
~, , i l ;  j 

ELSEVIER Cognition 61 (1996) 161-193 

C O G N I T I O N  

A language learning model for finite parameter spaces 
Par tha  N i y o g i * ,  Robe r t  C. B e r w i c k  

Center .for Biological and Computational Learning, Massachusetts Institute of Technology E25-201. 
Cambridge. MA 02142, USA 

Abstract 

This paper shows how to formally characterize language learning in a finite parameter 
space, for instance, in the principles-and-parameters approach to language, as a Markov 
structure. New language learning results follow directly; we can explicitly calculate how 
many positive examples on average ("sample complexity") it will take for a learner to 
correctly identify a target language with high probability. We show how sample complexity 
varies with input distributions and learning regimes. In particular we find that the average 
time to converge under reasonable language input distributions for a simple three-parameter 
system first described by Gibson and Wexler (1994) is psychologically plausible, in the 
range of 100-150 positive examples. We further find that a simple random step algorithm - 
that is, simply jumping from one language hypothesis to another rather than changing one 
parameter at a time - works faster and always converges to the right target language, in 
contrast to the single-step, local parameter setting method advocated in some recent work. 

1. Introduction: language acquisition in finite parameter spaces 

With the advent of the "principles-and-parameters"  approach to language 
(Chomsky,  1981), the question of language learnability can again be raised in a 
new context. We take "principle-and-parameters"  approaches to encompass such 
diverse linguistic theories as government and binding theory (including its current 
minimalist  incarnations); head-driven phrase structure grammar (HPSG); and 
current lexical-functional grammar (LFG).  In each of  these frameworks it seems to 
be possible to characterize the class of  possible target (learnable) grammars (or 
languages) as fixed by the parametric variation of a finite number of discontinuous 
variables. Learning a grammar (language) involves fixing the values of  these 
parameters. The notion of a finite parameterization for grammars and learning 
extends even to phonological systems, such as stress, described by Dresher and 
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Kaye (1990), and perhaps even lexical knowledge, if parameterized along the lines 
discussed by Hale and Keyser (1993) and others. The classic example of a finite 
parameterization, common to GB, HPSG, and LFG, is X-bar theory: each of the 
theories above assumes a basic phrase structure determined by an unordered 
template of the form {Head, Complement}, where Head is one of the lexical 
categories Noun, Verb, Preposition ..... and Complement is some list of (possibly 
argument) phrases. (Under some recent accounts, Heads may be extended to 
non-lexical or functional categories such as Inf(lection) or Tense, but we shall not 
depend on such details in the sequel.) By fixing the order Head first, we get 
languages like English, French, and so forth; the other possibility, Head final, 
applies to languages like Japanese, German, and the like. 

However, as emphasized particularly by Wexler in a series of works (Ham- 
burger and Wexler, 1977; Wexler and Culicover, 1980; and Gibson and Wexler, 
1994), the finite character of these hypothesis spaces does not solve the language 
acquisition problem. As Chomsky noted in Aspects of the Theory of Syntax 
(Chomsky, 1965), the key point is how the space of possible grammars - even if 
finite - is "scattered" with respect to the primary language input data. It is 
logically possible for just two grammars (or languages) to be so near each other 
that they are not separable by psychologically realistic input data. This was the 
thrust of Wexler and Hamburger and Wexler and Culicover's earlier work on the 
learnability of transformational grammars from simple data (with at most two 
embeddings). Note that this is essentially a question of how many examples it will 
take to identify a target language - in other words, a sample complexity problem. 
More recently, Gibson and Wexler (1994) show that more subtle difficulties can 
arise in the principles-and-parameters framework: given a linguistically plausible 
three-parameter space, some target languages are not learnable from some initial 
grammatical hypotheses, given plausible positive-only input. 

This article provides a complete mathematical model for analyzing Chomsky's 
informal notion of "scattering" and particular learnability results like those of 
Gibson and Wexler in a more general and precise framework. Our central goal is 
to focus on the question of convergence time: how many positive examples will it 
take to reach a target grammar, under varying assumptions about learning 
procedures, input data, possible grammars, and so forth. In this sense we can now 
exactly quantify the amount of data needed to learn (natural) languages. 

As a way of organizing our analysis, we may consider the language learning 
problem to vary along five familiar dimensions: (1) the type of learning algorithm 
involved; (2) the distribution of the input data; (3) the presence or absence of 
noise or extraneous examples; (4) the use of memory; (5) the parameterization of 
the language space itself (the class of possible grammars/languages). 

Our central observation is that one can model learning in a finite grammar 
(language) space by memoryless algorithms (like the Triggering Learning Algo- 
rithm and others discussed below) completely and mathematically precisely by a 
Markov process. The states in the Markov process denote possible languages or 
grammars (henceforth, we shall use the terms "language" and "grammar" 
interchangeably where no confusion would arise). We can then apply standard 
Markov theory to exactly compute the number of examples required to attain a 
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target language with high probability, given a learner's initial state. In some cases, 
this number is unbounded: that is, previously established non-learnability results 
fall out as a specific case of this so-called sample complexity question. For our 
purposes, we define the sample complexity of the language learning problem to be 
the number of  positive examples the learner needs in order to identify the target 
grammar with high (greater than 1 - ~) probability. We regard this analysis as the 
next step in refining the general learnability questions posed by Chomsky, Wexler, 
and others. Previous research has usually addressed only the question of 
convergence in the limit without probing the equally important question of sample 
complexity. However, plainly it is of  not much use that a learner can acquire a 
language if sample complexity is extraordinarily high, hence psychologically 
implausible. Sample complexity is also closely related to Chomsky's  question of 
grammar "scattering," as we shall see. 

For our analysis we choose as a concrete starting point the Gibson and Wexler 
(1994) Triggering Learning Algorithm (TLA). In our five-dimensional taxonomy 
of language learning systems, this one corresponds to (1) a local hill climbing ~ 
search algorithm; (2) a uniform sentence distribution over unembedded (degree-0) 
sentences; (3) no noise; (4) a three-way parameterization using mostly X-bar 
theory; and (5) memoryless (non-batch) learning. Following our analysis of this 
learning system, we consider variations in learning algorithms, sentence dis- 
tribution, and noise. 

2. Formal analysis of the triggering learning algorithm 

Let us start with the TLA. We first show that this algorithm and others like it are 
completely modeled by a Markov chain. We explore the basic computational 
consequences of  this fundamental fact, including some surprising results about 
sample complexity and convergence time, the dominance of  random walk over hill 
climbing, and the applicability of  these results to actual child language acquisition 
and possibly language change. 

2.1. Background 

Following Gold (1967) and Gibson and Wexler (1994) the basic framework is 
that of  identification in the limit. We assume some familiarity with Gold 's  
assumptions. The learner receives an (infinite) sequence of  (positive) example 
sentences from some target language. After each example presentation, the learner 
either (i) stays in the same state, or (ii) moves to a new state (changes its 

The TLA is an online algorithm. After every example, one can imagine constructing a hill over the 
hypothesis space. For every hypothesis h in this space, the height of the hill is 1 if the example is 
analyzable by that hypothesis, otherwise, the height is 0. The TLA finds the highest point on this hill 
around its current hypothesis and moves to that highest point. In this sense, it does local hill climbing. 
Also, note that the hill changes after every example. The 'hills' after every example could be 
alternatively views as stochastic samples of a single global objective function that is being optimized 
but an elaboration of this point would divert us further afield. 
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parameter settings). If after some finite number of examples the learner converges 
to the correct target language and never changes its guess, then it has correctly 
identified the target language in the limit; otherwise, it fails. 

In the Gibson and Wexler model (and others) the learner obeys two additional 
fundamental constraints: (1) the single-value constraint  - the learner can change 
only one parameter value each step; and (2) the greediness constraint  - if the 
learner is given a positive example it cannot recognize and changes one parameter 
value, finding that it can accept the example, then the learner retains that new 
value. The TLA can then be precisely stated as follows. See Gibson and Wexler 
(1994) for further details. 

• [Initialize] Step 1. Start at some random point in the (finite) space of possible 
parameter settings, specifying a single hypothesized grammar with its resulting 
extension as a language. 

• [Process input sentence) Step 2. Receive a positive example sentence s i at time 
ti (examples drawn from the language of a single target grammar, L(G,)), from 
a uniform distribution on the degree-0 sentences of the language (we relax this 
distributional constraint later on). 

• [Learnability on error detection] Step 3. If the current grammar parses 
(generates) s~, then go to Step 2; otherwise, continue. 

• [Single-step hill climbing] Step 4. Select a single parameter uniformly at 
random, to flip from its current setting, and change it (0 mapped to 1, 1 to 0) i f f  
that change allows the current sentence to be analyzed. 

Of course, this algorithm never halts in the usual sense. Gibson and Wexler aim 
to show under what conditions this algorithm converges "in the limit" - that is, 
after some number, m, of steps, where m is unknown, the correct target parameter 
settings will be selected and never changed. They investigate the behavior of the 
TLA on a linguistically natural, three-parameter subspace (of the complete 
linguistic parametric space which involves many more parameters). We review 
their subspace immediately below. Note that a grammar  in this space is simply a 
particular n-length array of O's and l 's;  hence there are 2" possible grammars 
(languages). Gibson and Wexler's surprising result is that the simple three- 
parameter space they consider is unlearnable in the sense that positive-only 
examples can lead to local maxima - incorrect hypotheses from which a learner 
can never escape. More broadly, they show that learnability in such spaces is still 
an interesting problem, in that there is a substantive learning theory concerning 
feasibility, convergence time, and the like, that must be addressed beyond 
traditional linguistic theory and that might even choose between otherwise 
adequate linguistic theories. 

