names if necessary, avoiding epithets
entirely.
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argument would seem to hold for any theory that faithfully encodes the disjoint reference
constraint.” .
These findings do not necessarily imply that the full mapping from surface structure
to logical form is computationally tractable, only that three specific LF constraints are.
Even so, the approach shows how computational complexity analysis may be used to
pose problems about the surface structure—IF mapping generally.
That LF constraints are efficiently computable should come as no surprise, because

LY
ag emphasized in [4] many strictly non-context-free languages {such as g"5"¢") may he

efficiently analyzed. Thus, while the class of strictly non-context-free languages has no
general, efficient recognition algorithm, this fact does not imply that particular strictly
non-context-free languages of that class will be likewise intractable. The disjoint re-
ference example explicitly provides such a case. We therefore conclude once again that
there is no necessary link between strict context-sensitivity and computational difficulty.
Beyond this narrow point, the result shows that an exclusive focus on the context-
-free/context-sensitive language hierarchy is misleading. Presumably, the aim of a weak
generative capacity analysis is to forge some connection (however tenuous) between a
linguistic formalism and computational processing demands. If so, then exampies such
as the one provided here show how poor a proxy weak generative capacity can be. If one
aims to study the computational demands imposed by a linguistic formalism, it would
seem best to study those computational demands directly, since, as the three example LF
constraints demonstrate, it may well turn out these are far less than what weak generative
capacity indicates. In section 4 we suggest more generally that the proper analysis of
multi-level linguistic formalisms, LF, or other constraints should be cast as conplexity
problems rather than as the weak generative capacity analysis of languages. For example,
the disjoint reference problem for English may be stated as follows: Given an arbitrary
" sentence of English, does there exist an assignment of indices to the names or definite NPs
in the sentence that meet the disjoint reference constraint (as usually stated)? As is
generally the case with problem statements, this one abstracts away from a consideration
of how exactly disjoint reference is to be deterrnined —whether by “syntactic” or “‘seman-
tic” means, whether by a one-level or two-level theory, what algorithm is to be used, and
so forth. It poses an abstract computational problem, in the sense imtended by MARR, and
thus effectively sidesteps the difficulty of how a formalism sets the boundaries of “syntax”
and “semantics”, or whether there is any distinction between the two at ail. It also
explicitly incorporates the grammar as an object of investigation (in contrast to a weak
generative capacity analysis, which explicitly disavows the grammar’s role). (See [2] and
[3] for a more extensive discussion and justification of this point.) It contrast, the
Iaborious process of first determining the class of languages fixed by a disjoint refer-
ence-obeying LF would seem to be a more indirect way of grappling with the disjoint
reference constraing.

“While'it is well known that a first order predicate calculus language enforcing such contraints
as nonvacuous quantification or no-free-variables is non-context-free {see, e.g., [11], p- 231, or [15)),
such a result has never been directly obtained for natural languages. Further, this cxample refutes
a conjecture raised in [15] that “additional constraints™ could “in principle cut” [English’ LF—rcb]
“down to a CF subset” (p. 188).
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2. ENGLISH LF IS NOT A CONTEXT-FREE LANGUAGE

We now demonstrate informally that English logical form is a non-context-free
language. The result follows from the disjoint reference constraint for names or epithet
NPs generally: if such an element X c-commands another name or epithet NP ¥, then
X and ¥ may not be coindexed, e.g., in the sentence below, the occurrences of Reagan,
the aging actor, and the current President and must be distinct:

(2) Reagan said that the aging actor thought that the current President likes ice-cream.
This is conventionally indicated by subscripting the occurrences with distinct indices:

(3) Reagan, said that the aging actor, thought that the current President; likes ice-cream,
JEkE#EL]#]

Intuitively, we can show that any LF language that includes such a constraint must
be non-context-free for the following reason. Any context-free language permits one to
arbitrarily duplicate certain embedded segments if they are long enough, and still obtain
a string in the original language. If the set of LFs obeying disjoint reference formed a
context-free language, then one ought o be able to carry out this conventional “pump-
ing”. However, considering a variant of (2) above, we note that if we duplicated a middle
portion that the aging actor; thought, we would obtain an LF with a nondisjoint index.
This would violate DR and hence must be a siring not in the original LF language:

(4) Reagan, said that the aging actor; thought that the aging actor; thought that the
current President, likes ice-cream

Since this string is not a valid English LF, our original assumption that the English
LFs obeying disjoint reference formed a context-free language must have been incorrect.
Indeed, since the language 4 = {@b*cli # k, k # 1, j# I, ¥V integers j, k, I > 0} is well
known to be non-context-free (see {12], p. 130), it should not be surprising that the DR -
constraint would lead to non-context-freeness.
Appendix A gives the details.

3. LF CONSTRAINTS CAN BE EFFICIENTLY PROCESSED

In this section we show that while English L.F, and presumably the LF for other
natural languages, is strictly non-context-free, this fact does not necessarily imply any
processing difficulty, because constraints like disjoint reference and nonvacuous quanti-
fication are all quickly computable. This result impugns weak generatlve capacity as a
good indicator of computational tractability.