2.1.1. Remark  
Various researchers (Clark and Roberts, 1993; Frank and Kapur, 1992; Gibson 

and Wexler, 1994; Lightfoot, 1991) have explored the notion of triggers as a way 
to model parameter space language learning. For these researchers, triggers are 
essentially sentences from the target that cannot be analyzed by the learner's 
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current grammatical hypothesis and thereby indirectly inform it about the correct 
hypothesis. Gibson and Wexler suggest that the existence of  triggers for every 
(hypothesis, target) pair in the space suffices for TLA learnability to hold. As we 
shall see later, one important corollary of our stochastic formulation shows that 
this condition does not suffice. In other words, even if a triggered path exists from 
the learner's hypothesis language to the target, the learner might, with high 
probability, not take this path, resulting in non-learnability. A further consequence 
is that many of Gibson and Wexler's proposed cures for non-learnability in their 
example system, such as a "maturational" ordering imposed on parameter 
settings, simply do not apply. On the other hand, this result reinforces Gibson and 
Wexler's basic point that apparently simple parameter-based language learning 
models can be quite subtle - so subtle that even a seemingly complete computer 
simulation can fail to uncover learnability problems. 

2.2. The Markov formulation 

Given this background, we turn directly to the formalization of parameter space 
learning in terms of  Markov chains. This formalization is in fact suggested but left 
unpursued in a footnote of  Gibson and Wexler I 1994). 

2.2.1. Parameterized grammars and their corresponding Markov chains 
Consider a parameterized grammar (language) family with n parameters. We 

picture the 2"-size hypothesis space as a set of points; see Fig. 1 for the 
three-parameter case. Each point corresponds to one particular vector of  parameter 
settings (languages, grammars). Call each point a hypothesis state or simply state 
of this space. As is conventional, we define these languages over some  alphabet 2. 
One state is the target language (grammar). Without loss of generality, we may 
place the (single) target language at the center of this space. Since by the TLA the 
learner is restricted to moving at most 1 binary value in a single step, the 
theoretically possible transitions between states can be drawn as (directed) lines 
connecting parameter arrays (hypotheses) that differ by at most one binary digit (a 
0 or a 1 in some corresponding position in their arrays). (Recall that the distance 
between the grammars in parameter space is the so-called Hamming distance.) 

We may further place weights, b, on the transitions from state i to state j. These 
correspond to the probabilities that the learner will move from hypothesis state i to 
state j. In fact, given a distribution over the target languages L(G), we can carry 
out an exact calculation of  these transition probabilities themselves. Thus, we can 
picture the TLA learning space as a directed, labeled graph V with 2" vertices 3. 

As mentioned, not all these transitions will be possible in general. For example, 

2 Following standard notation, ~, denotes a finite alphabet and ~,* denotes the set of all finite strings 
(sentences) obtained by concatenating elements of E. 

Gibson and Wexler construct an identical transition diagram in the description of their computer 
program for calculating local maxima. However, this diagram is not explicitly presented as a Markov 
structure; it does not include transition probabilities, which we shall see lead to crucial differences in 
learnability results. Of course, topologically, both structures must be identical. 
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by the single value hypothesis, the system can only move 1 bit at a time. Also, by 
assumption, only differences in surface strings can force the learner from one 
hypothesis state to another. For instance, if state i corresponds to a grammar that 
generates a language that is a proper subset of  another grammar hypothesis j, there 
can never be a transition from j to i, and there might be one from i to j. Further, it 
is clear that once we reach the target grammar there is nothing that can move the 
learner from this state, since no positive evidence will cause the learner to change 
its hypothesis. Thus, there must be a loop from the target state to itself, and no exit 
arcs. In the Markov chain literature, this is known as an Absorbing State (A). 
Obviously, a state that leads only to an absorbing state will also drive the learner 
to that absorbing state. If a state corresponds to a grammar that generates some 
sentences of  the target there is always a loop from that state to itself, with some 
non-zero probability. Finally, let us introduce the notion of  a closed set of  states C 
to be any proper subset of  states in the Markov chain such that there is no are from 
any of  the states in C to any state outside C in the Markov chain (see Isaacson and 
Madsen, 1976; Resnick, 1992 and later in this paper for further details). In other 
words, it is a set of  states from which there is no way out to other states lying 
outside this set. Clearly, a closed set with only one element (state) is an absorbing 
state. 

Note that in the absence of  noise, the target state is always an Absorbing State 
in the systems under discussion. This is because once the learner is at the target 
grammar, all examples it receives are analyzable and it will never exit this state. 
Consequently, the Markov chains we will consider always have at least one A. 
Given this formulation, one can immediately give a very simple learnability 
theorem stated in terms of  the Markov chains corresponding to finite parameter 
spaces and learning algorithms 4. We do this below. 

2.2.2. Markov chain criteria for learnability 
We argued how the behavior of  the Triggering Learning Algorithm can be 

formalized by a Markov chain. This argument will be formally completed by 
providing details of the transition probabilities in a little while. While the 
formalization is provided for the TLA, every memoryless learning algorithm ~¢ for 
identifying a target grammar gr from a family of  grammars ~ via positive 
examples can be formalized as a Markov chain M. In particular, M has as many 
states as there are grammars in ~ with the states in M being in 1-1 corre- 
spondence with grammars g ~ .  The target grammar gr corresponds to a target 
state Sl of  M. We call M the Markov chain associated with the triple ( ~ ,  ~, gr), 
and the triple itself a memoryless learning system, or learning system for short. 
The triple decides completely the topology of  the chain. The transition prob- 
abilities of  the chain are related to the probability P with which sentences are 
presented to the learner. 

An important question of  interest is whether or not the learning algorithm A 

4 Note that learnability requires that the learner converge to the target state from any initial state in 
the system. 
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identifies the target grammar in the limit. The following theorem shows how to 
translate this conventional Gold-learnability criterion for identifiability in the limit 
into a corresponding Markov chain criterion for such memoryless learning 
systems. 

We first recall the familiar definition for Gold-learnability: 

Definition 1 Consider a family o f  grammars ~, a target grammar gt E G, and 
a learning algorithm ~1 that is exposed to sentences f rom the target according 
to some arbitrary distribution P. Then gj is said to be Gold-learnable by ~g for  
the distribution P if  and only if s~ identifies gr in the limit with probability 1. 

A family of  grammars ~ is Gold-learnable if and only if each member of  G is 
Gold-learnable. 

The tearnability theorem below says that if a target grammar g t e ~  is to be 
Gold-learnable by s~, then the Markov chain associated with the particular 
learning system must be restricted in a certain way. To understand the statement of  
the theorem, we first recall the related notions of absorbing state and closed set o f  
states. Intuitively, these terms refer to Markov chain connectivity and associated 
probabilities: an absorbing state has no exit link to any other state, while a closed 
set o f  states is the extension of the absorbing state notion to a set of states. They 
have already introduced informally in the earlier section for pedagogical reasons, 
They are reproduced here again for completeness of the current formal account. 

Definition 2 Given a Markov chain M, an absorbing state o f  M is a state s~M 
that has no exit arcs to any other states o f  M. 

Since by the definition of  a Markov chain the sum of the transition probabilities 
exiting a state must equal one, it follows that an absorbing state must have a 
self-loop with transition probability 1. In a learning system that makes transitions 
based on error detection, the target grammar will be an absorbing state, because 
once the learner reaches the target state, all examples are analyzable and the 
learner will never exit that state. 

Definition 3 Given a Markov chain M, a closed set of states (C) is any 
proper subset o f  states in M such that there is no arc f rom any o f  the states in 
C to any state not in C. 

If  two states belong to the same closed set C then there may be transitions from 
one to the other. Further, there can be transitions from states outside C to states 
within C. However, there cannot be transitions from states within C to states 
outside C. Clearly, an absorbing state represents the special case of  a closed set of  
states consisting of exactly one element, namely, the absorbing state itself. 

We can now state the learnability theorem. 

Theorem 1 Let (A, ~, grE~) be a memoryless learning system. Let sentences 
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from the target be presented to the learner according to the distribution P and 
let M be the Markov chain associated with this learning system. Then the target 
gr is Gold-learnable by zal for the distribution P if  and only if M is such that 
every closed set of  states in it includes the target state corresponding to gt" 

Proof This has been relegated to the appendix for continuity of reading. 

Thus, if we are interested in the Gold-learnability of a memoryless learning 
system, one could first construct the Markov chain corresponding to such a system 
and then cheek to see if the closed sets of the chain satisfy the conditions of the 
above theorem. If and only if they do, the system is Gold-learnable. 

We now provide an informal example of how to construct a Markov chain for a 
parametric family of languages. This is followed by a formal account of how to 
compute the transition probabilities of the Markov chain. Finally, we note some 
additional properties of the learning system that fall out as a consequence of our 
analysis. For example, our analysis is consistent with the subset principle, it can 
handle a variety of algorithms, and even noise. 