We first show that the DR constraint is efficiently computable and then repeat the
demonstration for the standard formulation of the nonvacucus quantification con-
straint. The result for the no free variables constraint is similar and is omitted. While we
consider only these two aspects of LF here, it is straightforward to sequentially check LF
for other conditions, e.g., that labeled brackets are properly paired. Appendix B gives the
details along with a worked-out example. We assume a finite number of names.
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3.1. Assumptions

Logical form representation. We take LI to be roughly bracketed S-structure, with
quantifiers in Complementizer positions binding quantified NP positions. We assume
that Names occur singly under NP nodes, and that there is no vacuous LF branching
(e.g., a degenerate tree of the forrmn NP-NP-NP-...-Name); note that this latter assump-

tion follows directly from a formalism such as that adopted in [14]. We ignore wh-bound

o e £1 nd tha Lo tha
variable rnlr}r]p}gng and all other A”peﬂduuun.o such as plumvauuu ana the ke that

- might be indicated by subscripting, or superscripting. These may be independently
(sequentially) checked by a similar algorithm. Finally, as noted above, we will assume
that LF strings contain properly paired labeled brackets; if not, this condition is easy to
check in advance; a procedure to do so will be omitted here.

Disjoint reference. We must state precisely what we take the DR computational problem
to be. The input to the algorithm will be a well-formed LF, without indices for names.
Therefore, we may assume that each such (bracketed) LF is unambiguous. The output
from the algorithm will be the same LF, but with a valid pairing of indices and names
or epithets. Thus, we define the DR problem to be one of disjoint reference construction
(finding a valid disjoint indexing), rather than disjoint reference verification (verifying
that a given indexing assignment is valid). At first glance, this would seem to be the wrong
problem formulation because it seems to make the DR problem rather trivial: after all,
all one has to do to get some valid index assigmment is simply give all names or epithets
distinct indices. One could do this simply by maintaining a counter and just incrementally
assigning unary numbers to names, left to right, in the LF siring. Of course, this would
omit all possible cases of coreference. Therefore, it would seem more valid to solve the
DR verification problem. However, as we shail observe, the algorithm given in Appendix
B is not this trivial one and may be readily used for disjoint reference verification as well.
We present-the constructive version because it is somewhat simpler to understand.

Measurement of algorithm complexity. Algorithmic complexity is standardly evaluated
with respect to a Turing Machine (TM) computatxon model: as a measure of time, we
count the number of primitive instruction steps it takes for an-algorithm to solve the DR
problem on a l-tape TM, as a function of the length of input formulas, n. As is also
conventional, we will consider a problem to be fractable if it has an algorithm solving it
that takes no more than #’ time steps, for some fixed integer j. (This includes all

. polynomial functions such as #°, n° + n, and so forth, and is therefore called polynomial
time.)

3.2. An algorithm for disjoint reference

We now proceed to describe informally an algorithm that will assign a valid set of
disjoint name indices to an input LF without such indices, and follow with a more precise
description. Though the algorithm considers only names, an extension to epithets is
straightforward.

To make the demonstration easier, we shall use a turing machine that has 3 work tapes
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and one read-only input tape. The input tape will initially hold the LF formula to
process. Of the three work tapes, one will hold a list of bracket symbols and nonaccessible
Name and index pairs, with such Name-index pairs currently unavailable for coindexing
with other Names; one tape will hold a list of accessible Names’ and indices, possibly,
available for coindexing; and the third tape will hold a counter indicating the numerically
largest index assigned so far. We will call the first tape the access tape; the second the

DISIOINT tape and the third the cOUNTER. Indices will be encoded in unary. As is well
Trey muere au\.-u. a T.tane manl'unn a]gnﬁfhm contld he ennverted Il’!fo a ]-tapﬁ ma,ch]_ne
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algorithm while at worst squaring the time; therefore, if there is a polynomial-time
algorithm on a 3-tape TM, there is a polynomial-time, hence tractable algorithm on a
standard TM.

The intuition behind the algorithm is as follows. A given formula will be processed in
one pass, left to right. The DISJOINT tape will be used to store left and right labeled
brackets in order to compute c-command domains, as well as store names and indices
that are not allowed to be co-indexed. As labeled left brackets indicating the start of a
(branching) c-command domain are encountered, they will be placed on the DISJIOINT tape
in pushdown stack order, as will names. Before a name is placed on the DISJOINT tape,
the algorithm will check the ACcEss and COUNTER tapes to see (1) what the next available
index should be; (2) whether an already-assigned index can be used. As appropriately
labeled closing right brackets are encountered, these will complete c-command domains.
responding to this, the algorithm will remove name-index pairs from the DISJOINT tape
in pushdown stack order, from right to left, up to the corresponding left bracket, and
make those name-index pairs available for co-indexing by placing them on the ACCESS
tape to the right of any existing name-index pair. Irrelevaht.brackets and tokens will be
skippe,d gver in the input and ignored.