2.2.3. Example 
Consider the following three-parameter system studied by Gibson and Wexler 

(1994). Its binary parameters are: (1) Spec(ifier) first (0) or last (1); (2) 
Comp(lement) first (0) or last (1); and Verb Second constraint (V2) does not exist 
(0) or does exist (1). Following standard linguistic convention, by Specifier we 
mean the part of a phrase that "specifies" that phrase, roughly, like the old in the 
old book; by Complement we mean roughly a phrase's arguments, like an 
ice-cream in John ate an ice-cream or with envy in green with envy. There are 
also seven possible "words" in this language: S, V, O, O1, 02, Adv, and Aux, 
corresponding to Subject, Verb (Main), Object, Direct Object, Indirect Object, 
Adverb, and Auxiliary Verb. There are 12 possible surface strings for each ( -V2)  
grammar and 18 possible surface strings for each (+V2)  grammar if we restrict 
ourselves to unembedded or "degree-0" examples for reasons of psychological 
plausibility (see Wexler and Culicover, 1980; Lightfoot, 1991; and Gibson and 
Wexler, 1994 for discussion). Note that the "surface strings" of these languages 
are actually phrases such as [Subject, Verb, Object] as in John ate an ice-cream. 
Fig. 3 of Gibson and Wexler summarizes the possible binary parameter settings in 
this system. For instance, parameter setting #5  corresponds to the array [0 1 0] = 
Specifier first, Comp last, and -V2,  which works out to the possible basic English 
surface phrase order of Subject-Verb-Object (SVO). As shown in Gibson and 
Wexler's Fig. 3, the other possible arrangements of surface strings corresponding 
to this parameter setting include S V; S V O1 02 (two objects, as in give John an 
ice-cream); S Aux V (as in John will eat); S Aux V O; S Aux V O1 02; Adv S V 
(where Adv is an Adverb, like quickly); Adv S V O; Adv S V O1 02; Adv S Aux 
V; Adv S Aux V O; and Adv S Aux V Ol 02. 
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2.2.4. The Markov chain fo r  the three-parameter example 
Suppose  the target  l anguage  is S V O  (Sub jec t  Verb Objec t ,  or  " E n g l i s h "  se t t ing 

# 5 = [ 0  1 0]).  W i t h i n  the G i b s o n  and  Wex le r  t h r ee -pa r ame te r  sys tem,  there  are 
2 3 =  8 poss ib le  hypo theses ,  so we can  d raw this  as an 8-poin t  M a r k o v  conf igura-  
t ion space,  as s h o w n  in Fig. 1. The  shaded  r ings  represen t  inc reas ing  d i s tance  in 
p a r a m e t e r  space  ( H a m m i n g  d is tances)  f rom the target.  Each  labe led  circle  is a 
M a r k o v  state, a poss ib le  array of  p a r a m e t e r  se t t ings  or  g r a m m a r ,  hence  specif ies  a 
poss ib le  target  l anguage .  Each  state is exact ly  1 b inary  digi t  away  f rom its poss ib le  
t rans i t ion  ne ighbours .  Each  labeled,  d i rec ted  are b e t w e e n  the points  is a poss ib le  

4 

l 
S 
R 

Fig. I. The eight parameter settings in the GW example, shown as a Markov structure. Directed arrows 
between circles (states, parameter settings, grammars) represent possible non-zero (possible learner) 
transitions. The target grammar (in this case, number 5, setting [0 1 0]), lies at dead center. Around it 
are the three settings that differ from the target by exactly one binary digit; surrounding those are the 
three hypotheses two binary digits away from the target; the third ring out contains the single 
hypothesis that differs from the target by three binary digits. Note that the learner can either stay in the 
same state or step in or out one ring (binary digit) at a time, according to the single-step learning 
hypothesis; but some transitions are not possible because there is no data to drive the learner from one 
state to the other under the TLA. Numbers on the arcs denote transition probabilities between grammar 
states; these values are not computed by the original GW algorithm. The next section shows how to 
compute these values, essentially by taking language set intersections. 
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transition from state i to state j, where the labels are the transition probabilities; 
note that the probabilities from all arcs exiting a state sum to 1. We shall show how 
to compute these probabilities immediately below. The target grammar, a double 
circle, lies at the center. This corresponds to the (English) SVO language. 
Surrounding the bull 's-eye target are the three other parameter arrays that differ 
from [0 1 0] by one binary digit each; we picture these as a ring 1 Hamming 
distance away from the target: [0, 1, 1], corresponding to Gibson and Wexler 's  
parameter setting # 6  in their Fig. 3 (Spec-first, Comp-final, +V2,  basic order 
S V O + V 2 ) ;  [0 0 0], corresponding to Gibson and Wexler 's  setting # 7  (Spec-first, 
Comp-first, - V 2 ) ,  basic order SOV; and [1 1 0], Gibson and Wexler 's  setting #1 
(Spec-final, Comp-final, - V 2 ) ,  basic order VOS. 

Around this inner ring lie three parameter setting hypotheses, all 2 binary digits 
away from the target: [0 0 1], [1 0 0], and [1 1 1] (grammars #2 ,  3, and 8 in 
Gibson and Wexler 's  Fig. 3). Finally, one more ring out, three binary digits 
different from the target, is the hypothesis [1 0 l], corresponding to target 
grammar 4. 

It is easy to see from inspection of the fgure  that there are exactly two 
Absorbing States in this Markov chain, that is, states that have no exit arcs with 
non-zero probability. One absorbing state is the target grammar (by defnition). 
The other absorbing state is state 2 (corresponding to language VOS + V2, i.e., [ 1 1 
1]). Finally, state 4 (parameter setting [1 0 1]), while not an absorbing state in 
itself, has no path to the target. It has arcs that lead only to itself or to state 2 (an 
absorbing state which is not the target). These two states correspond to the local 
maxima at the head of Gibson and Wexler 's  Fig. 4. Hence this target language is 
not learnable. In addition to these local maxima, the next section below shows that 
there are in fact other states from which the learner will, with high probability, 
never reach the correct target. 

2.3. Derivation of the transition probabilities Jbr the Markov TLA structure 

We have discussed in the previous section how the behavior of the TLA can be 
modeled as a Markov chain. The argument is incomplete without a characteriza- 
tion of the transition probabilities of  the associated Markov chain. We first provide 
an example and follow it with a formal exposition. 

2.3.1. Example 
Consider again the three-parameter system in Fig. 1 with target language 5. 

What is the probability that the learner will move from state 8 to state 6? The 
learner will make such a transition if it receives a sentence that is analyzable 
according to the parameter settings of  state 6, but not according to the parameter 
settings of  state 8. For example, a sentence of the form (S V Ol 02 )  as in Peter 
gave John an ice-cream could drive the learner to change its parameter settings 
from 8 to 6. If one assumes a probability distribution with which sentences from 
the target are presented to the learner, one could find the total probability measure 
of all such sentences and use it to calculate the appropriate transition probability. 
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2.3.2. Formalization 
The computation of the transition probabilities from the language family can be 

done by a direct extension of the procedure given in Gibson and Wexler (1994). 
Let the target language L, consist of  the strings s~, s 2 . . . . .  that is, 

L, : {s~,s2,  s~ . . . .  } 

Let there be a probability distribution P on these strings. Suppose the learner is 
in a state s corresponding to the language L~. Consider some other state k 
corresponding to the language L k. What is the probability that the TLA will update 
its hypothesis from L~ to L k after receiving the next example sentence? First, 
observe that due to the single valued constraint, if k and s differ by more than one 
parameter setting, then the probability of this transition is zero. In fact, the TLA 
will move from s to k only if the following two conditions are met: (1) the next 
sentence it receives (say, to occurring with probability P(to)) is analyzable by the 
parameter settings corresponding to k and not by the parameter setting corre- 
sponding to s; and (2) the TLA has a choice of n parameters to flip on not being 
able to analyze to and it happens to pick the one which would move it to state k. 

Event 1 occurs with probability ~to¢(Lk\Ls,fqLt P(to). This is simply the probability 
measure associated with all strings to that are both in the target L, and L k but not in 
the language L~ (the learner's currently hypothesized language). Event 2 occurs 
with probability 1/n, since the parameter to flip is chosen uniformly at random out 
of the n possible choices. Thus the co-occurrence of both these events yields the 
following expression for the total probability of  transition from s to k after one 
step: 

P[s ---> k] = ~ ( 1/n)P(si) 
siE(Lk\L ~ )fq L t 

Since the total probability over all the arcs out of s (including the self-loop) 
must be 1, we obtain the probability of remaining in state s after one step as: 

P[s ---> s] = 1 - ~ Pls --> k] 
k is a ne ighbour  s ta te  of s 

In other words, the probability of  remaining in state s is 1 minus the probability of  
moving to any of  the other (neighboring) states. 

Finally, given any parameter space with n parameters, we have 2" languages. 
Fixing one of  them as the target language L, we obtain the following procedure for 
constructing the corresponding Markov chain. Note that this is simply the Gibson 
and Wexler procedure for finding local maxima, with the addition of a probability 
measure on the language family. 