"By the way the algorithm is designed, at any one time all names within the same
ccommand domain are on the pisJoINT list. This makes it easy to enforce the DR
constraint, by checking whether the indices assigned to these names are distinct.

3.3, An algorithm for nonvacueus quantification

Simply stated, the nonvacuous guantification constraint (NVQ) says that every quan-
tifier Yx;, 3x; (i, j again in unary) must bind some corresponding variable. This amounts
to two constraints: (1) there must exist such a corresponding variable somewhere to the
right of the quantifier; (2) there must be no other intervening, c-commanding quantifier
that binds the same variable. Note that x here is a fixed terminal in the LE vocabulary.

An algorithm for verifying this constraint can use the same approach as the one for
DR. Since the NVQ problem is one of verification, we assume an input LF with indices
already assigned. To further simplify matters, we assume that ali lexical quantifiers such
as all, very, etc., are translated to occurrences of V, 3, while wh quantifiers are translated
as the token whk; the extension to a finite number of other quantifiers is straightforward.
it is also irrelevant whether we assume that an entire guantified NP is moved to a
Complementizer position or just, say, only a Determiner is moved.
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Using a tape called QuaNT, and another worktape, the algorithm works essentially by
stacking quantifiers within c-command domains until potentially matching candidates
are found. We omit the details here. The algorithm is designed to place c-commanding
quantifier domains in pushdown stack order on QUANT. Any time an empty category—in-
dex pair is encountered, the first possible quantifier list is checked for a matching index,
and this quantifier-index pair is eliminated. If any c-commanding domain contains a
quantifier that has no matching variable, then such a domain contains a vacuous
quantifier, and the input LF is rejected. Relevant c-command domains are marked off by
§ pairs. Note that the algorithm handles the case where the Complementizer position
could be on the right rather than on the left, since in this case the variable index is saved
on the worktape to wait for a possible quantifier in Complementizer position. (This is
irrelevant for the IDR"constraint, which depends strictly on c-command and not on the
Complementizer position.}

The no-free-variable constraint {every variable must be bound by some guantifier)
may be handled in a similar manner.

4, DISCUSSION AND CONCLUSIONS

The main results of this paper can be put quite briefly: (1) Because of disjoint
reference, English LF is not a context-free language; (2) this weak generative capacity
finding does not apparently imply anything about sentence processing, since DR (and
two other LF constraints) is efficiently computable with a finite number of names.

Beyond these narrow findings, the results have broader implications for the study of
the relationship between representational levels in linguistic theories. Other researchers
have considered the computational complexity of multiple-level natural language theo-
ries, and it is worthwhile to compare their results to those described here.

First, it seems likely that other LF components not considered here, such as pronomi-
nal indexing, make LF processing still more complex. CORREA proposes a nondeterminis-
tic algorithm to compute all LF indexing [8], and a preliminary, informal analysis
indicates that his approach would make a single left-to-right pass through an LF string
in time proportional to the length of the string. Straightforward conversion to a deter-
ministic algorithm would demand time proportional to 2*, for some constant ¢. How-
ever, since this is just one possible algorithm it remains to establish the complexity of the
LF problem in full. There may be a better deterministic algorithm.

MarsH and PARTEE investigate the non-contexi-freeness of the NVQ constraint and
no-free-variable constraint as applied to fragments of the first order predicate calculus
[15]. Both of these languages are well known to be non-context-free, as pointed out for
exarnple in [10]. Marss and PARTEE show that the no-free-variables (NFV) constraint is
b a strictly context-sensitive language, in fact, can be generated by an indexed grammar
as defined by Ao in [1].° Intuitively, this means that one can check the NFV constraint

3 The languages generated by indexed grammars form a strict subset of all the context-sensitive
languages.
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by encoding at each variable name a string of indices that c-command it. Then, one can
use this encoded list as a means to control the expansion of the variable name into at least
one of those indices, thus ensuring that there will be no free variables in the resulting
logical form sentence. In contrast, MArsH and PARTEE suggest that NVQ is not an
indexed language, and they show why the index checking power of an indexed grammar
seems to fall short of what is needed for NVQ,

It is interesting to compare MARSH and PARTEE’s approach with that presented here.
Marsi and PARTEE do not investigate the NV and NFV problems; rather, they aim to
establish the weak generative capacity of various artificial Janguages that embody the
NVQ and NFV constraints. This weak penerative capacity approach reveals its own
limits: (1) no results about the actual computational complexity of the constraints are
forthcoming; (2) since the “programming” ability of an indexed grammar is so limited,
one quickly runs into-difficuliy establishing just what sort of languages NVQ.describes;
(3) questions arise as to the division between “syntax” and “semantics”. Note that even
if one established that NVQ was a non-indexed langnage, that would leave open a
question of its recognition complexity, as is the case with NFV when encoded as an
artificial language. In contrast, the results given here show directly that NVQ and NFV
are polynomial-time computable, without resorting to-intermediate weak generative
capacity arguments. Further, as noted below, by posing linguistic questions as problems
one can bypass essentially irrclevant disputes about syntax and semantics.

Turning to other approaches, BORGIDA models stratificational grammar as a restricted
mapping from one (generally context-free) language to a second language, where the first
language may be taken as a syntactic description, the second an LF-type description [5].
Though drawing on the characteristic vocabulary of stratificational theory, the model
seems flexible enough to apply to any theory that decomposes an overall grammatical
description into distinet representational levels.

BORGIDA obtains several weak generative capacity and recognition complexity results
relevant in the current context. For example, suppose that both representational levels
are described by context-free grammars, and that the second level (“LF”) contains no
empty elements, as is the case since coindexed empty categories are actually terminai -
elements in LF. Suppose in addition that the mapping between S-structure and LF is
linear — given some S-structure string, the corresponding LF string is at most k times
larger, for some & fixed in advance. This constraini seems plaunsible, and is given some
justification in {4]; we will put aside the question of indexing for the moment, which
complicates matters.

If these assumptions hold, then BorGIDA shows that the set of all languages generable
by all such context-free two-level grammars is exactly the set of guasi-realtime languages.
These are the languages recognized by a non-deterministic Turing machine in time
exactly », where # is input sentence length; they include some strictly context-sensitive
langnages’. Because the quasi-realtime languages are probably not recognizable in
polynomial time, this result would seem to conflict with the polynomial time DR and
NVQ algorithms given earlier. However, it is not yet clear how BORGIDA’s results mesh

© Recall that a Turing machine is deterministic if for every combination of state, input symbol, and
tape symbols there is exactly one move it can make, and is nondeterministic otherwise.




Computational complexity 431

with the LF models proposed in government-binding theory and in this paper. First, we
have discussed just three LF constraints; others may indeed be more complex. Second,
if we insist that the indices themselves be encoded as part of LF, then a logical form is
more than linear in the size of S-structure.’. Since constraining LF makes it easier to
process, perhaps a less consirained, non-linear L.F wil be harder to process. Still, it
remains to fix precisely the computational complexity of LF problems generally.

PLATEK and SGALL, using an algebraic approach, obtain results similar in kind to
Borgma’s. They show in [16] how to modsl multiple-level grammatical theories as
follows: Start with the set of all context-free languages, T;. Then, translate T to a new
set of languages 7;, by applying all possible deterministic, linear, pushdown automaton
transductions, denoted M. That is, for some integer & fixed in advance, the mapping may
not reduce or expand strings in 7} by more than a factor £. One may imagine a pushdown
automaton fransducing an input by processing some input string, say, an S-structure, and
outputting a new, translated string, say, a logical form. Then 7; = M(T}) £ T;, and in
fact T; includes some strictly context-sensitive languages (such as {ca"ca"ca”}, for all
integers n). Suitably tailored to conform to BORGIDA’s restrictions, it may be conjectured
that 7, is in fact precisely the class of quasi-realtime languages.

By posing DR or any grammatical constraint as a computational problem we can
dispose of computationally irrelevant distinctions between syntax and semantics, or the
boundaries between them. If a problem is computationally intractable, it may be
presumed intractable with respect to any proposed algorithm that makes the usual
assumptions of complexity theory. But this means that any reasonable way of dividing
the problem into distinct “syntactic” and “semantic” languages cannot be any easier, for
this would in turn imply a tractable solution to the intractable problem in the first place.?
On the other hand, if we can show that a grammatical problem has an efficient solution,
then this may involve a sophisticated algorithm that does not abide by conventional
notions of “syntax™ and “‘semantics”. In general, we can model a grammatical problem
as the mapping between two languages, and pose computational problems with respect
to one or another of these, without labeling one language “syntax” and the other
“semantics”. This would seem to be the most neutral possible stance; on either possibil-
ity, by formulating a grammatical constraint as a computitional problem, we can not
only draw on the usuai tools of modern - computer science, but we can also attack the
processing demands of grammar directly, without the possibly misleading proxy of weak
generative capacity.

Acknowledgements, The idea that the DR probiein could lead to a non-context-free language first
arose in a discussion with G. Edward BarTON, Jr. Noam CaoMsKY provided additional comments,

.TIf a sentence n S-structure tokens long contains proportional to » indexable elements, then the

i=n

corresponding LF will be of length v+ ¥ logi > kn, for fixed k. An alternative is to adopt the

i=1
approach in [4], and assume that indexable items are drawn from an indefinitely large terminal
vocabulary, e.g., that each occurrence of Susan is distinct to begin with. The implications of this
latter approach will not be pursued here. -
8By “reasonable” we mean roughly any way that does not hide an cxponcnnal amount of
computation,
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A. DETAILS OF THE CONSTRUCTION THAT ENGLISH LF
IS NON-CONTEXT-FREE

Al Assumptions

In order to proceed, we must make certain assumptions regarding LF, indexing,
c-command, and the disjoint reference constraint for names.