• [Assign distribution) Fix a probability measure P on the strings of the target 
language L,. 

• [Enumerate states] Assign a state to each language, that is, each L i. 
• [Normalize by the target language] Intersect all languages with the target 
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language to obtain for each i, the language L '~=LiNL ,. Thus with state i 
associated with language Li, we now associate the language L ~. 
[Take set differences] For any two states i and k, i ¢ k ,  if they are more than 1 
Hamming distance apart, then the transition P[i---~k] =0. If they are 1 Hamming 
distance apart then P[i---~ k] = ( I /n)P(L'k~L'~). For i=k,  we have P[i--+ i] = 
1 - E j ~ i P [ i  ---~j[. 

Remark 
This model captures the dynamics of the TLA completely. We note that the 

learner's movement from one language hypothesis to another is driven by purely 
extensional considerations - that is, it is determined by set differences between 
language pairs. A detailed investigation of this point is beyond the scope of this 
paper. We simply note here that if this extensional calculation is the basis of the 
learning algorithm, then it is unclear what the notion "trigger" means, because the 
calculation simply refers to string-language set differences. We shall therefore 
henceforth place the term "trigger" in quotes. (The same point has been made by 
Frank and Kapur, 1992 and Dresher, 1994, unpublished.) 

2.3.3. Example (continued) 
For our three-parameter system, we can follow the above procedure to calculate 

set differences and build the Markov figure straightforwardly. For example, 
consider P[8---)6]; we compute (L6~d~,8)OL 5--{5 V Ol 02, S Aux V O, S Aux V 
O1 02}. This set has three degree-0 sentences. Assuming a uniform distribution on 
the 12 degree-0 strings of the target L 5, we obtain the value of the transition from 
state 8 to state 6 to be 1/3 (3 /12)=  1/12. Further, since the normalized language 
L' j  for state I is the empty set, the set difference between states 1 and 5 (L '5~ '~)  
yields the entire target language, so there is a (high) transition probability from 
state 1 to state 5. Similarly, since states 7 and 8 share some target language strings 
in common, such as S V, and do not share others, such as Adv S and S V O, the 
learner can move from state 7 to 8 and back again. 

2.3.4. Additional properties of  the learning system 
Once the mathematical formalization has been given many additional properties 

of this particular learning system now become evident. For example, an issue that 
is amenable to analysis in the current formalization has to do with the existence of 
subset/superset pairs of languages. The existence of such pairs does not alter the 
procedure by which the Markov chain is computed, nor does it alter the validity of 
our main learnability theorem. However, it is clear by our analysis, that if the 
target happens to be a subset language, the superset language will correspond to an 
absorbing state. This is because all target sentences are analyzable by the superset 
language and if the error-driven learner happens to be at the state corresponding to 
it, it will never exit. This additional absorbing state automatically implies non- 
learnability by our theorem. Consequently the classic results on subset/superset 
non-learnability all fall out as special cases of our framework. However, following 
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Gibson and Wexler, we will assume that such complications do not arise in the 
parametric systems under discussion in the current paper. 

It is now easy to imagine other alternatives to the TLA that will avoid the local 
maxima problem: we can vary any of the five aspects of the language learning 
models we described at the beginning of this paper. To take just one example, as it 
stands the learner is allowed to change only one parameter setting at a time. If we 
relax this condition so that in this situation the learner can change more than one 
parameter at a time, that is, the learner can conjecture hypotheses far from its 
current one (in parameter space), then the problem with local maxima disappears. 
It is easy to see that in this case, there can be only one Absorbing State, namely 
the target grammar. All other states have exit arcs (under the previous assumption 
of no subset/superset relations). Thus, by our main theorem, such a system is 
learnable. 

As another variant, consider the possibility of noise - that is, occasionally the 
learner gets strings that are not in the target language. Gibson and Wexler state 
(footnote 4) that this is not a problem: the learner need only pay attention to 
frequent data. But this is of course a serious problem for the model; how is the 
learner to "pay attention" to frequent data? Unless some kind of memory or 
frequency-counting device is added, the learner cannot know whether the 
examples it receives are noise or not. If the learner is memoryless, then there is 
always some finite probability, however small, of escaping a local maximum. 
Clearly, the memory window has to be large enough to ensure that sufficient 
statistics are computable to distinguish noise from relevant data. A serious 
investigation of this issue is beyond the scope of this paper. 

To explore these and other possible variations systematically, let us return to the 
5-way classification scheme for learning models introduced at the beginning of this 
paper. We consider first details about sample complexity. Next, we turn to 
questions about the distribution of the input data, and ask how this changes the 
sample complexity results. We also consider realistic input distributions, namely, 
some drawn from the CHILDES corpus (MacWhinney, 1990). Finally, we briefly 
consider issues pertaining to the effective modeling of noise. 

3. Convergence times for the markov model 

We return first to a more detailed look at convergence time - the sample 
complexity question. The Markov chain formulation gives us some distinct 
advantages in theoretically characterizing the language acquisition problem. We 
have already seen how given a Markov chain one could investigate whether or not 
every closed set includes the absorbing state corresponding to the target grammar. 
This is akin to the question of whether any local maxima exist. One could also 
look at other issues (like stationarity or ergodicity assumptions) that might 
potentially affect convergence. 

Perhaps the most significant advantage of the Markov chain formulation is that 
it allows us to analyze convergence times. Recall that learnability requires the 
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learner to converge to the target grammar in the limit. The number of examples it 
would take to do so is our informal notion of convergence time. This is the same 
as the notion of sample complexity as far as this paper is concerned. In the next 
sections we provide some formal ways of characterizing convergence times. 

Given the transition matrix of a Markov chain, the problem of how long it takes 
to converge has been well studied. This question is of crucial importance in 
learnability. Following Gibson and Wexler, we believe that it is not enough to 
show that the learning problem is consistent, that is, that the learner will converge 
to the target in the limit. We also need to show that the learning problem is 
feasible,  that is, the learner will converge in "reasonable" time. This is 
particularly true in the case of finite parameter spaces where consistency might not 
be as much of a problem as feasibility. The Markov formulation allows us to 
attack the feasibility question. It also allows us to clarify the assumptions about the 
behavior of data and learner inherent in such an approach. For example, if it turns 
out that a particular parametric theory requires 30 million sentences to be learnable 
(as analyzed by the Markov approach), it would almost certainly render the theory 
inadequate on grounds of feasibility. We have not used the convergence criteria to 
falsify certain kinds of parametric theories yet, but would like to point out the 
possibility of doing so. 

3.1. Some transition matrices and their convergence curves 

Let us consider the example that we looked at informally in the previous 
section. Here the target grammar was grammar 5 and the L'  languages were 
obtained by taking appropriate set differences as discussed. For simplicity, let us 
first assume a uniform distribution on the strings in L 5, that is, the probability the 
learner sees a particular string sj in L 5 is 1/12 because there are 12 (degree-0) 
strings in L 5. We can now compute the transition matrix (shown in Fig. 2), where 
O's occupy matrix entries if not otherwise specified: 

Notice that both states 2 and 5 correspond to Absorbing States. Therefore this 

T o  
L1 L2 L~ L4 L5 L6 L7 L8 

1 1 1 L1 2 6 
L2 1 
L3 3 1 1 

F r o m  L4 1__ 12 12 
L5 1 

1 5 
L6 ~ 6 2 1 
L7 18 1 ~ ~'8 
L8 12 36 

Fig. 2. Transition matrix for the Markov chain when the target is L~. The element occupying the ith 
row and jth column indicates the probability of moving from L i to Lj in one step. Recall that the chain 
has eight states in this case, Each state corresponds to a particular language (grammar), Li in the 
parametric system. 
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Markov process suffers from the local maxima problem. Note also (following the 
previous figure as well) that state 4 only exits to either itself or to state 2. For a 
given transition matrix T, it might be possible to compute 5 

T~ = lim T'" 
m - - > ~  

The (i, j )  element of  Too denotes the probability that in the limit, the TLA will 
be at state j if it started out in state i at time t = 0. For leamability to hold, 
irrespective of which state the learner starts in, the probability that the learner is in 
state 5 should tend to 1 as rn goes to infinity. This means that column 5 of  Too 
should contain all l 's ,  and the matrix should contain O's everywhere else. Actually 
we find that T m converges to the matrix shown in Fig. 3 as m goes to infinity: 

Examining this matrix, we see that if the learner starts out in states 2 or 4, it will 
certainly end up in state 2 in the limit. These two states correspond to local 
maxima grammars in the Gibson and Wexler results; if the learner starts in either 
of  these two states, it will never reach the target. From the matrix we also see that 
if the learner starts in states 5 through 8, it will certainly converge in the limit to 
the target grammar. 

The situation regarding states 1 and 3 is more interesting, and discernible only 
with the probabilistic formulation developed here. If  the learner starts in either of 
these states, it will reach the target grammar with probability 3/5 and reach state 
2, the other absorbing state with probability 2/5. Thus we see that local maxima 
are n o t  the only problem for leamability. As we see from the transition matrix, 

Too = F r o m  

Z l  
L2 
L3 
L4 
L5 
L6 
L7 
La 

T o  
L1 L2 L3 L4 L5 L6 L7 La 

o o o o o o 
1 
_2 a 
5 5 
1 

Fig. 3. The limiting matrix T~ has the following structure, Again, the element occupying the ith row 
and j th column indicates the probability of moving from L, to L;  In this case, the transition 
probabilities are 'in the limit'. Thus, if the learner started in state 1 (L~), it will be at state 2 (L2) with 
probability 215 after infinite example sentences. The target language in this particular case was L 5. 