Logical form representation (LF). LF is assumed to cousist of essentially bracketed
S-structure, plus the application of Move-alpha to quantified NPs that moves such
constituents into Complementizer positions, leaving behind variables. Such elements,
along with wh-phrases, are coindexed along the lines suggested by CHOMSKY in [6] and
HIGGINBOTHAM in [10], among others. Following [6], coindexing is assumed free unless
otherwise constrained. Each sentence of logical form is unambiguous, though there may
of course be more than one LF associated with a given susface sentence. For example,
the following LF would correspond to the surface sentence, What did John eat (ignoring

Gemalacen ot Andnile awd tho e - a 3 3 H .
irrelevant details and the matter of indices, to which we return immediately below}:

(5) Islcomp Whatlcomp [s [ John; Jnp fve cat e kls

More completely, we assume that the language of English LFs is described over an
alphabet X that includes the symbols [and ], appropriately labeled by S, NP, VP, etc.; 1
(the latter to encode subscripts in unary, see below); a special symbol # to replace
blanks; plus the usual orthographic symbols required to write down English words. As
is standard, we may replace all occurrences of the blank space following each word in
English logical forms with the symbol # by insertinga # to the right of each word. Thus
the string

(6) [s John, said [g that John,, said [g that Sally likes ice-cream]]}
becomes

(7) [, # John, # said # [g # that # John,, # said [g # that # Sally,, # likes # ice-
-cream]]}

Indices. It is conventional in the linguistics literature to indicate coindexing via integer
subscripts, as above, e.g., x;, x;, and so forth. We could encode these integers as binary
numbers. Alternatively, one could encode integers in unary, with a 1 denoting 1; 11
denoting 2; 111 denoting 3, and so forth. This one could write as x’, x”, etc., or, more
transparently, x;, x;, etc. Each of the i tokens counts as a distinct terminal word in the
LF string, just like John or left and right labeled brackets. To be absolutely clear about
this, for example, (5) will be written with indices as follows, where spaces have been left
between tokens for readability. (note that any number of i’s besides two would count as

a valid index for the wh word and the coindexed variable}.
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(8) [slcomp What i )comp [shee John ifup [ve €at X il e ks

We adopt the unary encoding here, because it simplifies the proof; on the other hand,
as described in section 3, it does make some of the algorithm complexity calculations
slightly more complicated.” As part of the LF language itself, the indices should be
thought of as generated by some underlying grammar.

C-command. A node @ c-commands a node Bif the first branching node that dominates
@ dominates B. Any of the common variants of c-command could be assumed, without
altering the basic result. ,

Disjoint reference. Given two referential NPs X, ¥, denoting names or epithets, if X
¢commands Y then the indices for X and ¥ must be distinct.

A2 A proof that English LF is not context-free

Asis standard, we may show that well-formed English LFs do not form a context-free
language using a proof by contradiction. We first assume that such sentences do form a
context-free language. We then apply certain operations on this language known to
preserve the preperty of being context-free. Finally, we show that the aitered language
1s not context-free. We therefore conclude that our original assumption that the well-
-formed English LFs form a context-free language must be false.

The demonstration has four steps. We begin with the set of all English well-formed
LFs. First, we will erase all brackets. This prepares us for the next step, which is to
intersect all such debracketed English LFs with a regular set that filters out all such forms
save for those that have a particularly simple structure, with three sets of indices. The
reason for excising the brackets in the first place is to ensure that this filtering set can be
regular set (one generated by a finite-state grammar), so that the intersection will preserve
context-freeness. Third, we apply a general finite-state mapping that will produce our test
language A that we can show to be non-context-free. Let us examine in more detail how
this works, following along with an example. We start with the LF:

(%) [tlsIye John {lwp [ve said §; that [ John iiilyp [yp said [g that [5[ye John i Ip
- I likes [p ice-creampnplye kElelk

Step L. Apply a homomorphism % that erases all brackets. This step preserves conlexi-
freeness.' Applied to our example sentence, the output of /# would be:

(10) Joha i said that John ## said that John i likes ice-cream.

Construction of k: the debracketing homomorphism # may be described as follows.

h(a) = @, Vae X, where X is a finite set of brackets {[5, [, fnp. _...}
i{a) = a, otherwise
Plainly, £ “crases™ brackets. A proof is omitted.
?Section 3 briefly describes what it would mean to shift to a binary or other radix for encoding

indices. This would not alter the basic result.
Tt is well known that & preserves context-freeness; see [12].
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Step 2. Intersect the debracketed language with a regular set F that filters out everything
excepr those debracketed LFs in the following form, where superseripts indicate repeti-
tion:"

(11) John # said that John i* said that John i Iikes ice-cream
Vintegers j, k, /> 0and j#E K k#Lj#1

Thus, our example (10) would be admitted by this filter, while the following siring would
be blocked, because it contains nondisjoint subscripts: .

{12) John { said-that John i said that John /i likes ice-cream

The filtering set F itself is simply the set of all sentences in the form in (11} but also
including all possible subscripts, both disjoint and nondisjoint. As is conventional, the
plus sign + is Kleene plus, denoting 1 or more repetitions of an element.

{13) John i* said that John i* said that John i likes ice-cream.

Plainly, F is a regular language because it is a regular expression. F fails to obey
disjoint reference and in addition includes only a small subset of possible debracketed
English LFs. When we intersect this regular fitter set with the set of all well-formed
English debracketed LF expressions that must obey the noncoreference constraint, only
those with (properly) noncoindexed subscripts can be left behind. .

Step 3. Apply a general sequential machine mapping g—a generalized homomorphism
based on a finite-state machine—that (1) erases all tokens in the given string up to the
first string of is, and replaces the i’s with a’s; (2) erases the next string of tokens up to
the next string of s, and replaces them with »’s; and ﬁnally, {3) erases the remaining
tokens up to the final string of i's, and replaces them with ¢’s. This machme mapping
preserves context-freeness (see 9, pp. 200—-205).

In our running example, g would output the new string.
(14) abbbcecee, e.g., ab’c’
In general, step 3 must yield all strings of the form,
a'b*c! j#£k k#1Lj#1,Vintegers j, k, [>0

This general finite-state machine mapping g is called a sequential transducer i [9],
p. 199. This is simply a finite-state machine that maps input strings to output strings, by
associating some string of output symbols that are paired with each transition in the
finite-state machine. Theorem 6.4.3 of [9], p.200 shows that if L is a context-free
langnage and S is a sequential transducer, then S(L) is a context-free language.

The g we need to convert the examples above into language A may be described as in
Table 1. By convention, machine transitions between states s,, s, are described by a pair
x:y, where x as usual gives the symbo! that allows a transition between s, and s,, while

I* Again, the intersection of a regular set and the set of strings determined by a context-free
language is a context-fTee language; see [12].
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Table 1: The sequential transducer (general sequential machine, or gsm) that maps strings of the
form in (13) to a string of a’s and b’s. Possible transitions not listed lead to rejection,

State Xy pair New state

Sa John: nil S
# : nil 5
ia : 5
5 it a 5
#: nil : S
8 # : nil 5,
said; nil £
irh 5
83 iih . 5
' #: mil A
£, it c 5y
said: nil 5,
that: nil 5
John: nil A
likes: nil 854
ice-cregm: nil 54

A (no input) Accept

¥ is the symbol output as a result of making that particular transition. The initial state
is 5y, and the final state is 5. The machine accepts if it is in a halting state with no more
input. The alphabet of the machine includes a finite input and output vocabulary. It
should be apparent that the input vocabulary must include the symbols in the relevant
example string, i.e., John, said, that likes, ice-cream, i, # . The output vocabulary consisis
of a blank whitespace symbol, denoted nil; a; and b. It is easy to check that g meets the
requirements for a sequential transducer. Clearly this general sequential machine maps
the strings described by [11] into the language A.

Step 4. Show that
A={ab i+ k k#£1,j# 1V integers j, k, | > 0}

is not a context-free language, thereby obtaining a contradiction and concluding the
proof. This fact about 4 is proved in [12], p. 130. The proof can be carried out quite easily
by applying a strong “pumping” lemma for context-free languages. According to this
lemma, given any context-free language, and any sentence of that language, if we
“pump” (duplicate) a particular, long enough portion of that sentence, we must obtain
a sentence that is still in the language we started with. But this fails to hold for 4.
Intuitively this is so because if we duplicate that portion of a string in 4 containing just
* one index (say, only the a’s), we must obtain duplicated subscripts as in sentence {12),
thereby obtaining a sentence not in 4. [
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B. POLYNOMIAL-TIME ALGORITHM FOR DR

For disjoint reference we give the algorithm itself and follow with an example. We
then show that the algorithm correctly obeys the c-command condition, and that its
running time is no more than polynomial in the length of input LFs. In the algorithm
that follows, we omit obvious details of the Turing machine construction. The control
flow passes directly from top to bottom, aside from conditional statements and go-tos
back to Step (1). Important: ouly a finite number of names L3 assumed.

Algorithm for DR:

Initialization: all three TM work tapes are blank and the TM is scanning three (arbitrary)
iniial positions of them. The inpiit tape holds the LF forimula to process, and the TM is
scanning the first blank tape cell to the left of the input formula.
(1) Read the next input token 7 of the LF Comment at the start this will be the first, lefmost
token of the input
and do .
If I = ¢ Commment there are no more input tokens
_ then if DISJOINT = @, halt and accept;

else reject

Flse go to Step (2}

{2) IfJe BLN, BLN = a finite set of left bracket branching nodes = {[& is. [ve, [np ; then do
" Copy J onto the DISJOINT tape to the right of all current symbols on that tape
Go to Step'(1)