This limiting matrix is guaranteed to exist for learnable parametric systems due to the fact that for 
such systems the target is an absorbing state and all other states are transient ones. One can determine 
the conditions for the existence of the limiting matrix in general, though it is much beyond the scope of 
this article. Most of the matrices discussed here do have limits. At the very least, one can certainly 
conclude that if the limit does not exist, the system is not learnable. These conclusions can be derived 
from a direct application of the limiting behavior of Markov chains. For further details, see Resnick 
(1992). 
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while it is true that states 2 and 4 will, with probability 1, not converge to the 
target grammar, it is also true that states 1 and 3 will not necessarily converge to 
the target. Thus, the number of "bad"  initial hypotheses is significantly larger than 
the five presented in Fig. 4 of  Gibson and Wexler (1994). More precisely, out of  
the 56 possible initial-target language pairs, 12 result in high-probability non- 
convergence. This is a remarkably high proportion of non-learnable initial-target 
pairs, considering that the parameter space defines only eight languages. This new 
finding is again due entirely to the stochastic framework introduced in the current 
paper. 

The importance of these alternative bad initial hypotheses should not be 
underestimated. As a result, it is not sufficient to consider just the topological 
structure of the Markov chain to understand its learnability properties. Pure 
"reachabil i ty" of  the target from the initial language hypothesis is not enough for 
learnability. Rather, one must consider the Markov transition matrix in the limit 
and its actual numerical entries. Consequently, the existence of a chain of  
"tr iggers" from a source to target language (grammar) does not suffice to 
guarantee learnability. Grammars 1 and 3 represent initial hypotheses from which 
a triggered sequence of examples to the target exist, yet from which the target is 
not learnable in the Gold sense. 

Gibson and Wexler rely on the "reachabili ty" property to drive a wedge 
between Verb Second initial state-target state situations and non-Verb Second 
initial states. For instance, they note that all the cases of  non-reachability occur 
when the initial state is + Verb Second. They then go on to devise various cures 
for this situation, some involving parameter acquisition ordering or "maturat ion":  
for instance, one can imagine that the learner starts out with just - V 2  settings. 
However, the stochastic formulation in the current paper casts doubt on this 
analysis and its potential cures, because, as we have just seen, some non-learnable 
initial states are in fact - V 2 .  Thus their proposals for solving the + V 2  local 
maxima problem can only address part of  the problem. 

To conclude this section, we consider a transition matrix when the target 
language is L 1. This has no V2 movement,  no local maxima problems, and is 
actually learnable under our assumptions. Again we assume a uniform distribution 
on degree-0 strings of  the target. The transition matrix for the corresponding 
Markov chain is shown in Fig. 4. 

Here we find that T m does indeed converge to a matrix with l ' s  in the first 
column and O's elsewhere. Consider the first column of Tm. It is of  the form: 
(pl(m),pz(m),P3(m),pn(m),ps(m),P6(m),p7(m),Ps(m))'.  Here Pi denotes the prob- 
ability of  being in state 1 at the end of m examples in the case where the learner 
started in state i. Naturally we want 

lim pi (m)= 1 
r n  - - - ~  

and for this example this is indeed the case. The next figure (Fig. 5; large dashed 
curve) shows a plot of  the following quantity as a function of m, the number of  
examples. 
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F r o m  

L1 
L2 
L3 
L4 
L5 
L6 
L7 
L8 

L~ L2 
1 
1 5 

18 3 ~ ~8 
36 36 9 

1 23 I 

5 36 ~ 
36 36 1 11 1 

1__ X ¢  

18 18 

T o  

L3 L4 L5 L6 L7 L8 

Fig. 4. Transition matrix for the Markov chain when the target language is L~. Again, the element in the 
ith row andjth column denotes the probability of moving from L i to Lj in one step. The chain has eight 
states in all corresponding to the eight grammars (languages) in the parametric system under discussion. 

p(m) = min {pi(m)} 
1~i~<8 

The  quanti ty p(m) is easy to interpret: p(m)= 0.95 means  that the probabil i ty  o f  
converg ing  to the target is at least 0.95 for any starting state. Moreover ,  there is at 

°I , 
N1 " 

0 /  l 

, i i  / ~,.' / 
: /  / I i i /  iii 

. ~ o  /... / 

| 

6 2'0 4~ o'o 8'0 16o 
Number of samples 

Fig. 5. Convergence rates for different learning algorithms when L, is the target language. The curve 
with the slowest rate (large dashes) represents the Triggering Learning Algorithm. The curve with the 
fastest rate (small dashes) is a Random Step Algorithm (RSA) with no greediness or single value 
constraints. Random steps with exactly one of the greediness and single value constraints have 
performances in between these two and are very close to each other. 
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least one initial starting state for the learner from which the probability of 
converging to the target is exactly 0.95. Examining the curve, the learner 
converges with high probability within 100 to 200 (degree-0) example sentences, a 
psychologically plausible number. 

3.2. Changing the algorithm 

Having investigated one point in our learning system space, we now proceed to 
probe variations in the search algorithm. Previously, we considered one change: 
simply have the learning procedure consider the possibility of moving to an 
arbitrary state (i.e., not necessarily one that is close to it in parameter space) if it 
cannot process the current example sentence. We also saw that this change 
eliminates the local maxima problem. Other simple variations in the algorithm also 
do better than local hill climbing approach of the TLA. Perhaps the simplest 
variation is random step: start the learner at a random point in the three-parameter 
space, and then, if an input sentence cannot be analyzed, pick a state uniformly at 
random 6 and move there awaiting the next sentence. Note that this regime cannot 
suffer from the local maxima problem, since there is always some finite 
probability of exiting a non-target state 7. We can get two other simple variants of 
the TLA by dropping in turn the single valued and the greediness constraint. 
Dropping both yields random step. We exhibit the convergence curves for each of 
these four algorithms on the three-parameter state space in Fig. 5. Surprisingly, we 
find that the convergence times for the variants are actually faster 8 than for the 
TLA. Since the RSA is also superior in that it does not suffer from the same local 
maxima problem as TLA, the computational support for the TLA is by no means 
clear. Of course, it may be that future work will yield empirical support for the 
TLA, in the sense of independent evidence that children do use this procedure 
(given by the pattern of their errors, etc.), but this evidence is currently lacking, as 
far as we know. 

Now that we have made a first attempt to quantify the convergence time, we 
examine how this convergence time depends upon the distribution of the data the 
learner encounters. 

Specifically, out of all the 2" possible states, the learner picks any state to go to with equal (1/2") 
probability. 

7 As discussed previously, we are of course implicitly assuming that there are no subset-superset 
pairs of languages in the system. Note that if this were not the case, there would always be local 
maxima, unless the learner observed some kind of subset principle. This is easy to see. Suppose the 
target was the subset language. Then, the superset language would correspond to a state where every 
target sentence was analyzable. Hence, the learner would never leave the state once it had reached it. 
This state would correspond to an additional absorbing state and system is not learnable by Theorem 1. 

8 Janet Fodor and an anonymous reviewer have noted that it is conceivable that the TLA might take 
more examples but make fewer mind changes than the RSA. This is possibly because the TLA can't 
move arbitrarily far in one step, and might spend a lot of time staying in one place without moving 
while the RSA might have wildly fluctuating hypotheses from step to step while converging to the 
target in a smaller number of steps. This conjecture can of course be tested using the Markov tools 
developed here but we do not report any systematic investigations of the issue here. 
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3.3. Changing the distributional assumptions 

In an earlier section we assumed that the data was uniformly distributed. We 
computed the transition matrix for a particular target language and showed that 
convergence times were of  the order of  100-200 samples. In this section we show 
that the convergence times depend crucially upon the distribution - a point that 
might seem obvious, but that can be quantified as we show below. In particular, 
we can choose a "mal ic ious"  distribution that will make the convergence time as 
large as we want. To meet the requirements of  a psychological ly plausible sample 
size, one therefore needs to put constraints on the distributions with which 
sentence-types from the target are presented to the learner. This implies that a 
realistic study of  the Markov /TLA type models will depend on a more careful 
analysis of  language input to children since this class of models is crucially 
sensitive to the extensional properties of  set differences between languages (sets of 
sentences). 