- (3) M1 = gy, then do
{a} Read the nexi two input tokens f+ 1, 7+ 2 and do
If category I+ 1 # Name v I+ 2 # [y then refect
(b) Scan DISJOINT from right to left and do
If the rightmost token on DISJOINT = [ thes delete from DISIGINT
else reject '
{¢) Scan ACCESS from right to left and és Corument note that ACCESS tape contains
Name-index pairs in adjacent tape cells;"?
(d) ¥ 3 token on ACCESS = [ then do
Copy after I the same index as the onc paired with the token on ACCESS just
matched
Put the Findex palr on the DISJOINT tape
eise do
Consult the COUNTER tape
Increnient the value on COUNTER by adding a 1 to the first blank tape square on
COUNTER to the right of the scanning head
Copy I onto the DISJOINT tape followed by the value on the COUNTER tape to
the immediate right of the existing contents on the DISJOINT tape
(e) Copy I+ 1 as the lefmost symbol on the DISJOINT tape
(f) Go to Step (1);

2We omit obvious details of how this matching could be done rapidly with 2 tapes; see [12],
p. 287 for a similar procedure for a different language.
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(4) If Ie BRN, where BRN = a finite sct of branching right bracket nodes = {Is v} v
= Jwe A the rightmost symbol in DISTOINT # ]y, thes do
Copy all Name, index pairs on DISJOINT leftwards back to the first occurrence of a
labeled left bracket of the same type oirto the ACCESS tape, starting at the rightmost
nonblank tape square unless any such Name-index paxr already exists on ACCESS
Go to Step (1)

(5) Skip the input symbol and go to Step (1).

Note that this algorithm will not construct all possible valid index assignments. This is
because it will stop at the first matching name in the ACCESS list to find a candidate
coreferent Name. It is straightforward to modify the algorithm so that it looks through
the entire ACCESS list and picks a matching Name at random,

An example. Consider the operation of the algorithm on the following conjoined sen-
tence: [John said that John likes Sue) and [John said that Bill likes Sue too). Its nomndexed
LF is:

{] 5) [S [S [Comp ]Comp [S [NP [Na.me John ]Name ]NP [VP said {S [Comp that ]Comp [S [NP {Namc JOhn]Name ]NP
[VP likes, [NP [Name Sue}Na.me ]NP ]VP ]S ]S }VP]S ]S
and
[S [Comp ]Comp [S [N'P [Name J Ohﬂ ]Namc ]N'P [VP Sald [S [Comp that ]Oomp [S [NP [Name Blll ]Nam: ]NP
ve likes [xp [Name SU€ Iname e Jve [aav 100 Taav ks sk -

The first three brackets are left branching, and hence Step (2) applies. The fourth Comp
bracket is skipped by Step (5), while the fifth, [\p is deleted by the next iteration at step
(3a) because it is followed by a Name bracket. The actual name John is also read under
Step (3a). The ACCESS tape is blank, so Step (3d) fails to get a match and the else clause
is executed: the COUNTER tape is incremented by adding a 1 and John along with its
index, a single 1, is placed onto the DISJOINT tape. Step (3¢) places the right Name
bracket on DISJOINT. At this point, the contents of the DISJOINT, ACCESS, and
COUNTER tapes are as follows: :

(1) DISIOINT: [s[sls John 1]y
ACCESS:  blank
COUNTER: 1

Next, the algorithm processes the sequence [vp said [slcomp that Jeomp [s b Ivame
John |y, Inp- As before, Step (2) will apply to the branching node brackets, placing them
to the right of the current material on DISJOINT, while intervening words and the Comp
brackets will be skipped. When the NP bracket is reached, Step (2) copies it onto
DISJOINT, but it is erased on the next round by Step (3b). The remainder of Step (3)
will operate as before. Since the ACCESS tape is blank the COUNTER will be incremen-
ted by 1, and made the index placed alongside the next occurrence of John on the
DISJOINT tape. Finally, the closing Name bracket will be added Now the tape contents
will be as follows:
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(2) DISIOINT:  [s[sls John 1 Tnume [vels[s John 11 hname
ACCESS:  blank
COUNTER: 11

The algorithm then processes the next portion of the LF input, [vp likes {xp Nome
Sue Iname Inp Ive Is Js. The VP branching bracket will be placed on DISJOINT, Jikes is
skipped, and by step 3 the NP-Name combination will place Sue followed by the
incremenied index 111 on the DISJOINT tape.

Next the algorithm first processes closing c-command domains. First, the bracket Jye
is matched back to its left-hand mate. By Step (4), we copy the pair (Sue 111) onto the
ACCESS tape, thereby making it available for coindexing, and removing all other
material in between; this is correct, since Swe now can no longer c-command any
remaining material in the sentence. Next, the bracket ]s is processed; this prompts us
again via Step (4) to copy (John 11) onto the ACCESS tape to the right of Sue, 111.
Finally, the bracket g is read and according to Step (4) simply causes the machine to go
back and erase the first corresponding left bracket. After all of this, the contents of the
three work tapes look like this:

(3) DISIOINT: {5[sls John 1 Tnamelve
ACCESS: Sue 111 John 11
COUNTER: 111

The next part of the input LF siring is }yp ks ;. These closing brackets will prompt Step
(4) to pull off the pair John 1 and move it to ACCESS, while removing all that remains
on DISJTOINT except for a single [5, as is correct:

{(4) DISIOINT: ¥
ACCESS: Sue 111 John 11 John 1
COUNTER: 111

The TM will now process the second conjunct. The new Names JoAn and Sue may be
coindexed with the previous occurrences of John or Sue, and we note that the ACCESS
list holds, appropriately, all these previous occurrences.