As before, we consider the situation where the target language is L~. There are 
no local maxima problems for this choice. To illustrate the dependence of  
convergence times on the distribution, it is convenient to let the distribution be 
parameterized by the variables a, b, c, d where 

a = P(A = {Adv - V -  S}) 

b = P(B = {Adv - V - O - S, Adv - Aux - V - S}) 

c = P(C 

= {Adv - V - O 1 - 0 2  - S, Adv - Aux - V - 0 - S, Adv - Aux - V 

- O 1  - 0 2 -  S } )  

d = P(D = { V -  S}) 

Thus each of  the sets A, B, C and D contain different degree-0 sentences of  L~. 
Clearly the probabili ty of  the set L ~ \ { A U B U C U D }  is l - ( a + b + c + d ) .  The 
elements of  each subset of  L~ are equally likely with respect to each other. Setting 
positive values for a, b, c, d such that a + b + c + d <  1 now defines a unique 
probabili ty for each degree(0) sentence in L~. For example, the probabili ty of  Adv 
V O S is b/2,  the probabili ty of  Adv Aux V O S is c/3 ,  that of  V O S is 
( 1 - ( a + b + c + d ) ) / 5  and so on. We can thus obtain the transition matrix 
corresponding to this distribution as shown in Table 1. 

Let us compare this matrix with that obtained with a uniform distribution on the 
sentences of  L~ in the earlier section. This matrix has non-zero elements (transition 
probabilities) exactly where the earlier matrix had non-zero elements. In other 
words, the topology of  the chain remains the same; its learnability properties are 
not affected. However, the value of  each transition probabili ty now depends upon 
a, b, c, and d. In particular if  we choose a = l / 1 2 ,  b = 2 / 1 2 ,  c = 3 / 1 2 ,  d = l / 1 2  



180 P, Niyogi, R.C. Berwick / Cognition 61 (1996) 161-193 

Table 1 
I'ransition matrix corresponding to a parameterized choice for the distribution on the target strings. In 
tai~ case the target is L~ and the distribution is parameterized according to section 3.2. 

1. t L 2 L~ L 4 L5 L 6 L 7 L x 

t~ 

L2 

L3 

L4 

L~ 

L6 

L7 

L8 

1 

1 - a  - o - c  2 + a + b + c  / 
3 3 

I - a  - d  

3 
2 + a + d - b  b 

3 
d 3 - c - d  

3 
C 

3 3 
1 2 - a  a 

3 3 
b + c  3 - b - c  

3 3 
a + d  3 - 2 a - d  3 a 

3 sm 3 
b 3 - b  

3 

(this is equivalent to assuming a uniform distribution) we obtain the transition 
matrix for a uniform distribution. Looking more closely at the general transition 
matrix, we see that the transition probability from state 2 to state 1 is (1 - ( a  + b + 
c))/3. Clearly if we make a arbitrarily close to 1; then this transition probability is 
arbitrarily close to 0 so that the number of samples needed to converge can be 
made arbitrarily large. Thus choosing large values for a and small values for b, c, 
and d will result in exceptionally large convergence times. 

What does' this mean? Briefly, sample complexity depends crucially upon the 
distribution and by choosing a highly unfavorable distribution the sample 
complexity can be increased without limit. Furthermore, the exact nature of this 
dependence can be quantified in our stochastic formulation. For example, we give 
the convergence curves calculated for different choices of  a, b, c, d in Fig. 6. We 
see that for a uniform distribution the convergence occurs within 200 samples. By 
choosing a distribution with a = 0.9999, the convergence time can be pushed up to 
as much as 50 million samples. (Of course, this distribution is presumably not 
psychologically realistic.) For a--0.99,  the sample complexity is on the order of 
100,000 positive examples. 

3.4. Natural distributions: the CHILDES corpus 

Turning from artificially constructed distributions, it is of some interest to 
examine the utility of  the Markov model using real language distributions, namely, 
those from the CHILDES database (MacWhinney, 1990). We have carried out 
preliminary direct experiments using the CHILDES caretaker input to "Nina" 
(Suppes' journal) and German input to "Katrin." These consist of  43,612 and 632 
sentences, respectively. We note, following well-known results, that both corpuses 
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Fig. 6. Rates of convergence for TLA with L~ as the target language for different distributions. The 
y-axis plots the probability of converging to the target after m samples and the x-axis is on a log scale, 
that is, it shows log2(m ) as m varies. The solid line denotes the choice of an 'unfavorable' distribution 
characterized by a =0.9999. The dotted line denotes the choice of a = 0.99 and the dashed line is the 
convergence curve for a uniform distribution. For all choices of a, the values of b, c, and d are chosen 
to make all sentences not in A equally likely. 

contain a much higher percentage of auxiliary inversion and wh-questions than 
"ordinary" text (such as the Lund-Oslo-Bergen or Brown corpuses): the "Nina" 
database has 25,890 auxiliary inversion questions (59.3%) and 11,755 wh-ques- 
tions (26.9%) in caretaker input, as compared to 2506 wh-questions or 3.7% of the 
53,495 sentences in the LOB corpus; the "Katrin" corpus contains 201 (31.8%) 
auxiliary inversion questions and 99 (15.7%) wh-questions. 

To test the convergence of the model, an implemented system was developed 
using a newer version of the deMarcken partial parser (deMarcken, 1990). Each 
degree-0 and degree-1 sentence was analyzed as falling into one of the target 
patterns SVO, S Aux V, etc., as appropriate for the target language. Word part of 
speech was assumed known. Sentences not parsable into these patterns were 
discarded (following a presumption that they are "too complex" in some sense, as 
in Wexler and Culicover (1980); this assumption could of course be relaxed). 
Some examples of caretaker inputs in both languages follow: 

this is a book? what do you see in the book'? 
how many rabbits? 
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what is the rabbit doing? (...) 
is he hopping? oh. and what is he playing with? 
red mir doch nicht alles nach! 
ja, die sch~iwatzen auch immer alles nach (...) 

When the system analyzes these sentences and then uses the TLA, we discover 
that convergence time falls roughly along the TLA rates displayed in Fig. 1: 
roughly 100 positive (structured) examples to attain asymptotic convergence. 
Thus, the feasibility of the basic model is confirmed by this simple direct 
simulation, for both English and German, starting from feasible initial states. 
Trapping in local maxima is of course observed, if the initial state is unfavorable. 

We are continuing to investigate this computer model with additional examples, 
distributions on the CHILDES inputs, and other languages. One important 
complication that must be taken into account is the preponderance of auxiliary 
inversion and wh-questions; the parser must be able to detect this pattern, but this 
largely begs the question of setting the Verb Second parameter. In brief, as far as 
our tentative simulations indicate, we have not yet arrived at a completely 
satisfactory account for setting the Verb Second parameter. 

3.5. Formal computation of rates of convergence 

We have shown how to characterize learnability by Markov chains. Recall that 
Markov chains corresponding to memoryless learning algorithms have an associ- 
ated transition matrix T. We saw that T* was the transition matrix after k examples, 
and in the limiting case, 

lim T k = T~ 

In general, the structure of Too, as discussed earlier, determined whether the 
target grammar was Gold-learnable. The rate at which T converges to Too 
determines the rate at which the learner converges to the target "in the limit". This 
rate allows us to bound the sample complexity in a formal sense, that is, it allows 
us to bound the number of examples needed before the learner will be at the target 
with high confidence. In this section, we develop some formal machinery 
borrowed from classical Markov chain theory that is useful to bound the rate of 
convergence of the learner to the target grammar for learnable target grammars. 
We first develop the notion of an eigenvalue of a transition matrix and show how 
this can be used to construct an alternative representation of T*. 

We then discuss the limiting distributions of Markov chains from various initial 
conditions, and finally combine all these notions to formally state some results for 
the rate at which the learner converges to the target. 

3.5.1. Eigenvalues and eigenvectors 
Many properties of a transition matrix can be characterized by its eigenvalues 

and eigenvectors. 
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Defini t ion 4 A number A is said to be an eigenvalue o f  a matrix T i f  there 
exists some non-zero vector x satisfying 

x T  : Ax 

Such a row vector x is called a left eigenvector o f  T corresponding to the 
eigenvalue A. Similarly, a non-zero column vector y satisfying Ty =Ay is called 
a right eigenvector o f  T. 

It can be shown that the eigenvalues of  a matrix T can be obtained by solving 

l a l -  T[ = 0 ( l )  

where 1 is the identity matrix and IM[ denotes the determinant of  the matrix M. 

3.5.2. Example 
Consider the matrix 

Such a matrix could, for example, be the transition matrix for a learner in a 
parametric space with two grammars, that is, a space defined by one boolean 
valued parameter. In order to solve for the eigenvalues of  the matrix, we need to 
solve 

,E [i -il, l a / -  r l  = - = 0 

0 

This reduces to the quadratic equation 

2 1 
( a  - 7 )  2 = 

which can be solved to yield k = 1 and k = 1/3 as its two solutions. It can be easily 
seen that the row vector, x =  (1, 1) is a left eigenvector corresponding to the 
eigenvalue k = 1. As a matter of  fact, all multiples of (1, 1) are eigenvectors for 
this particular eigenvalue. Similarly, it can also be seen that x = ( 1 , -  I) is a left 
eigenvector for the eigenvalue h =  1/3. 

In general, for an m × m matrix T, eq. (1) is an mth order equation and can be 
solved to yield m solutions (complex-valued) for h. Two other facts about 
eigenvalue solutions of such transition matrices are worth not ing here. 

1. For transition matrices corresponding to finite Markov chains, it is possible to 
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show that k = 1 is always an eigenvalue. Further, it is the largest eigenvalue in 
that any other eigenvalue, k, is less than one in absolute value, that is, Ixl < 1. 

2. For transition matrices corresponding to finite Markov chains, the multiplicity 
of  the eigenvalue h = 1 is equal to the number of  closed classes (see Appendix) 
in the chain. 

In our example above, we do see that k = 1 is an eigenvalue. It has multiplicity 
of  1, indicating that there is only one closed class in the chain; in the example, the 
class consists of  the two states of  the chain. 

3.5.3. Representation o f  T k 
The eigenvalues and associated eigenvectors can be used to represent T k in a 

form that is convenient for bounding the rate of  its convergence to T~. This 
representation is only true for matrices that are of  full rank, that is, m X m matrices 
that have m linearly independent left eigenvectors. 

Let T be an m ×m  transition matrix. Let it have m linearly independent left 
eigenvectors x I . . . . .  x m corresponding to eigenvalues k~, k 2 ..... k,,. One could then 
define the matrix L whose rows are the left eigenvectors of  the matrix T. Thus 

LIJ x 2 
L =  

m 

Clearly, since the rows of  L are linearly independent, its inverse, L ~ exists. It 
turns out that the columns of  L-x are the right eigenvectors of T. Let the ith 
column of  L -x be y~; that is, 

L - I  =[YJ Y2 Ym] 

Now we can represent T k in a convenient form stated in the following lemma: 

Lemma 1 Let T be an m X m  transition matrix having m linearly independent 
left eigenvectors, xj  . . . . .  x m corresponding to eigenvalues ,t I ....... Am. Further let 
L be the matrix whose rows are the left eigenvectors and let the columns o f  L -I 
be y~ 's. Then 

m 

k 
T ~ : E  AiYiXi 

i = 1  

Thus, according to the lemma above, T k can be represented as the linear 
combination of  m fixed matrices (yixi). The coefficients of  this linear combination 
are h~. Clearly, we see that the rate of  convergence of  T k is now bounded by the 
rate of  convergence of  terms like k~. 
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3.5.4. Example (contd.) 
Continuing our previous example, we can construct the matrices, L and L 1 

of the left eigenvectors. In fact using our solutions from before, we see that 

E: l J [i L = and L -  ~ = 
- 1  

The rows of L are the xi 's  and the columns of L -~ are the y / s .  

out 

3.5.5. Initial conditions and limiting distributions 
Recall that the learner could start in any initial state. One could quantify the 

initial condition of the learner by putting a distribution on the states of  the Markov 
chain according to which the learner picks its initial state. Let this be denoted by 
I-Io=(~r~(0), ~2(0) . . . . .  ~rm(0)). Thus, rri(0) is the probability with which the 
learner picks the ith state as the initial state. For example, if the learner were 
equally likely to start in any state, then v i ( 0 ) =  1/m for all i. 

The above characterizes the probability with which the learner is in each of the 
states before having seen any examples. The learner would then move from state 
to state according to the transition matrix T. After k examples, the probability with 
which the learner would be in each of the states is given by: 

~I~ = l-Io Tk 

Finally, one could characterize the limiting distribution as 

1-[ = l im l -L  = I-IoT~ (2) 
k-.-~zc 

Clearly, l-[characterizes the probability with which the learner is in each of the 
states "in the limit".  Suppose the target were L j, and it were Gold-learnable; then 
the first element of  the vector [-[would be 1 and all other elements would be 0. In 
other words, the probability that the learner is at the target in the limit is 1 and the 
probability that the learner is at some other state (non-target) in the limit is 
correspondingly 0. 

3.5.6. Rate o f  convergence 
We are interested in bounding the rate at which l~L converges to 1-I. We see 

that this rate depends on the rate at which T k converges to T~. (eq. 2) which in 
turn depends upon the rate at which the k~ converges to 0 by Lemma 1 (for i > 1). 
As we have discussed, h i =  1. Consequently, we can bound the rate of  conver- 
gence by the rate at which the second largest eigenvalue converges to 0. Thus we 
can state the following theorem. 

Theorem 2 Let the transition matrix characterizing the behavior o f  the 
memoryless learner be T. Further, let T have the eigenvalues, A I . . . . .  h,,, and m 
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linearly independent left eigenvectors, x I . . . . .  x m and m right eigenvectors y j, 
.... y,,,;h~ = 1. Then, the distance between the learner's state after k examples 
and its state in the limit is given by: 

11 n 

IlfI l-Ill I1~ q-I I'}~11~, , - = a, oy,x,l[-<max {la, yjx,[I 
i = 2  i j = 2  

Let us first apply this theorem to the illustrative example of  this section. 

3.5. 7. Example (contd.) 
We have already solved for the eigenvalues of  T and constructed the matrices L 

and L-J .  The rows of  L are the row vectors x i and the columns of  L-~ are the 
column vectors Yi. Assuming that the learner is three times as likely to start in 
state 1 as compared to state 2, that is, 1 - Io=(3/4 ,1 /4) ,  we can show that 

1 k 1 

Thus the rate at which the learner converges to the limiting distribution over the 
state space is of  the order of  (1/3)  k. Note that 1/3 is the second largest eigenvalue 
of the transition matrix. 

3.5.8. Transition matrix recipes 
The above discussion allows us to see how one could extract useful leamability 

properties of  the memoryless learner from the transition matrix characterizing the 
behavior of  that learner on the finite parameter space. As a matter of  fact, we can 
now outline a procedure whereby one could check for the learnability and sample 
complexity of  learning in such parameter spaces. 

1. Construct the transition matrix T for the memoryless learner according to the 
arguments developed earlier. Such a matrix has 2" states if there are n boolean 
valued parameters in the grammatical theory. 

2. Compute the eigenvalues of the matrix T. 
3. If the multiplicity of  the eigenvalue h = 1 is more than one, then there are 

additional closed classes and by the learnability theorem, the target grammar is 
not Gold-learnable. 

4. If  the target is Gold-learnable, and the eigenvectors are linearly independent, 
then use Theorem 2 to bound the rate of  convergence. 

Using such a procedure, we can bound the rate of  convergence of  each of  the 
following learning scenarios for the three parameter syntactic subsystem we have 
examined in some detail in previous examples. In each case, the target is the 
language L~. The learning algorithm is the TLA with different sentence dis- 
tributions (parameterized by a with b, c, d chosen to make sentences outside of  A 
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equally likely). We also considered the Random Step Algorithm with a uniform 
sentence distribution. The rate of convergence is denoted as a function of the 
number of examples. 

Learning scenario Rate of Convergence 

TLA (uniform) O(0.94 k) 
TLA(a = 0.99) O(( 1 - 10- 4 ) k )  

TLA(a = 0.9999) O(( 1 - 10-6)~) 
Random Step 0 (0 .8¢ )  

4. Modeling noise in the Markov analysis 

So far, we have analyzed the learnability and sample complexity of TLA and its 
variants when the learner was exposed only to positive strings from the target 
(albeit under varying distributional assumptions). In most human learning 
scenarios, this presents a problem; children surely are exposed to noise, possibly 
due to disfluencies in speech, the presence of foreign speakers, or a variety of 
other reasons. This results in the child hearing sentences that have not been 
generated by the target grammar. What effect does this sort of noise have on the 
learnability of these spaces by TLA-like algorithms? For our purpose, we can 
effectively model noise by dispensing with the idea of a single state that is the 
source of sentences in our Markov chain. There might now be multiple sources: 
consider the case of a child brought up in a linguistic community where most 
people speak the target language but there are also foreign speakers (or speakers 
who have internalized different grammars) who also contribute to the sum total of 
the child's linguistic input on the basis of which he or she forms hypotheses about 
the target grammar. Mathematically, one could express this idea by associating 
probability Pi with the ith source which then produces sentences according to a 
distribution Pi on the sentences of this language L~. The probability of hearing a 
sentence to then is given by 

2 n 

P(w) = ~'~piPi(w) 
i = 1  

One can reasonably imagine that p, which corresponds to the weight given to 
the target source (or represents the proportion of the population speaking the 
"target" grammar) dominates all the other p / s .  Note that this framework of 
modeling noise essentially captures "grammatical noise", that is, sentences 
inconsistent with the target grammar but analyzable by some other grammar in the 
parametric system. Noise of this form is particularly important to study as it might 
systematically drive the learner to incorrect solutions. Other forms of noise 
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("ungrammatical") corresponding to sentence forms that are not analyzable under 
any grammatical hypothesis within the parametric system are not considered here. 

Certain computational consequences of this framework are worth highlighting. 
First, the behavior of TLA-like algorithms can again be analyzed within this 
Markov framework with exactly the same expressions for the transition prob- 
abilities as before. Obviously, this time, the probability of the sentence to is 
computed by the above expression. The Markov structure now has no Absorbing 
States. This is because even if the learner is at the target state, some sentence from 
some other source which is not analyzable by the current target parameter settings 
will cause the learner to move out; the self loop probability at the target is not one, 
and certainly this is so for all the other states. By our main theorem, the system is 
not learnable; consequently it no longer makes sense to talk of convergence to a 
unique grammar in the limit. However, there is a sense in which the long-term 
behavior of the TLA (as the data goes to infinity) assumes importance. It might be 
possible to characterize the probability that the learner will be in a state s in the 
limit; specifically after m examples it might be possible to compute the probability 
vector p (m)=  (p~(m) . . . . .  p2n(m)) where p(m) converges to a limiting distribution 

Now, imagine that the target language was L i. The probability of being in the 
target state at some distant time (i.e., after an arbitrary number of examples) is 
given by P~[i]. Although this probability will not be equal to 1, as discussed 
earlier, one would like it to be as high as possible. Since noise can be effectively 
modeled by our framework, the transition matrices and the limiting distribution p~ 
can often be computed. These would clearly depend upon the noise. In fact, as the 
noise levels increase, the probability o~[i] will decrease from 1. In principle, one 
can formally study this decrease as a function of noise level to characterize how 
the learning power of the TLA degenerates with increase in noise. 