First, as before the algorithm will place the opening brackets up to the name John onto
the DISJOINT tape. Next, Steps 3(a) through (3d) execute. The TM obtains a match
with the rightmost John in ACCESS. Therefore, by Step (3d), we do not increment the
counter but assign the index 11 to this new occurrence of John.

We omit the operation of the system with the Name Bill; it is made disjoint from John
and Sue. Similarly, the rest of the input LF will be processed and the next occurrence of
Sue will get the same possiblé index 111 as its previous occurrence. At this point the work
tapes will look like this:

(5) DISJIOINT: [5ls[s John 1lyumelve [s[s Sue 111 Iname
ACCESS: Sue 111 John 11 John 1
COUNTER: 111
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Finally, the closing bracket sequence will erase the DISJOINT tape while no! copying
any duplicate Name-index pairs onto the ACCESS tape. Since there is no mote input and
DISJOINT is empty, the TM halts and accepts, by Step (1).

We now verify informally that the algorithm works correctly and executes in polynomial
time.

Claim 1. The algorithm correctly enforces DR.

Procf. By Step (4), a Name can appear on the ACCESS tape if and only if a branching
node bracket domain enclosing the node has been processed. By definition, these are
Names that can no longer c-command any other material in the sentence and hence can
be coindexed with any later Names that appear, as computed by Step (3d). By Step (3),
a Name is on the DISJOINT tape if and only if an opening branching bracket has
appeared that encloses that Name but no closing branching bracket. By definition, since
they are in the same branching domain, Names to the left in this tape must c-command
Names to the right, and by Step (3d) they are given distinct indices. []

Claim 2. The algouthm will take at most kn® primitive steps on a 3-tape TM, wherc k
is some constant fixed in advance and # is the length of the input LF.

Proof. To sce this, we consider each of the algorithm’s steps, and determine which takes
the most time for processing any single input token. We then multiply this worst-case
possibility by # possible tokens in the input to get the execution time as a function of the
input Iength,

Step (1), reading the input and checking for the end of the input, will take at most
some constant number of primitive steps.

Step (2), checking for an opening branching node bracket, will take at most a constant
number of primitive steps, since the number of such brackets is fixed in advance and may
be stored in the finite control of the TM. Depending on the location of the read/write
head for DISJOINT, copying the bracket symbol could take at most time proportional
t0 n’, or ¢-n? (see analysis for Step(3c)). If executed, the go-to takes at most a constant
number of primitive steps.

The equality check at the beginning of Step (3), the two read steps of (3a) and the
if-then clause will take at most a constant number of primitive steps.

Step (3b), scanning for [p, can take time proportional to the length of the disjoint
tape. But this tape itself can be at most »? iong (see analysis for Step (3c)), so the total
time here is at worst ¢’-#2,

Step (3c), matching against the ACCESS tape, will take at most time proportional to
the length of that tape, since the TM has 2 scanning heads. Since ACCESS can contain
at most n Names in an input » tokens long, this can take at most proportional to n?
primitive instructions (because the tape contains Name-index pairs, and each index itself
can be at most # symbols leng, we could need up to proportional to 1 +2 4 ... 4+ n, or
¢”-n® primitive steps to scan the indices and » primitive steps to scan the Names
themselves).

Step (3d), copying a matched Name-index pair onto the DISTOINT tape, could take
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at worst time proportional to #, for copying and moving the wrting head on the
DISJOINT tape. Likewise, incrementing COUNTER and copying the new Name-index
pair to DISJOINT, can take no more than time ¢™ - n, since this is as large as an index
or the counter may get. '

Step (4), reading and copying names from the DISJOINT tape to the ACCESS tape,
then going to Step (1), can take no more than time ¢.n"#7, since again there can be no
more than # Names and brackets in the DISJOINT list and since the indices can total
no more than 1 + 2 + ... + z long in all. The go-to adds at most a constant mumber of
primitive steps.

Step (5), skipping individual symbols and returmng to Step (1), takes no more than
a constant number of primitive steps.

Adding things up, for an input » tokens long the algorithm takes no more than time
proportional to n x n? = n® primitive steps. ] :

As noted earlier, this algorithm will only assign one possible coreferent index to a
non-c-commanding Name-index pair. However, it is easy to see that one could modify
the algorithm to pick a coreferent at random. It is also easy to see how to verify disjoint
reference: given an LF with indices assigned, the search in Step (3) must check that a new
Name-index pair does not match any Name-index curreatly in the DISJOINT list and
miay match a Name-index pair in the ACCESS list."”
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