This general characterization allows us to formulate an explicit computational 
model of language change 9. Imagine for a moment that the human learner follows 
a TLA like scheme to search the parameter space for the target grammar. A child 
then on being exposed to sentences according to the distribution P would with 
probability p~[i] internalize the grammar corresponding to Li. Taking a demo- 
graphic perspective on the system, we would expect p~[i] of the population of 
children to have internalized the grammar L~. This generation of children on 
maturing to adulthood would now serve as a source of sentences for the following 
generation according to the distribution p~ on the different states in the Markov 
chain. In this fashion, over generations the linguistic composition of the population 
would evolve. Thus this model makes concrete the suggestion of Lightfoot (1991) 
regarding a dynamical system model for diachronic syntax change. 

9 Space prohibits a thorough consideration of this subject. See Niyogi and Berwick (1995) for 
details. 
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5. Conclusions, open questions, and future directions 

The problem of learning parameterized families of grammars has several 
different dimensions. One needs to investigate the learnability of various language 
families for algorithms under a variety of distributional assumptions, for different 
parameterization schemes, for various levels and kinds of noise, and so on. In this 
paper we have emphasized that it is not enough to merely check for learnability in 
the limit; one also needs to quantify the sample complexity of the learning 
problem, that is, how many examples does the learning algorithm need to see in 
order to be able to identify the target grammar with high confidence. We have 
presented a Markov formalization of the problem in order to investigate both 
learnability and sample complexity issues precisely. This model provides us with a 
useful research tool to explore the issues involved in learning natural languages. 
While examples were primarily given for the TLA (and some other variants) on a 
particular three-parameter linguistic subspace, it should be reiterated that any 
parameterization scheme with a finite number of parameters and several other 
kinds of algorithms can be usefully studied by such an approach. For example, 
genetic algorithms, which have been proposed as a possible computational 
paradigm for language learning and language change (see Clark and Roberts, 
1993) can also be easily studied within this same Markov framework. 

On studying the performance of the TLA on the three-parameter linguistic 
subspace previously investigated by Gibson and Wexler, not only were we able to 
characterize the learnability and sample complexity, but we also found some 
surprising new results. We found the existence of new problem states: states from 
which the TLA-based learner would with high probability not converge to the 
target. The existence of a path from a particular state (hypothesis) to the target, 
equivalent to the existence of local triggers, is not enough to guarantee learn- 
ability. The stochastic formulation suggests one has to go further. Further, our 
Markov analysis showed that the TLA was suboptimal (for the three-parameter 
task considered here); for example, the random step algorithm on this space had no 
local maxima and converged faster. 

Several directions for further research naturally arise. As the number of 
parameters n increases, the size of the corresponding Markov matrix grows as 2". 
Thus in the case of a 10-parameter system as found in models of stress learning 
(Dresher and Kaye, 1990) the corresponding Markov structure will be a 1024× 
1024 matrix. We are currently conducting an analysis of this larger system to find 
its local maxima, analyze its convergence times, and see if its convergence times 
correspond to what one might find in practice with real stress systems. How the 
sample complexity scales with the number of parameters is an important question 
that needs to be addressed. Another interesting direction involves the derivation of 
a model for language change from the model of language learning. The Markov 
model for language learning focuses on the individual child and how she/he 
updates her/his grammatical hypotheses from sentence to sentence. If one 
analyzes the behavior of a population of such child learners and attempts to 
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characterize the linguistic composition of the population from generation to 
generation, a model of language change would emerge. Such a diachronic model 
has been derived in Niyogi and Berwick (1995). The details of the model rest on 
the learnability analyses presented in this article. 
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Appendix 1 

Proof  o f  learnability theorem 

To establish the theorem, we recall three additional standard terms associated 
with the Markov chain states: (1) equivalent states; (2) recurrent states; and (3) 
transient states. We then present another standard result about the form of any 
Markov chain: its canonical decomposition in terms of closed, equivalent, 
recurrent, and transient states. 

Markov state terminology 

Definition 5 Given a Markov chain M, and any pair o f  states s, t • M, we say 
that s is equivalent to t i f  and only i f  s is reachable f rom t and t is reachable 
from s, where by reachable we mean that there is a path from one state to 
another. 

Two states s and t are equivalent if and only if there is a path from s to t and a 
path from t to s. Using the equivalence relation defined above, we can divide any 
M into equivalence classes of states. All the states in one class are reachable (from 
and to) the states in that class. 

Definition 6 Given a Markov chain M, a state s e M is recurrent/f the chain 
returns to s in a finite number o f  steps with probability 1. 
Definition 7 Given a Markov chain M, and a state s E M, i f  s is not recurrent, 
then s is transient. 

We will need later the following simple property about transient states: 
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Lemma 2 Given a Markov chain M, if  t is a transient state of  M, then, for 
any state s • M 

lim p,(n) = 0 
n - - ~ z c  

where p~,,(n) denotes the probability of going from state s to state t in exactly n 
steps. 

Proof sketch 
Proposition 2.6.3 (p. 88 of Resnick (1992) states that 

p~,(n) < 
n = I 

Therefore, ~p,(n) is a convergent series. Thus p,,(n) . . . .  --->0. 

Canonical decomposition 
A particular Markov chain might have many closed states (Definition 3 of text), 

and these need not be disjoint; they might also be subsets of each other. However, 
even though there can be many closed states in a particular Markov chain, the 
following standard result shows that there is a canonical decomposition of the 
chain (Lemma 3) that will be useful to us in proving the leamability theorem. 

Lemma  3 Given a Markov chain M, we may decompose M into disjoint sets 
of  states as follows: 

M =  T U C I  tAC2... 

where (i) T is a collection of transient states and (ii) the C i's \are closed, 
equivalence classes of recurrent stages. 

Proof sketch 
This is a standard Markov chain result; see Corollary 2.10.2 of p. 99 of Resnick 

(1992). 
We can now proceed to a proof of the main learnability theorem. 

Formal proof 

We need to show that if the target grammar is learnable, then every closed 
set in the chain must contain the target state. By assumption, target grammar gt is 
learnable. Now assume for sake of contradiction that there is some closed set C 
that does not include the target state associated with the target grammar. If the 
learner starts in some seC, by the definition of a closed set of states, it can never 
reach the target state. This contradicts the assumption that gy was learnable. 

Assume that every closed set of the Markov chain associated with the 
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learning system includes the target state. We now need to show that the target 
grammar is Gold-learnable. First, we make use of  some properties of  the target 
state in conjunction with the canonical decomposition of  Lemma 3 to show that 
every non-target state must be transient. Then we make use of  Lemma 2 about 
transient states to show that the learner must converge to the target grammar in the 
limit with probability 1. 

First, note the following properties of  the target state: 

1. By construction, the target state is an absorbing state, that is, no other state is 
reachable from the target state. 

2. Therefore, no other state can be in an equivalence relation with the target state 
and the target state is in an equivalence class by itself. 

3. The target state is recurrent since the chain returns to it with probability 1 in 
one step (the target state is an absorbing state). 

These facts about the target state show that the target state constitutes a closed 
class (say C i) in the canonical decomposition of  M. However, there cannot be any 
other closed class Cj,j  ~ i in the canonical decomposition of  M. This is because by 
the definition of  the canonical decomposition any other such Cj must be disjoint 
from C i, and by the hypothesis of  the theorem, such Cj must contain the target 
state, leading to a contradiction. Therefore, by the canonical decomposition 
lemma, every other state in M must belong to T, and must therefore be a transient 
state. 

Now denote the target state by S:" The canonical decomposition of  M must 
therefore be in the form: 

T u {s/} 

Without loss of generality, let the learner start at some arbitrary state s. After 
any integer number n of positive examples, we know that 

~p.,.,(n) = 1 
teM 

because the learner has to be in one of the states of the chain M after n examples 
with probability 1. But by the decomposition lemma and our previous arguments 
M =  T U s/. Therefore we can rewrite this sum as two parts, one corresponding to 
the transient states and the other corresponding to the final state: 

Y : . ( n )  + p, An) = 1 
t~T 

Now take the limit as n goes to infinity. By the transient state lemma, every 
p.,,(n) goes to zero for teT. There are only a finite (known) number of  states in T. 
Therefore, E,~rp.,,(n ) goes to zero. Consequently, P.,.s: goes to 1. But that means 
that the learner converges to the target state in the limit (with probability 1). Since 
this is true irrespective of  the starting state of  the learner, the learner converges to 
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the  ta rge t  wi th  p robab i l i ty  1, and  the  assoc ia ted  target  g r a m m a r  g ,  is Gold-  
learnable .  
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